// Copyright Paul A. Bristow 2015 // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt // or copy at http://www.boost.org/LICENSE_1_0.txt) // Comparison of finding roots using TOMS748, Newton-Raphson, Schroder & Halley algorithms. // Note that this file contains Quickbook mark-up as well as code // and comments, don't change any of the special comment mark-ups! // root_finding_algorithms.cpp #include #include #include #include #include #include "table_type.hpp" // Copy of i:\modular-boost\libs\math\test\table_type.hpp // #include "handle_test_result.hpp" // Copy of i:\modular - boost\libs\math\test\handle_test_result.hpp #include //using boost::math::policies::policy; //using boost::math::tools::newton_raphson_iterate; //using boost::math::tools::halley_iterate; // //using boost::math::tools::eps_tolerance; // Binary functor for specified number of bits. //using boost::math::tools::bracket_and_solve_root; //using boost::math::tools::toms748_solve; //using boost::math::tools::schroder_iterate; #include // For float_distance. #include // for tuple and make_tuple. #include // For boost::math::cbrt. #include // is binary. //#include // is decimal. using boost::multiprecision::cpp_bin_float_100; using boost::multiprecision::cpp_bin_float_50; #include #include #include #include // STL #include #include #include #include #include #include // std::ofstream #include #include // for type name using typid(thingy).name(); #ifndef BOOST_ROOT # define BOOST_ROOT i:/modular-boost/ #endif // Need to find this #ifdef __FILE__ std::string sourcefilename = __FILE__; #endif std::string chop_last(std::string s) { std::string::size_type pos = s.find_last_of("\\/"); if(pos != std::string::npos) s.erase(pos); else if(s.empty()) abort(); else s.erase(); return s; } std::string make_root() { std::string result; if(sourcefilename.find_first_of(":") != std::string::npos) { result = chop_last(sourcefilename); // lose filename part result = chop_last(result); // lose /example/ result = chop_last(result); // lose /math/ result = chop_last(result); // lose /libs/ } else { result = chop_last(sourcefilename); // lose filename part if(result.empty()) result = "."; result += "/../../.."; } return result; } std::string short_file_name(std::string s) { std::string::size_type pos = s.find_last_of("\\/"); if(pos != std::string::npos) s.erase(0, pos + 1); return s; } std::string boost_root = make_root(); #ifdef _MSC_VER std::string filename = boost_root.append("/libs/math/doc/roots/root_comparison_tables_msvc.qbk"); #else // assume GCC std::string filename = boost_root.append("/libs/math/doc/roots/root_comparison_tables_gcc.qbk"); #endif std::ofstream fout (filename.c_str(), std::ios_base::out); //std::array float_type_names = //{ // "float", "double", "long double", "cpp_bin_128", "cpp_dec_50", "cpp_dec_100" //}; std::vector algo_names = { "cbrt", "TOMS748", "Newton", "Halley", "Schr'''ö'''der" }; std::vector max_digits10s; std::vector typenames; // Full computer generated type name. std::vector names; // short name. uintmax_t iters; // Global as iterations is not returned by rooting function. const int count = 1000000; // Number of iterations to average. struct root_info { // for a floating-point type, float, double ... std::size_t max_digits10; // for type. std::string full_typename; // for type from type_id.name(). std::string short_typename; // for type "float", "double", "cpp_bin_float_50" .... std::size_t bin_digits; // binary in floating-point type numeric_limits::digits; int get_digits; // fraction of maximum possible accuracy required. // = digits * digits_accuracy // Vector of values for each algorithm, std::cbrt, boost::math::cbrt, TOMS748, Newton, Halley. //std::vector< boost::int_least64_t> times; converted to int. std::vector times; //boost::int_least64_t