// (C) Copyright Andrew Sutton 2007 // // Use, modification and distribution are subject to the // Boost Software License, Version 1.0 (See accompanying file // LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt) //[mean_geodesic_example #include #include #include #include #include #include #include "helper.hpp" using namespace std; using namespace boost; // The Actor type stores the name of each vertex in the graph. struct Actor { string name; }; // Declare the graph type and its vertex and edge types. typedef undirected_graph< Actor > Graph; typedef graph_traits< Graph >::vertex_descriptor Vertex; typedef graph_traits< Graph >::edge_descriptor Edge; // The name map provides an abstract accessor for the names of // each vertex. This is used during graph creation. typedef property_map< Graph, string Actor::* >::type NameMap; // Declare a matrix type and its corresponding property map that // will contain the distances between each pair of vertices. typedef exterior_vertex_property< Graph, int > DistanceProperty; typedef DistanceProperty::matrix_type DistanceMatrix; typedef DistanceProperty::matrix_map_type DistanceMatrixMap; // Declare the weight map so that each edge returns the same value. typedef constant_property_map< Edge, int > WeightMap; // Declare a container and its corresponding property map that // will contain the resulting mean geodesic distances of each // vertex in the graph. typedef exterior_vertex_property< Graph, float > GeodesicProperty; typedef GeodesicProperty::container_type GeodesicContainer; typedef GeodesicProperty::map_type GeodesicMap; int main(int argc, char* argv[]) { // Create the graph and a property map that provides access // to the actor names. Graph g; NameMap nm(get(&Actor::name, g)); // Read the graph from standad input. read_graph(g, nm, cin); // Compute the distances between all pairs of vertices using // the Floyd-Warshall algorithm. Note that the weight map is // created so that every edge has a weight of 1. DistanceMatrix distances(num_vertices(g)); DistanceMatrixMap dm(distances, g); WeightMap wm(1); floyd_warshall_all_pairs_shortest_paths(g, dm, weight_map(wm)); // Compute the mean geodesic distances for each vertex in // the graph and get the average mean geodesic distace (the // so-called small-world distance) as a result. GeodesicContainer geodesics(num_vertices(g)); GeodesicMap gm(geodesics, g); float sw = all_mean_geodesics(g, dm, gm); // Print the mean geodesic distance of each vertex and finally, // the graph itself. graph_traits< Graph >::vertex_iterator i, end; for (boost::tie(i, end) = vertices(g); i != end; ++i) { cout << setw(12) << setiosflags(ios::left) << g[*i].name << get(gm, *i) << endl; } cout << "small world distance: " << sw << endl; return 0; } //]