// Copyright John Maddock 2006, 2007. // Copyright Paul A. Bristow 2007 // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt // or copy at http://www.boost.org/LICENSE_1_0.txt) // test_cauchy.cpp Test Cauchy distribution #ifdef _MSC_VER # pragma warning(disable: 4100) // unreferenced formal parameter. // Seems an entirely spurious warning - formal parameter T IS used - get error if /* T */ //# pragma warning(disable: 4535) // calling _set_se_translator() requires /EHa (in Boost.test) // Enable C++ Exceptions Yes With SEH Exceptions (/EHa) prevents warning 4535. # pragma warning(disable: 4127) // conditional expression is constant #endif // #define BOOST_MATH_ASSERT_UNDEFINED_POLICY false // To compile even if Cauchy mean is used. #include #include // for real_concept #include using boost::math::cauchy_distribution; #include "test_out_of_range.hpp" #define BOOST_TEST_MAIN #include // Boost.Test #include #include using std::cout; using std::endl; template void test_spots(RealType T) { // Check some bad parameters to construct the distribution, #ifndef BOOST_NO_EXCEPTIONS BOOST_MATH_CHECK_THROW(boost::math::cauchy_distribution nbad1(0, 0), std::domain_error); // zero scale. BOOST_MATH_CHECK_THROW(boost::math::cauchy_distribution nbad1(0, -1), std::domain_error); // negative scale (shape). #else BOOST_MATH_CHECK_THROW(boost::math::cauchy_distribution(0, 0), std::domain_error); // zero scale. BOOST_MATH_CHECK_THROW(boost::math::cauchy_distribution(0, -1), std::domain_error); // negative scale (shape). #endif cauchy_distribution C01; BOOST_CHECK_EQUAL(C01.location(), 0); // Check standard values. BOOST_CHECK_EQUAL(C01.scale(), 1); // Basic sanity checks. // 50eps as a percentage, up to a maximum of double precision // (that's the limit of our test data). RealType tolerance = (std::max)( static_cast(boost::math::tools::epsilon()), boost::math::tools::epsilon()); tolerance *= 50 * 100; cout << "Tolerance for type " << typeid(T).name() << " is " << tolerance << " %" << endl; // These first sets of test values were calculated by punching numbers // into a calculator, and using the formulas on the Mathworld website: // http://mathworld.wolfram.com/CauchyDistribution.html // and values from MathCAD 200 Professional, // CDF: // BOOST_CHECK_CLOSE( ::boost::math::cdf( cauchy_distribution(), static_cast(0.125)), // x static_cast(0.53958342416056554201085167134004L), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( cauchy_distribution(), static_cast(-0.125)), // x static_cast(0.46041657583943445798914832865996L), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( cauchy_distribution(), static_cast(0.5)), // x static_cast(0.64758361765043327417540107622474L), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( cauchy_distribution(), static_cast(-0.5)), // x static_cast(0.35241638234956672582459892377526L), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( cauchy_distribution(), static_cast(1.0)), // x static_cast(0.75), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( cauchy_distribution(), static_cast(-1.0)), // x static_cast(0.25), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( cauchy_distribution(), static_cast(2.0)), // x static_cast(0.85241638234956672582459892377526L), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( cauchy_distribution(), static_cast(-2.0)), // x static_cast(0.14758361765043327417540107622474L), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( cauchy_distribution(), static_cast(10.0)), // x static_cast(0.9682744825694464304850228813987L), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( cauchy_distribution(), static_cast(-10.0)), // x static_cast(0.031725517430553569514977118601302L), // probability. tolerance); // % // // Complements: // BOOST_CHECK_CLOSE( ::boost::math::cdf( complement(cauchy_distribution(), static_cast(0.125))), // x static_cast(0.46041657583943445798914832865996L), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( complement(cauchy_distribution(), static_cast(-0.125))), // x static_cast(0.53958342416056554201085167134004L), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( complement(cauchy_distribution(), static_cast(0.5))), // x static_cast(0.35241638234956672582459892377526L), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( complement(cauchy_distribution(), static_cast(-0.5))), // x static_cast(0.64758361765043327417540107622474L), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( complement(cauchy_distribution(), static_cast(1.0))), // x static_cast(0.25), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( complement(cauchy_distribution(), static_cast(-1.0))), // x static_cast(0.75), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( complement(cauchy_distribution(), static_cast(2.0))), // x static_cast(0.14758361765043327417540107622474L), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( complement(cauchy_distribution(), static_cast(-2.0))), // x