min_time = std::numeric_limits::max(); // Used to normalize times (as int). std::vector normed_times; boost::int_least64_t min_time = (std::numeric_limits::max)(); // Used to normalize times. std::vector iterations; std::vector distances; std::vector full_results; }; // struct root_info std::vector root_infos; // One element for each type used. int type_no = -1; // float = 0, double = 1, ... indexing root_infos. inline std::string build_test_name(const char* type_name, const char* test_name) { std::string result(BOOST_COMPILER); result += "|"; result += BOOST_STDLIB; result += "|"; result += BOOST_PLATFORM; result += "|"; result += type_name; result += "|"; result += test_name; #if defined(_DEBUG ) || !defined(NDEBUG) result += "|"; result += " debug"; #else result += "|"; result += " release"; #endif result += "|"; return result; } // No derivatives - using TOMS748 internally. template struct cbrt_functor_noderiv { // cube root of x using only function - no derivatives. cbrt_functor_noderiv(T const& to_find_root_of) : a(to_find_root_of) { // Constructor just stores value a to find root of. } T operator()(T const& x) { T fx = x*x*x - a; // Difference (estimate x^3 - a). return fx; } private: T a; // to be 'cube_rooted'. }; // template struct cbrt_functor_noderiv template T cbrt_noderiv(T x) { // return cube root of x using bracket_and_solve (using NO derivatives). using namespace std; // Help ADL of std functions. using namespace boost::math::tools; // For bracket_and_solve_root. // Maybe guess should be double, or use enable_if to avoid warning about conversion double to float here? T guess; if (boost::is_fundamental::value) { int exponent; frexp(x, &exponent); // Get exponent of z (ignore mantissa). guess = ldexp((T)1., exponent / 3); // Rough guess is to divide the exponent by three. } else { // (boost::is_class) double dx = static_cast(x); guess = boost::math::cbrt(dx); // Get guess using double. } T factor = 2; // How big steps to take when searching. const boost::uintmax_t maxit = 50; // Limit to maximum iterations. boost::uintmax_t it = maxit; // Initially our chosen max iterations, but updated with actual. bool is_rising = true; // So if result if guess^3 is too low, then try increasing guess. // Some fraction of digits is used to control how accurate to try to make the result. int get_digits = static_cast(std::numeric_limits::digits - 2); eps_tolerance tol(get_digits); // Set the tolerance. std::pair r = bracket_and_solve_root(cbrt_functor_noderiv(x), guess, factor, is_rising, tol, it); iters = it; T result = r.first + (r.second - r.first) / 2; // Midway between brackets. return result; } // template T cbrt_noderiv(T x) // Using 1st derivative only Newton-Raphson template struct cbrt_functor_deriv { // Functor also returning 1st derivative. cbrt_functor_deriv(T const& to_find_root_of) : a(to_find_root_of) { // Constructor stores value a to find root of, // for example: calling cbrt_functor_deriv(x) to use to get cube root of x. } std::pair operator()(T const& x) { // Return both f(x) and f'(x). T fx = x*x*x - a; // Difference (estimate x^3 - value). T dx = 3 * x*x; // 1st derivative = 3x^2. return std::make_pair(fx, dx); // 'return' both fx and dx. } private: T a; // to be 'cube_rooted'. }; template T cbrt_deriv(T x) { // return cube root of x using 1st derivative and Newton_Raphson. using namespace boost::math::tools; int exponent; T guess; if(boost::is_fundamental::value) { frexp(x, &exponent); // Get exponent of z (ignore mantissa). guess = ldexp(static_cast(1), exponent / 3); // Rough guess is to divide the exponent by three. } else guess = boost::math::cbrt(static_cast(x)); T min = guess / 2; // Minimum possible value is half our guess. T max = 2 * guess; // Maximum possible value is twice our guess. int