# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test_checkparam """ import numpy as np import pytest import mindspore import mindspore.nn as nn from mindspore import Model, context from mindspore.common.tensor import Tensor class LeNet5(nn.Cell): """ LeNet5 definition """ def __init__(self): super(LeNet5, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5, pad_mode="valid") self.conv2 = nn.Conv2d(6, 16, 5, pad_mode="valid") self.fc1 = nn.Dense(16 * 5 * 5, 120) self.fc2 = nn.Dense(120, 84) self.fc3 = nn.Dense(84, 3) self.relu = nn.ReLU() self.max_pool2d = nn.MaxPool2d(kernel_size=2) self.flatten = nn.Flatten() def construct(self, x): x = self.max_pool2d(self.relu(self.conv1(x))) x = self.max_pool2d(self.relu(self.conv2(x))) x = self.flatten(x) x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.fc3(x) return x def predict_checke_param(in_str): """ predict_checke_param """ net = LeNet5() # neural network context.set_context(mode=context.GRAPH_MODE) model = Model(net) a1, a2, b1, b2, b3, b4 = in_str.strip().split() a1 = int(a1) a2 = int(a2) b1 = int(b1) b2 = int(b2) b3 = int(b3) b4 = int(b4) nd_data = np.random.randint(a1, a2, [b1, b2, b3, b4]) input_data = Tensor(nd_data, mindspore.float32) model.predict(input_data) def test_predict_checke_param_failed(): """ test_predict_checke_param_failed """ in_str = "0 255 0 3 32 32" with pytest.raises(ValueError): predict_checke_param(in_str)