static_cast(0.85241638234956672582459892377526L), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( complement(cauchy_distribution(), static_cast(10.0))), // x static_cast(0.031725517430553569514977118601302L), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( complement(cauchy_distribution(), static_cast(-10.0))), // x static_cast(0.9682744825694464304850228813987L), // probability. tolerance); // % // // Quantiles: // BOOST_CHECK_CLOSE( ::boost::math::quantile( cauchy_distribution(), static_cast(0.53958342416056554201085167134004L)), static_cast(0.125), tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::quantile( cauchy_distribution(), static_cast(0.46041657583943445798914832865996L)), static_cast(-0.125), tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::quantile( cauchy_distribution(), static_cast(0.64758361765043327417540107622474L)), static_cast(0.5), tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::quantile( cauchy_distribution(), static_cast(0.35241638234956672582459892377526)), static_cast(-0.5), tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::quantile( cauchy_distribution(), static_cast(0.75)), static_cast(1.0), tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::quantile( cauchy_distribution(), static_cast(0.25)), static_cast(-1.0), tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::quantile( cauchy_distribution(), static_cast(0.85241638234956672582459892377526L)), static_cast(2.0), tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::quantile( cauchy_distribution(), static_cast(0.14758361765043327417540107622474L)), static_cast(-2.0), tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::quantile( cauchy_distribution(), static_cast(0.9682744825694464304850228813987L)), static_cast(10.0), tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::quantile( cauchy_distribution(), static_cast(0.031725517430553569514977118601302L)), static_cast(-10.0), tolerance); // % // // Quantile from complement: // BOOST_CHECK_CLOSE( ::boost::math::quantile( complement(cauchy_distribution(), static_cast(0.46041657583943445798914832865996L))), static_cast(0.125), tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::quantile( complement(cauchy_distribution(), static_cast(0.53958342416056554201085167134004L))), static_cast(-0.125), tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::quantile( complement(cauchy_distribution(), static_cast(0.35241638234956672582459892377526L))), static_cast(0.5), tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::quantile( complement(cauchy_distribution(), static_cast(0.64758361765043327417540107622474L))), static_cast(-0.5), tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::quantile( complement(cauchy_distribution(), static_cast(0.25))), static_cast(1.0), tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::quantile( complement(cauchy_distribution(), static_cast(0.75))), static_cast(-1.0), tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::quantile( complement(cauchy_distribution(), static_cast(0.14758361765043327417540107622474L))), static_cast(2.0), tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::quantile( complement(cauchy_distribution(), static_cast(0.85241638234956672582459892377526L))), static_cast(-2.0), tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::quantile( complement(cauchy_distribution(), static_cast(0.031725517430553569514977118601302L))), static_cast(10.0), tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::quantile( complement(cauchy_distribution(), static_cast(0.9682744825694464304850228813987L))), static_cast(-10.0), tolerance); // % // // PDF // BOOST_CHECK_CLOSE( ::boost::math::pdf( cauchy_distribution(), static_cast(0.125)), // x static_cast(0.31341281101173235351410956479511L), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::pdf( cauchy_distribution(), static_cast(-0.125)), // x static_cast(0.31341281101173235351410956479511L), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::pdf( cauchy_distribution(), static_cast(0.5)), // x static_cast(0.25464790894703253723021402139602L), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::pdf( cauchy_distribution(), static_cast(-0.5)), // x static_cast(0.25464790894703253723021402139602L), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::pdf( cauchy_distribution(), static_cast(1.0)), // x static_cast(0.15915494309189533576888376337251L), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::pdf( cauchy_distribution(), static_cast(-1.0)), // x static_cast(0.15915494309189533576888376337251L), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::pdf( cauchy_distribution(), static_cast(2.0)), // x static_cast(0.063661977236758134307553505349006L), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::pdf( cauchy_distribution(), static_cast(-2.0)), // x