get_digits = static_cast(std::numeric_limits::digits * 0.6); const boost::uintmax_t maxit = 20; boost::uintmax_t it = maxit; T result = newton_raphson_iterate(cbrt_functor_deriv(x), guess, min, max, get_digits, it); iters = it; return result; } // Using 1st and 2nd derivatives with Halley algorithm. template struct cbrt_functor_2deriv { // Functor returning both 1st and 2nd derivatives. cbrt_functor_2deriv(T const& to_find_root_of) : a(to_find_root_of) { // Constructor stores value a to find root of, for example: // calling cbrt_functor_2deriv(x) to get cube root of x, } std::tuple operator()(T const& x) { // Return both f(x) and f'(x) and f''(x). T fx = x*x*x - a; // Difference (estimate x^3 - value). T dx = 3 * x*x; // 1st derivative = 3x^2. T d2x = 6 * x; // 2nd derivative = 6x. return std::make_tuple(fx, dx, d2x); // 'return' fx, dx and d2x. } private: T a; // to be 'cube_rooted'. }; template T cbrt_2deriv(T x) { // return cube root of x using 1st and 2nd derivatives and Halley. //using namespace std; // Help ADL of std functions. using namespace boost::math::tools; int exponent; T guess; if(boost::is_fundamental::value) { frexp(x, &exponent); // Get exponent of z (ignore mantissa). guess = ldexp(static_cast(1), exponent / 3); // Rough guess is to divide the exponent by three. } else guess = boost::math::cbrt(static_cast(x)); T min = guess / 2; // Minimum possible value is half our guess. T max = 2 * guess; // Maximum possible value is twice our guess. // digits used to control how accurate to try to make the result. int get_digits = static_cast(std::numeric_limits::digits * 0.4); boost::uintmax_t maxit = 20; boost::uintmax_t it = maxit; T result = halley_iterate(cbrt_functor_2deriv(x), guess, min, max, get_digits, it); iters = it; return result; } // Using 1st and 2nd derivatives using Schroder algorithm. template T cbrt_2deriv_s(T x) { // return cube root of x using 1st and 2nd derivatives and Schroder algorithm. //using namespace std; // Help ADL of std functions. using namespace boost::math::tools; int exponent; T guess; if(boost::is_fundamental::value) { frexp(x, &exponent); // Get exponent of z (ignore mantissa). guess = ldexp(static_cast(1), exponent / 3); // Rough guess is to divide the exponent by three. } else guess = boost::math::cbrt(static_cast(x)); T min = guess / 2; // Minimum possible value is half our guess. T max = 2 * guess; // Maximum possible value is twice our guess. // digits used to control how accurate to try to make the result. int get_digits = static_cast(std::numeric_limits::digits * 0.4); const boost::uintmax_t maxit = 20; boost::uintmax_t it = maxit; T result = schroder_iterate(cbrt_functor_2deriv(x), guess, min, max, get_digits, it); iters = it; return result; } // template T cbrt_2deriv_s(T x) template int test_root(cpp_bin_float_100 big_value, cpp_bin_float_100 answer, const char* type_name) { //T value = 28.; // integer (exactly representable as floating-point) // whose cube root is *not* exactly representable. // Wolfram Alpha command N[28 ^ (1 / 3), 100] computes cube root to 100 decimal digits. // 3.036588971875662519420809578505669635581453977248111123242141654169177268411884961770250390838097895 std::size_t max_digits = 2 + std::numeric_limits::digits * 3010 / 10000; // For new versions use max_digits10 // std::cout.precision(std::numeric_limits::max_digits10); std::cout.precision(max_digits); std::cout << std::showpoint << std::endl; // Trailing zeros too. root_infos.push_back(root_info()); type_no++; // Another type. root_infos[type_no].max_digits10 = max_digits; root_infos[type_no].full_typename = typeid(T).name(); // Full typename. root_infos[type_no].short_typename = type_name; // Short typename. root_infos[type_no].bin_digits = std::numeric_limits::digits; root_infos[type_no].get_digits = std::numeric_limits::digits; T to_root = static_cast(big_value); T result; // root T ans = static_cast(answer); int algo = 0; // Count of algorithms used. using boost::timer::nanosecond_type; using boost::timer::cpu_times; using boost::timer::cpu_timer; cpu_times now; // Holds wall, user and system times. T sum = 0; // std::cbrt is much the fastest, but not useful for this comparison because it only handles fundamental types. // Using enable_if allows us to avoid a compile fail with multiprecision types, but still distorts the results too much. //{ // algorithm_names.push_back("std::cbrt"); // cpu_timer ti; // Can start, pause, resume and stop, and read elapsed. // ti.start(); // for (long i = 0; i < count; ++i) // { // stdcbrt(big_value); // } // now = ti.elapsed(); // int time = static_cast(now.user / count); // root_infos[type_no].times.push_back(time); // CPU time taken per root. // if (time < root_infos[type_no].min_time) // { // root_infos[type_no].min_time = time; // } // ti.stop(); // long int distance = static_cast(boost::math::float_distance(result, ans)); // root_infos[type_no].distances.push_back(distance); // root_infos[type_no].iterations.push_back(0); // Not known. // root_infos[type_no].full_results.push_back(result); // algo++; //} //{ // //algorithm_names.push_back("boost::math::cbrt"); // . // cpu_timer ti; // Can start, pause, resume and stop, and read elapsed. // ti.start(); // for (long i = 0; i < count; ++i) // { // result = boost::math::cbrt(to_root); // // } // now = ti.elapsed(); // int time = static_cast(now.user / count); // root_infos[type_no].times.push_back(time); // CPU time taken. // ti.stop(); // if (time < root_infos[type_no].min_time) // { // root_infos[type_no].min_time = time; // } // long int distance = static_cast(boost::math::float_distance(result, ans)); // root_infos[type_no].distances.push_back(distance); // root_infos[type_no].iterations.push_back(0); // Iterations not knowable. // root_infos[type_no].full_results.push_back(result); //} { //algorithm_names.push_back("boost::math::cbrt"); // . result = 0; cpu_timer ti; // Can start, pause, resume and stop, and read elapsed. ti.start(); for (long i = 0; i < count; ++i) { result = boost::math::cbrt(to_root); // sum += result; } now = ti.elapsed(); long time = static_cast(now.user/1000); // convert nanoseconds to microseconds (assuming this is resolution). root_infos[type_no].times.push_back(time); // CPU time taken. ti.stop(); if (time < root_infos[type_no].min_time) { root_infos[type_no].min_time = time; } long int distance = static_cast(boost::math::float_distance(result, ans)); root_infos[type_no].distances.push_back(distance); root_infos[type_no].iterations.push_back(0); // Iterations not knowable. root_infos[type_no].full_results.push_back(result); } { //algorithm_names.push_back("TOMS748"); // cpu_timer ti; // Can start, pause, resume and stop, and read elapsed. ti.start(); for (long i = 0; i < count; ++i) { result = cbrt_noderiv(to_root); // sum += result; } now = ti.elapsed(); // int time = static_cast(now.user / count); long time = static_cast(now.user/1000); root_infos[type_no].times.push_back(time); // CPU time taken. if (time < root_infos[type_no].min_time) { root_infos[type_no].min_time = time; } ti.stop(); long int distance = static_cast(boost::math::float_distance(result, ans)); root_infos[type_no].distances.push_back(distance); root_infos[type_no].iterations.push_back(iters); // root_infos[type_no].full_results.push_back(result); } { // algorithm_names.push_back("Newton"); // algorithm cpu_timer ti; // Can start, pause, resume and stop, and read elapsed. ti.start(); for (long i = 0; i < count; ++i) { result = cbrt_deriv(to_root); // sum += result; } now = ti.elapsed(); // int time = static_cast(now.user / count); long time = static_cast(now.user/1000); root_infos[type_no].times.push_back(time); // CPU time taken. if (time < root_infos[type_no].min_time) { root_infos[type_no].min_time = time; } ti.stop(); long int distance = static_cast(boost::math::float_distance(result, ans)); root_infos[type_no].distances.push_back(distance); root_infos[type_no].iterations.push_back(iters); // root_infos[type_no].full_results.push_back(result); } { //algorithm_names.push_back("Halley"); // algorithm cpu_timer ti; // Can start, pause, resume and stop, and read elapsed. ti.start(); for (long i = 0; i < count; ++i) { result = cbrt_2deriv(to_root); // sum += result; } now = ti.elapsed(); // int time = static_cast(now.user / count); long time = static_cast(now.user/1000); root_infos[type_no].times.push_back(time); // CPU time taken. ti.stop(); if (time < root_infos[type_no].min_time) { root_infos[type_no].min_time = time; } long int distance = static_cast(boost::math::float_distance(result, ans)); root_infos[type_no].distances.push_back(distance); root_infos[type_no].iterations.push_back(iters); // root_infos[type_no].full_results.push_back(result); } { // algorithm_names.push_back("Shroeder"); // algorithm cpu_timer ti; // Can start, pause, resume and stop, and read elapsed. ti.start(); for (long i = 0; i < count; ++i) { result = cbrt_2deriv_s(to_root); // sum += result; } now = ti.elapsed(); // int time = static_cast(now.user / count); long time = static_cast(now.user/1000); root_infos[type_no].times.push_back(time); // CPU time taken. if (time < root_infos[type_no].min_time) { root_infos[type_no].min_time = time; } ti.stop(); long int distance = static_cast(boost::math::float_distance(result, ans)); root_infos[type_no].distances.push_back(distance); root_infos[type_no].iterations.push_back(iters); // root_infos[type_no].full_results.push_back(result); } for (size_t i = 0; i != root_infos[type_no].times.size(); i++) { // Normalize times. double normed_time = static_cast(root_infos[type_no].times[i]); normed_time /= root_infos[type_no].min_time; root_infos[type_no].normed_times.push_back(normed_time); } algo++; std::cout << "Accumulated sum was " << sum << std::endl; return algo; // Count of how many algorithms used. } // test_root void table_root_info(cpp_bin_float_100 full_value, cpp_bin_float_100 full_answer) { // Fill the elements. test_root(full_value, full_answer, "float"); test_root(full_value, full_answer, "double"); test_root(full_value, full_answer, "long double"); test_root(full_value, full_answer, "cpp_bin_float_50"); //test_root(full_value, full_answer, "cpp_bin_float_100"); std::cout << root_infos.size() << " floating-point types tested:" << std::endl; #ifndef NDEBUG std::cout << "Compiled in debug mode." << std::endl; #else std::cout << "Compiled in optimise mode." << std::endl; #endif for (size_t tp = 0; tp != root_infos.size(); tp++) { // For all types: std::cout << std::endl; std::cout << "Floating-point type = " << root_infos[tp].short_typename << std::endl; std::cout << "Floating-point type = " << root_infos[tp].full_typename << std::endl; std::cout << "Max_digits10 = " << root_infos[tp].max_digits10 << std::endl; std::cout << "Binary digits = " << root_infos[tp].bin_digits << std::endl; std::cout << "Accuracy digits = " << root_infos[tp].get_digits - 2 << ", " << static_cast(root_infos[tp].get_digits * 0.6) << ", " << static_cast(root_infos[tp].get_digits * 0.4) << std::endl; std::cout << "min_time = " << root_infos[tp].min_time << std::endl; std::cout << std::setprecision(root_infos[tp].max_digits10 ) << "Roots = "; std::copy(root_infos[tp].full_results.begin(), root_infos[tp].full_results.end(), std::ostream_iterator(std::cout, " ")); std::cout << std::endl; // Header row. std::cout << "Algorithm " << "Iterations " << "Times " << "Norm_times " << "Distance" << std::endl; // Row for all algorithms. for (unsigned algo = 0; algo != algo_names.size(); algo++) { std::cout << std::left << std::setw(20) << algo_names[algo] << " " << std::setw(8) << std::setprecision(2) << root_infos[tp].iterations[algo] << " " << std::setw(8) << std::setprecision(5) << root_infos[tp].times[algo] << " " << std::setw(8) << std::setprecision(3) << root_infos[tp].normed_times[algo] << " " << std::setw(8) << std::setprecision(2) << root_infos[tp].distances[algo] << std::endl; } // for algo } // for tp // Print info as Quickbook table. #if 0 fout << "[table:cbrt_5 Info for float, double, long double and cpp_bin_float_50\n" << "[[type name] [max_digits10] [binary digits] [required digits]]\n";// header. for (size_t tp = 0; tp != root_infos.size(); tp++) { // For all types: fout << "[" << "[" << root_infos[tp].short_typename << "]" << "[" << root_infos[tp].max_digits10 << "]" // max_digits10 << "[" << root_infos[tp].bin_digits << "]"// < "Binary digits << "[" << root_infos[tp].get_digits << "]]\n"; // Accuracy digits. } // tp fout << "] [/table cbrt_5] \n" << std::endl; #endif // Prepare Quickbook table of floating-point types. fout << "[table:cbrt_4 Cube root(28) for float, double, long double and cpp_bin_float_50\n" << "[[][float][][][] [][double][][][] [][long d][][][] [][cpp50][][]]\n" << "[[Algorithm]"; for (size_t tp = 0; tp != root_infos.size(); tp++) { // For all types: fout << "[Its]" << "[Times]" << "[Norm]" << "[Dis]" << "[ ]"; } fout << "]" << std::endl; // Row for all algorithms. for (size_t algo = 0; algo != algo_names.size(); algo++) { fout << "[[" << std::left << std::setw(9) << algo_names[algo] << "]"; for (size_t tp = 0; tp != root_infos.size(); tp++) { // For all types: fout << "[" << std::right << std::showpoint << std::setw(3) << std::setprecision(2) << root_infos[tp].iterations[algo] << "][" << std::setw(5) << std::setprecision(5) << root_infos[tp].times[algo] << "]["; if(fabs(root_infos[tp].normed_times[algo]) <= 1.05) fout << "[role blue " << std::setw(3) << std::setprecision(2) << root_infos[tp].normed_times[algo] << "]"; else if(fabs(root_infos[tp].normed_times[algo]) > 4) fout << "[role red " << std::setw(3) << std::setprecision(2) << root_infos[tp].normed_times[algo] << "]"; else fout << std::setw(3) << std::setprecision(2) << root_infos[tp].normed_times[algo]; fout << "][" << std::setw(3) << std::setprecision(2) << root_infos[tp].distances[algo] << "][ ]"; } // tp fout <<"]" << std::endl; } // for algo fout << "] [/end of table cbrt_4]\n"; } // void table_root_info int main() { using namespace boost::multiprecision; using namespace boost::math; try { std::cout << "Tests run with " << BOOST_COMPILER << ", " << BOOST_STDLIB << ", " << BOOST_PLATFORM << ", "; if (fout.is_open()) { std::cout << "\nOutput to " << filename << std::endl; } else { // Failed to open. std::cout << " Open file " << filename << " for output failed!" << std::endl; std::cout << "error" << errno << std::endl; return boost::exit_failure; } fout << "[/""\n" "Copyright 2015 Paul A. Bristow.""\n" "Copyright 2015 John Maddock.""\n" "Distributed under the Boost Software License, Version 1.0.""\n" "(See accompanying file LICENSE_1_0.txt or copy at""\n" "http://www.boost.org/LICENSE_1_0.txt).""