// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2018 Intel Corporation */ #include #include "igc_hw.h" /** * igc_get_hw_semaphore_i225 - Acquire hardware semaphore * @hw: pointer to the HW structure * * Acquire the necessary semaphores for exclusive access to the EEPROM. * Set the EEPROM access request bit and wait for EEPROM access grant bit. * Return successful if access grant bit set, else clear the request for * EEPROM access and return -IGC_ERR_NVM (-1). */ static s32 igc_acquire_nvm_i225(struct igc_hw *hw) { return igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM); } /** * igc_release_nvm_i225 - Release exclusive access to EEPROM * @hw: pointer to the HW structure * * Stop any current commands to the EEPROM and clear the EEPROM request bit, * then release the semaphores acquired. */ static void igc_release_nvm_i225(struct igc_hw *hw) { igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM); } /** * igc_get_hw_semaphore_i225 - Acquire hardware semaphore * @hw: pointer to the HW structure * * Acquire the HW semaphore to access the PHY or NVM */ static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw) { s32 timeout = hw->nvm.word_size + 1; s32 i = 0; u32 swsm; /* Get the SW semaphore */ while (i < timeout) { swsm = rd32(IGC_SWSM); if (!(swsm & IGC_SWSM_SMBI)) break; usleep_range(500, 600); i++; } if (i == timeout) { /* In rare circumstances, the SW semaphore may already be held * unintentionally. Clear the semaphore once before giving up. */ if (hw->dev_spec._base.clear_semaphore_once) { hw->dev_spec._base.clear_semaphore_once = false; igc_put_hw_semaphore(hw); for (i = 0; i < timeout; i++) { swsm = rd32(IGC_SWSM); if (!(swsm & IGC_SWSM_SMBI)) break; usleep_range(500, 600); } } /* If we do not have the semaphore here, we have to give up. */ if (i == timeout) { hw_dbg("Driver can't access device - SMBI bit is set.\n"); return -IGC_ERR_NVM; } } /* Get the FW semaphore. */ for (i = 0; i < timeout; i++) { swsm = rd32(IGC_SWSM); wr32(IGC_SWSM, swsm | IGC_SWSM_SWESMBI); /* Semaphore acquired if bit latched */ if (rd32(IGC_SWSM) & IGC_SWSM_SWESMBI) break; usleep_range(500, 600); } if (i == timeout) { /* Release semaphores */ igc_put_hw_semaphore(hw); hw_dbg("Driver can't access the NVM\n"); return -IGC_ERR_NVM; } return 0; } /** * igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore * @hw: pointer to the HW structure * @mask: specifies which semaphore to acquire * * Acquire the SW/FW semaphore to access the PHY or NVM. The mask * will also specify which port we're acquiring the lock for. */ s32 igc_acquire_swfw_sync_i225(struct igc_hw *hw, u16 mask) { s32 i = 0, timeout = 200; u32 fwmask = mask << 16; u32 swmask = mask; s32 ret_val = 0; u32 swfw_sync; while (i < timeout) { if (igc_get_hw_semaphore_i225(hw)) { ret_val = -IGC_ERR_SWFW_SYNC; goto out; } swfw_sync = rd32(IGC_SW_FW_SYNC); if (!(swfw_sync & (fwmask | swmask))) break; /* Firmware currently using resource (fwmask) */ igc_put_hw_semaphore(hw); mdelay(5); i++; } if (i == timeout) { hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n"); ret_val = -IGC_ERR_SWFW_SYNC; goto out; } swfw_sync |= swmask; wr32(IGC_SW_FW_SYNC, swfw_sync); igc_put_hw_semaphore(hw); out: return ret_val; } /** * igc_release_swfw_sync_i225 - Release SW/FW semaphore * @hw: pointer to the HW structure * @mask: specifies which semaphore to acquire * * Release the SW/FW semaphore used to access the PHY or NVM. The mask * will also specify which port we're releasing the lock for. */ void igc_release_swfw_sync_i225(struct igc_hw *hw, u16 mask) { u32 swfw_sync; while (igc_get_hw_semaphore_i225(hw)) ; /* Empty */ swfw_sync = rd32(IGC_SW_FW_SYNC); swfw_sync &= ~mask; wr32(IGC_SW_FW_SYNC, swfw_sync); igc_put_hw_semaphore(hw); } /** * igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register * @hw: pointer to the HW structure * @offset: offset of word in