static_cast(0.063661977236758134307553505349006L), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::pdf( cauchy_distribution(), static_cast(10.0)), // x static_cast(0.0031515830315226799162155200667825L), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::pdf( cauchy_distribution(), static_cast(-10.0)), // x static_cast(0.0031515830315226799162155200667825L), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::pdf( cauchy_distribution(2, 5), static_cast(1)), // x static_cast(0.061213439650728975295724524374044L), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::pdf( cauchy_distribution(-2, 0.25), static_cast(1)), // x static_cast(0.0087809623774838805941453110826215L), // probability. tolerance); // % // // The following test values were calculated using MathCad, // precision seems to be about 10^-13. // tolerance = (std::max)(tolerance, static_cast(1e-11)); BOOST_CHECK_CLOSE( ::boost::math::cdf( cauchy_distribution(1, 1), static_cast(0.125)), // x static_cast(0.271189304634946L), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( complement(cauchy_distribution(1, 1), static_cast(0.125))), // x static_cast(1 - 0.271189304634946L), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::quantile( cauchy_distribution(1, 1), static_cast(0.271189304634946L)), // x static_cast(0.125), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::quantile( complement(cauchy_distribution(1, 1), static_cast(1 - 0.271189304634946L))), // x static_cast(0.125), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( cauchy_distribution(0, 1), static_cast(0.125)), // x static_cast(0.539583424160566L), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( cauchy_distribution(0, 1), static_cast(0.5)), // x static_cast(0.647583617650433L), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( cauchy_distribution(0, 1), static_cast(1)), // x static_cast(0.750000000000000), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( cauchy_distribution(0, 1), static_cast(2)), // x static_cast(0.852416382349567), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( cauchy_distribution(0, 1), static_cast(10)), // x static_cast(0.968274482569447), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( cauchy_distribution(0, 1), static_cast(100)), // x static_cast(0.996817007235092), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( cauchy_distribution(0, 1), static_cast(-0.125)), // x static_cast(0.460416575839434), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( cauchy_distribution(0, 1), static_cast(-0.5)), // x static_cast(0.352416382349567), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( cauchy_distribution(0, 1), static_cast(-1)), // x static_cast(0.2500000000000000), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( cauchy_distribution(0, 1), static_cast(-2)), // x static_cast(0.147583617650433), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( cauchy_distribution(0, 1), static_cast(-10)), // x static_cast(0.031725517430554), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( cauchy_distribution(0, 1), static_cast(-100)), // x static_cast(3.18299276490824E-3), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( cauchy_distribution(1, 5), static_cast(1.25)), // x static_cast(0.515902251256176), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( cauchy_distribution(2, 2), static_cast(1.25)), // x static_cast(0.385799748780092), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( cauchy_distribution(4, 0.125), static_cast(3)), // x static_cast(0.039583424160566), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( cauchy_distribution(-2, static_cast(0.0001)), static_cast(-3)), // x static_cast(3.1830988512275777e-5), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( cauchy_distribution(4, 50), static_cast(-3)), // x static_cast(0.455724386698215), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( cauchy_distribution(-4, 50), static_cast(-3)), // x static_cast(0.506365349100973), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( complement(cauchy_distribution(1, 5), static_cast(1.25))), // x static_cast(1-0.515902251256176), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( complement(cauchy_distribution(2, 2), static_cast(1.25))), // x static_cast(1-0.385799748780092), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( complement(cauchy_distribution(4, 0.125), static_cast(3))), // x static_cast(1-0.039583424160566), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( cauchy_distribution(-2, static_cast(0.001)), static_cast(-3)), // x static_cast(0.000318309780080539), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( complement(cauchy_distribution(4, 50), static_cast(-3))), // x static_cast(1-0.455724386698215), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::cdf( complement(cauchy_distribution(-4, 50), static_cast(-3))), // x