\n" "]""\n" << std::endl; std::string debug_or_optimize; #ifdef _DEBUG #if (_DEBUG == 0) debug_or_optimize = "Compiled in debug mode."; #else debug_or_optimize = "Compiled in optimise mode."; #endif #endif // Print out the program/compiler/stdlib/platform names as a Quickbook comment: fout << "\n[h5 Program " << short_file_name(sourcefilename) << ", " << BOOST_COMPILER << ", " << BOOST_STDLIB << ", " << BOOST_PLATFORM << (sizeof(void*) == 8 ? ", x64" : ", x86") << debug_or_optimize << "[br]" << count << " evaluations of each of " << algo_names.size() << " root_finding algorithms." << "]" << std::endl; std::cout << count << " evaluations of root_finding." << std::endl; BOOST_MATH_CONTROL_FP; cpp_bin_float_100 full_value("28"); cpp_bin_float_100 full_answer ("3.036588971875662519420809578505669635581453977248111123242141654169177268411884961770250390838097895"); std::copy(max_digits10s.begin(), max_digits10s.end(), std::ostream_iterator(std::cout, " ")); std::cout << std::endl; table_root_info(full_value, full_answer); return boost::exit_success; } catch (std::exception const& ex) { std::cout << "exception thrown: " << ex.what() << std::endl; return boost::exit_failure; } } // int main() /* debug 1> float, maxdigits10 = 9 1> 6 algorithms used. 1> Digits required = 24.0000000 1> find root of 28.0000000, expected answer = 3.03658897 1> Times 156 312 18750 4375 3437 3906 1> Iterations: 0 0 8 6 4 5 1> Distance: 0 0 -1 0 0 0 1> Roots: 3.03658891 3.03658891 3.03658915 3.03658891 3.03658891 3.03658891 release 1> float, maxdigits10 = 9 1> 6 algorithms used. 1> Digits required = 24.0000000 1> find root of 28.0000000, expected answer = 3.03658897 1> Times 0 312 6875 937 937 937 1> Iterations: 0 0 8 6 4 5 1> Distance: 0 0 -1 0 0 0 1> Roots: 3.03658891 3.03658891 3.03658915 3.03658891 3.03658891 3.03658891 1> 1> 5 algorithms used: 1> 10 algorithms used: 1> boost::math::cbrt TOMS748 Newton Halley Shroeder boost::math::cbrt TOMS748 Newton Halley Shroeder 1> 2 types compared. 1> Precision of full type = 102 decimal digits 1> Find root of 28.000000000000000, 1> Expected answer = 3.0365889718756625 1> typeid(T).name()float, maxdigits10 = 9 1> find root of 28.0000000, expected answer = 3.03658897 1> 1> Iterations: 0 8 6 4 5 1> Times 468 8437 4375 3593 4062 1> Min Time 468 1> Normalized Times 1.00 18.0 9.35 7.68 8.68 1> Distance: 0 -1 0 0 0 1> Roots: 3.03658891 3.03658915 3.03658891 3.03658891 3.03658891 1> ================================================================== 1> typeid(T).name()double, maxdigits10 = 17 1> find root of 28.000000000000000, expected answer = 3.0365889718756625 1> 1> Iterations: 0 11 7 5 6 1> Times 312 15000 4531 3906 4375 1> Min Time 312 1> Normalized Times 1.00 48.1 14.5 12.5 14.0 1> Distance: 1 2 0 0 0 1> Roots: 3.0365889718756622 3.0365889718756618 3.0365889718756627 3.0365889718756627 3.0365889718756627 1> ================================================================== Release 1> 5 algorithms used: 1> 10 algorithms used: 1> boost::math::cbrt TOMS748 Newton Halley Shroeder boost::math::cbrt TOMS748 Newton Halley Shroeder 1> 2 types compared. 1> Precision of full type = 102 decimal digits 1> Find root of 28.000000000000000, 1> Expected answer = 3.0365889718756625 1> typeid(T).name()float, maxdigits10 = 9 1> find root of 28.0000000, expected answer = 3.03658897 1> 1> Iterations: 0 8 6 4 5 1> Times 312 781 937 937 937 1> Min Time 312 1> Normalized Times 1.00 2.50 3.00 3.00 3.00 1> Distance: 0 -1 0 0 0 1> Roots: 3.03658891 3.03658915 3.03658891 3.03658891 3.03658891 1> ================================================================== 1> typeid(T).name()double, maxdigits10 = 17 1> find root of 28.000000000000000, expected answer = 3.0365889718756625 1> 1> Iterations: 0 11 7 5 6 1> Times 312 1093 937 937 937 1> Min Time 312 1> Normalized Times 1.00 3.50 3.00 3.00 3.00 1> Distance: 1 2 0 0 0 1> Roots: 3.0365889718756622 3.0365889718756618 3.0365889718756627 3.0365889718756627 3.0365889718756627 1> ================================================================== 1> 5 algorithms used: 1> 15 algorithms used: 1> boost::math::cbrt TOMS748 Newton Halley Shroeder boost::math::cbrt TOMS748 Newton Halley Shroeder boost::math::cbrt TOMS748 Newton Halley Shroeder 1> 3 types compared. 