the Shadow Ram to read * @words: number of words to read * @data: word read from the Shadow Ram * * Reads a 16 bit word from the Shadow Ram using the EERD register. * Uses necessary synchronization semaphores. */ static s32 igc_read_nvm_srrd_i225(struct igc_hw *hw, u16 offset, u16 words, u16 *data) { s32 status = 0; u16 i, count; /* We cannot hold synchronization semaphores for too long, * because of forceful takeover procedure. However it is more efficient * to read in bursts than synchronizing access for each word. */ for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) { count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ? IGC_EERD_EEWR_MAX_COUNT : (words - i); status = hw->nvm.ops.acquire(hw); if (status) break; status = igc_read_nvm_eerd(hw, offset, count, data + i); hw->nvm.ops.release(hw); if (status) break; } return status; } /** * igc_write_nvm_srwr - Write to Shadow Ram using EEWR * @hw: pointer to the HW structure * @offset: offset within the Shadow Ram to be written to * @words: number of words to write * @data: 16 bit word(s) to be written to the Shadow Ram * * Writes data to Shadow Ram at offset using EEWR register. * * If igc_update_nvm_checksum is not called after this function , the * Shadow Ram will most likely contain an invalid checksum. */ static s32 igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words, u16 *data) { struct igc_nvm_info *nvm = &hw->nvm; s32 ret_val = -IGC_ERR_NVM; u32 attempts = 100000; u32 i, k, eewr = 0; /* A check for invalid values: offset too large, too many words, * too many words for the offset, and not enough words. */ if (offset >= nvm->word_size || (words > (nvm->word_size - offset)) || words == 0) { hw_dbg("nvm parameter(s) out of bounds\n"); goto out; } for (i = 0; i < words; i++) { eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) | (data[i] << IGC_NVM_RW_REG_DATA) | IGC_NVM_RW_REG_START; wr32(IGC_SRWR, eewr); for (k = 0; k < attempts; k++) { if (IGC_NVM_RW_REG_DONE & rd32(IGC_SRWR)) { ret_val = 0; break; } udelay(5); } if (ret_val) { hw_dbg("Shadow RAM write EEWR timed out\n"); break; } } out: return ret_val; } /** * igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR * @hw: pointer to the HW structure * @offset: offset within the Shadow RAM to be written to * @words: number of words to write * @data: 16 bit word(s) to be written to the Shadow RAM * * Writes data to Shadow RAM at offset using EEWR register. * * If igc_update_nvm_checksum is not called after this function , the * data will not be committed to FLASH and also Shadow RAM will most likely * contain an invalid checksum. * * If error code is returned, data and Shadow RAM may be inconsistent - buffer * partially written. */ static s32 igc_write_nvm_srwr_i225(struct igc_hw *hw, u16 offset, u16 words, u16 *data) { s32 status = 0; u16 i, count; /* We cannot hold synchronization semaphores for too long, * because of forceful takeover procedure. However it is more efficient * to write in bursts than synchronizing access for each word. */ for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) { count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ? IGC_EERD_EEWR_MAX_COUNT : (words - i); status = hw->nvm.ops.acquire(hw); if (status) break; status = igc_write_nvm_srwr(hw, offset, count, data + i); hw->nvm.ops.release(hw); if (status) break; } return status; } /** * igc_validate_nvm_checksum_i225 - Validate EEPROM checksum * @hw: pointer to the HW structure * * Calculates the EEPROM checksum by reading/adding each word of the EEPROM * and then verifies that the sum of the EEPROM is equal to 0xBABA. */ static s32 igc_validate_nvm_checksum_i225(struct igc_hw *hw) { s32 (*read_op_ptr)(struct igc_hw *hw, u16 offset, u16 count, u16 *data); s32 status = 0; status = hw->nvm.ops.acquire(hw); if (status) goto out; /* Replace the read function with semaphore grabbing with * the