static_cast(1-0.506365349100973), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::quantile( cauchy_distribution(1, 5), static_cast(0.515902251256176)), // x static_cast(1.25), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::quantile( cauchy_distribution(2, 2), static_cast(0.385799748780092)), // x static_cast(1.25), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::quantile( cauchy_distribution(4, 0.125), static_cast(0.039583424160566)), // x static_cast(3), // probability. tolerance); // % /* BOOST_CHECK_CLOSE( ::boost::math::quantile( cauchy_distribution(-2, 0.0001), static_cast(-3)), // x static_cast(0.000015915494296), // probability. tolerance); // % */ BOOST_CHECK_CLOSE( ::boost::math::quantile( cauchy_distribution(4, 50), static_cast(0.455724386698215)), // x static_cast(-3), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::quantile( cauchy_distribution(-4, 50), static_cast(0.506365349100973)), // x static_cast(-3), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::quantile( complement(cauchy_distribution(1, 5), static_cast(1-0.515902251256176))), // x static_cast(1.25), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::quantile( complement(cauchy_distribution(2, 2), static_cast(1-0.385799748780092))), // x static_cast(1.25), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::quantile( complement(cauchy_distribution(4, 0.125), static_cast(1-0.039583424160566))), // x static_cast(3), // probability. tolerance); // % /* BOOST_CHECK_CLOSE( ::boost::math::quantile( cauchy_distribution(-2, 0.0001), static_cast(-3)), // x static_cast(0.000015915494296), // probability. tolerance); // % */ BOOST_CHECK_CLOSE( ::boost::math::quantile( complement(cauchy_distribution(4, 50), static_cast(1-0.455724386698215))), // x static_cast(-3), // probability. tolerance); // % BOOST_CHECK_CLOSE( ::boost::math::quantile( complement(cauchy_distribution(-4, 50), static_cast(1-0.506365349100973))), // x static_cast(-3), // probability. tolerance); // % cauchy_distribution dist; // default (0, 1) BOOST_CHECK_EQUAL( mode(dist), static_cast(0)); BOOST_CHECK_EQUAL( median(dist), static_cast(0)); RealType expected_entropy = log(2*boost::math::constants::two_pi()); BOOST_CHECK_CLOSE( entropy(dist), expected_entropy, tolerance); // // Things that now don't compile (BOOST-STATIC_ASSERT_FAILURE) by default. // #define BOOST_MATH_ASSERT_UNDEFINED_POLICY false // To compile even if Cauchy mean is used. // See policy reference, mathematically undefined function policies // //BOOST_MATH_CHECK_THROW( // mean(dist), // std::domain_error); //BOOST_MATH_CHECK_THROW( // variance(dist), // std::domain_error); //BOOST_MATH_CHECK_THROW( // standard_deviation(dist), // std::domain_error); //BOOST_MATH_CHECK_THROW( // kurtosis(dist), // std::domain_error); //BOOST_MATH_CHECK_THROW( // kurtosis_excess(dist), // std::domain_error); //BOOST_MATH_CHECK_THROW( // skewness(dist), // std::domain_error); BOOST_MATH_CHECK_THROW( quantile(dist, RealType(0.0)), std::overflow_error); BOOST_MATH_CHECK_THROW( quantile(dist, RealType(1.0)), std::overflow_error); BOOST_MATH_CHECK_THROW( quantile(complement(dist, RealType(0.0))), std::overflow_error); BOOST_MATH_CHECK_THROW( quantile(complement(dist, RealType(1.0))), std::overflow_error); check_out_of_range >(0, 1); // (All) valid constructor parameter values. } // template void test_spots(RealType) BOOST_AUTO_TEST_CASE( test_main ) { BOOST_MATH_CONTROL_FP; // Check that can generate cauchy distribution using the two convenience methods: boost::math::cauchy mycd1(1.); // Using typedef cauchy_distribution<> mycd2(1.); // Using default RealType double. cauchy_distribution<> C01; // Using default RealType double for Standard Cauchy. BOOST_CHECK_EQUAL(C01.location(), 0); // Check standard values. BOOST_CHECK_EQUAL(C01.scale(), 1); // Basic sanity-check spot values. // (Parameter value, arbitrarily zero, only communicates the floating point type). test_spots(0.0F); // Test float. OK at decdigits = 0 tolerance = 0.0001 % test_spots(0.0); // Test double. OK at decdigits 7, tolerance = 1e07 % #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS test_spots(0.0L); // Test long double. #if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582)) test_spots(boost::math::concepts::real_concept(0.)); // Test real concept. #endif #else std::cout << "The long double tests have been disabled on this platform " "either because the long double overloads of the usual math functions are " "not available at all, or because they are too inaccurate for these tests " "to pass." << std::endl; #endif } // BOOST_AUTO_TEST_CASE( test_main ) /* Output: Running 1 test case... Tolerance for type float is 0.000596046 % Tolerance for type double is 1.11022e-012 % Tolerance for type long double is 1.11022e-012 % Tolerance for type class boost::math::concepts::real_concept is 1.11022e-012 % *** No errors detected */