1> Precision of full type = 102 decimal digits 1> Find root of 28.00000000000000000000000000000000000000000000000000, 1> Expected answer = 3.036588971875662519420809578505669635581453977248111 1> typeid(T).name()float, maxdigits10 = 9 1> find root of 28.0000000, expected answer = 3.03658897 1> 1> Iterations: 0 8 6 4 5 1> Times 156 781 937 1093 937 1> Min Time 156 1> Normalized Times 1.00 5.01 6.01 7.01 6.01 1> Distance: 0 -1 0 0 0 1> Roots: 3.03658891 3.03658915 3.03658891 3.03658891 3.03658891 1> ================================================================== 1> typeid(T).name()double, maxdigits10 = 17 1> find root of 28.000000000000000, expected answer = 3.0365889718756625 1> 1> Iterations: 0 11 7 5 6 1> Times 312 1093 937 937 937 1> Min Time 312 1> Normalized Times 1.00 3.50 3.00 3.00 3.00 1> Distance: 1 2 0 0 0 1> Roots: 3.0365889718756622 3.0365889718756618 3.0365889718756627 3.0365889718756627 3.0365889718756627 1> ================================================================== 1> typeid(T).name()class boost::multiprecision::number,0>, maxdigits10 = 52 1> find root of 28.00000000000000000000000000000000000000000000000000, expected answer = 3.036588971875662519420809578505669635581453977248111 1> 1> Iterations: 0 13 9 6 7 1> Times 8750 177343 30312 52968 58125 1> Min Time 8750 1> Normalized Times 1.00 20.3 3.46 6.05 6.64 1> Distance: 0 0 -1 0 0 1> Roots: 3.036588971875662519420809578505669635581453977248106 3.036588971875662519420809578505669635581453977248106 3.036588971875662519420809578505669635581453977248117 3.036588971875662519420809578505669635581453977248106 3.036588971875662519420809578505669635581453977248106 1> ================================================================== Reduce accuracy required to 0.5 1> 5 algorithms used: 1> 15 algorithms used: 1> boost::math::cbrt TOMS748 Newton Halley Shroeder 1> 3 floating_point types compared. 1> Precision of full type = 102 decimal digits 1> Find root of 28.00000000000000000000000000000000000000000000000000, 1> Expected answer = 3.036588971875662519420809578505669635581453977248111 1> typeid(T).name() = float, maxdigits10 = 9 1> Digits accuracy fraction required = 0.500000000 1> find root of 28.0000000, expected answer = 3.03658897 1> 1> Iterations: 0 8 5 3 4 1> Times 156 5937 1406 1250 1250 1> Min Time 156 1> Normalized Times 1.0 38. 9.0 8.0 8.0 1> Distance: 0 -1 0 0 0 1> Roots: 3.03658891 3.03658915 3.03658891 3.03658891 3.03658891 1> ================================================================== 1> typeid(T).name() = double, maxdigits10 = 17 1> Digits accuracy fraction required = 0.50000000000000000 1> find root of 28.000000000000000, expected answer = 3.0365889718756625 1> 1> Iterations: 0 8 6 4 5 1> Times 156 6250 1406 1406 1250 1> Min Time 156 1> Normalized Times 1.0 40. 9.0 9.0 8.0 1> Distance: 1 3695766 0 0 0 1> Roots: 3.0365889718756622 3.0365889702344129 3.0365889718756627 3.0365889718756627 3.0365889718756627 1> ================================================================== 1> typeid(T).name() = class boost::multiprecision::number,0>, maxdigits10 = 52 1> Digits accuracy fraction required = 0.5000000000000000000000000000000000000000000000000000 1> find root of 28.00000000000000000000000000000000000000000000000000, expected answer = 3.036588971875662519420809578505669635581453977248111 1> 1> Iterations: 0 11 8 5 6 1> Times 11562 239843 34843 47500 47812 1> Min Time 11562 1> Normalized Times 1.0 21. 3.0 4.1 4.1 1> Distance: 0 0 -1 0 0 1> Roots: 3.036588971875662519420809578505669635581453977248106 3.036588971875662519420809578505669635581453977248106 3.036588971875662519420809578505669635581453977248117 3.036588971875662519420809578505669635581453977248106 3.036588971875662519420809578505669635581453977248106 1> ================================================================== */