one that skips this for a while. * We have semaphore taken already here. */ read_op_ptr = hw->nvm.ops.read; hw->nvm.ops.read = igc_read_nvm_eerd; status = igc_validate_nvm_checksum(hw); /* Revert original read operation. */ hw->nvm.ops.read = read_op_ptr; hw->nvm.ops.release(hw); out: return status; } /** * igc_pool_flash_update_done_i225 - Pool FLUDONE status * @hw: pointer to the HW structure */ static s32 igc_pool_flash_update_done_i225(struct igc_hw *hw) { s32 ret_val = -IGC_ERR_NVM; u32 i, reg; for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) { reg = rd32(IGC_EECD); if (reg & IGC_EECD_FLUDONE_I225) { ret_val = 0; break; } udelay(5); } return ret_val; } /** * igc_update_flash_i225 - Commit EEPROM to the flash * @hw: pointer to the HW structure */ static s32 igc_update_flash_i225(struct igc_hw *hw) { s32 ret_val = 0; u32 flup; ret_val = igc_pool_flash_update_done_i225(hw); if (ret_val == -IGC_ERR_NVM) { hw_dbg("Flash update time out\n"); goto out; } flup = rd32(IGC_EECD) | IGC_EECD_FLUPD_I225; wr32(IGC_EECD, flup); ret_val = igc_pool_flash_update_done_i225(hw); if (ret_val) hw_dbg("Flash update time out\n"); else hw_dbg("Flash update complete\n"); out: return ret_val; } /** * igc_update_nvm_checksum_i225 - Update EEPROM checksum * @hw: pointer to the HW structure * * Updates the EEPROM checksum by reading/adding each word of the EEPROM * up to the checksum. Then calculates the EEPROM checksum and writes the * value to the EEPROM. Next commit EEPROM data onto the Flash. */ static s32 igc_update_nvm_checksum_i225(struct igc_hw *hw) { u16 checksum = 0; s32 ret_val = 0; u16 i, nvm_data; /* Read the first word from the EEPROM. If this times out or fails, do * not continue or we could be in for a very long wait while every * EEPROM read fails */ ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data); if (ret_val) { hw_dbg("EEPROM read failed\n"); goto out; } ret_val = hw->nvm.ops.acquire(hw); if (ret_val) goto out; /* Do not use hw->nvm.ops.write, hw->nvm.ops.read * because we do not want to take the synchronization * semaphores twice here. */ for (i = 0; i < NVM_CHECKSUM_REG; i++) { ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data); if (ret_val) { hw->nvm.ops.release(hw); hw_dbg("NVM Read Error while updating checksum.\n"); goto out; } checksum += nvm_data; } checksum = (u16)NVM_SUM - checksum; ret_val = igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1, &checksum); if (ret_val) { hw->nvm.ops.release(hw); hw_dbg("NVM Write Error while updating checksum.\n"); goto out; } hw->nvm.ops.release(hw); ret_val = igc_update_flash_i225(hw); out: return ret_val; } /** * igc_get_flash_presence_i225 - Check if flash device is detected * @hw: pointer to the HW structure */ bool igc_get_flash_presence_i225(struct igc_hw *hw) { bool ret_val = false; u32 eec = 0; eec = rd32(IGC_EECD); if (eec & IGC_EECD_FLASH_DETECTED_I225) ret_val = true; return ret_val; } /** * igc_init_nvm_params_i225 - Init NVM func ptrs. * @hw: pointer to the HW structure */ s32 igc_init_nvm_params_i225(struct igc_hw *hw) { struct igc_nvm_info *nvm = &hw->nvm; nvm->ops.acquire = igc_acquire_nvm_i225; nvm->ops.release = igc_release_nvm_i225; /* NVM Function Pointers */ if (igc_get_flash_presence_i225(hw)) { hw->nvm.type = igc_nvm_flash_hw; nvm->ops.read = igc_read_nvm_srrd_i225; nvm->ops.write = igc_write_nvm_srwr_i225; nvm->ops.validate = igc_validate_nvm_checksum_i225; nvm->ops.update = igc_update_nvm_checksum_i225; } else { hw->nvm.type = igc_nvm_invm; nvm->ops.read = igc_read_nvm_eerd; nvm->ops.write = NULL; nvm->ops.validate = NULL; nvm->ops.update = NULL; } return 0; } /** * igc_set_eee_i225 - Enable/disable EEE support * @hw: pointer to the HW structure * @adv2p5G: boolean flag enabling 2.5G EEE advertisement * @adv1G: boolean flag enabling 1G EEE advertisement * @adv100M: boolean flag enabling 100M EEE advertisement * * Enable/disable EEE based on setting in dev_spec structure. **/ s32 igc_set_eee_i225(struct igc_hw *hw, bool adv2p5G, bool adv1G, bool adv100M) { u32 ipcnfg, eeer; ipcnfg = rd32(IGC_IPCNFG); eeer = rd32(IGC_EEER); /* enable or disable per user setting */ if (hw->dev_spec._base.eee_enable) { u32 eee_su = rd32(IGC_EEE_SU); if (adv100M) ipcnfg |= IGC_IPCNFG_EEE_100M_AN; else ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN; if (adv1G) ipcnfg |= IGC_IPCNFG_EEE_1G_AN; else ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN; if (adv2p5G) ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN; else ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN; eeer |= (IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN | IGC_EEER_LPI_FC); /* This bit should not be set in normal operation. */ if (eee_su & IGC_EEE_SU_LPI_CLK_STP) hw_dbg("LPI Clock Stop Bit should not be set!\n"); } else { ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN | IGC_IPCNFG_EEE_1G_AN | IGC_IPCNFG_EEE_100M_AN); eeer &= ~(IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN | IGC_EEER_LPI_FC); } wr32(IGC_IPCNFG, ipcnfg); wr32(IGC_EEER, eeer); rd32(IGC_IPCNFG); rd32(IGC_EEER); return IGC_SUCCESS; } /* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds * @hw: pointer to the HW structure * @link: bool indicating link status * * Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC * settings, otherwise specify that there is no LTR requirement. */ s32 igc_set_ltr_i225(struct igc_hw *hw, bool link) { u32 tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max; u16 speed, duplex; s32 size; /* If we do not have link, LTR thresholds are zero. */ if (link) { hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex); /* Check if using copper interface with EEE enabled or if the * link speed is 10 Mbps. */ if (hw->dev_spec._base.eee_enable && speed != SPEED_10) { /* EEE enabled, so send LTRMAX threshold. */ ltrc = rd32(IGC_LTRC) | IGC_LTRC_EEEMS_EN; wr32(IGC_LTRC, ltrc); /* Calculate tw_system (nsec). */ if (speed == SPEED_100) { tw_system = ((rd32(IGC_EEE_SU) & IGC_TW_SYSTEM_100_MASK) >> IGC_TW_SYSTEM_100_SHIFT) * 500; } else { tw_system = (rd32(IGC_EEE_SU) & IGC_TW_SYSTEM_1000_MASK) * 500; } } else { tw_system = 0; } /* Get the Rx packet buffer size. */ size = rd32(IGC_RXPBS) & IGC_RXPBS_SIZE_I225_MASK; /* Calculations vary based on DMAC settings. */ if (rd32(IGC_DMACR) & IGC_DMACR_DMAC_EN) { size -= (rd32(IGC_DMACR) & IGC_DMACR_DMACTHR_MASK) >> IGC_DMACR_DMACTHR_SHIFT; /* Convert size to bits. */ size *= 1024 * 8; } else { /* Convert size to bytes, subtract the MTU, and then * convert the size to bits. */ size *= 1024; size *= 8; } if (size < 0) { hw_dbg("Invalid effective Rx buffer size %d\n", size); return -IGC_ERR_CONFIG; } /* Calculate the thresholds. Since speed is in Mbps, simplify * the calculation by multiplying size/speed by 1000 for result * to be in nsec before dividing by the scale in nsec. Set the * scale such that the LTR threshold fits in the register. */ ltr_min = (1000 * size) / speed; ltr_max = ltr_min + tw_system; scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_1024 : IGC_LTRMINV_SCALE_32768; scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_1024 : IGC_LTRMAXV_SCALE_32768; ltr_min /= scale_min == IGC_LTRMINV_SCALE_1024 ? 1024 : 32768; ltr_min -= 1; ltr_max /= scale_max == IGC_LTRMAXV_SCALE_1024 ? 1024 : 32768; ltr_max -= 1; /* Only write the LTR thresholds if they differ from before. */ ltrv = rd32(IGC_LTRMINV); if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK)) { ltrv = IGC_LTRMINV_LSNP_REQ | ltr_min | (scale_min << IGC_LTRMINV_SCALE_SHIFT); wr32(IGC_LTRMINV, ltrv); } ltrv = rd32(IGC_LTRMAXV); if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK)) { ltrv = IGC_LTRMAXV_LSNP_REQ | ltr_max | (scale_max << IGC_LTRMAXV_SCALE_SHIFT); wr32(IGC_LTRMAXV, ltrv); } } return IGC_SUCCESS; }