// test_fisher_squared.cpp // Copyright Paul A. Bristow 2006. // Copyright John Maddock 2007. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt // or copy at http://www.boost.org/LICENSE_1_0.txt) #include #include // for real_concept using ::boost::math::concepts::real_concept; #include // for fisher_f_distribution using boost::math::fisher_f_distribution; #define BOOST_TEST_MAIN #include // for test_main #include // for BOOST_CHECK_CLOSE #include "test_out_of_range.hpp" #include using std::cout; using std::endl; #include using std::numeric_limits; template RealType naive_pdf(RealType df1, RealType df2, RealType x) { // // Calculate the PDF naively using direct evaluation // of equation 2 from http://mathworld.wolfram.com/F-Distribution.html // // Our actual PDF implementation uses a completely different method, // so this is a good sanity check that our math is correct. // using namespace std; // For ADL of std functions. RealType e = boost::math::lgamma((df1 + df2) / 2); e += log(df1) * df1 / 2; e += log(df2) * df2 / 2; e += log(x) * ((df1 / 2) - 1); e -= boost::math::lgamma(df1 / 2); e -= boost::math::lgamma(df2 / 2); e -= log(df2 + x * df1) * (df1 + df2) / 2; return exp(e); } template void test_spot( RealType df1, // Degrees of freedom 1 RealType df2, // Degrees of freedom 2 RealType cs, // Chi Square statistic RealType P, // CDF RealType Q, // Complement of CDF RealType tol) // Test tolerance { boost::math::fisher_f_distribution dist(df1, df2); BOOST_CHECK_CLOSE( cdf(dist, cs), P, tol); BOOST_CHECK_CLOSE( pdf(dist, cs), naive_pdf(dist.degrees_of_freedom1(), dist.degrees_of_freedom2(), cs), tol); if((P < 0.999) && (Q < 0.999)) { // // We can only check this if P is not too close to 1, // so that we can guarantee Q is free of error: // BOOST_CHECK_CLOSE( cdf(complement(dist, cs)), Q, tol); BOOST_CHECK_CLOSE( quantile(dist, P), cs, tol); BOOST_CHECK_CLOSE( quantile(complement(dist, Q)), cs, tol); } } // // This test data is taken from the tables of upper // critical values of the F distribution available // at http://www.itl.nist.gov/div898/handbook/eda/section3/eda3673.htm // double q[] = { 0.10, 0.05, 0.025, 0.01, 0.001 }; double upper_critical_values[][10] = { { 161.448,199.500,215.707,224.583,230.162,233.986,236.768,238.882,240.543,241.882 }, { 18.513, 19.000, 19.164, 19.247, 19.296, 19.330, 19.353, 19.371, 19.385, 19.396 }, { 10.128, 9.552, 9.277, 9.117, 9.013, 8.941, 8.887, 8.845, 8.812, 8.786 }, { 7.709, 6.944, 6.591, 6.388, 6.256, 6.163, 6.094, 6.041, 5.999, 5.964 }, { 6.608, 5.786, 5.409, 5.192, 5.050, 4.950, 4.876, 4.818, 4.772, 4.735 }, { 5.987, 5.143, 4.757, 4.534, 4.387, 4.284, 4.207, 4.147, 4.099, 4.060 }, { 5.591, 4.737, 4.347, 4.120, 3.972, 3.866, 3.787, 3.726, 3.677, 3.637 }, { 5.318, 4.459, 4.066, 3.838, 3.687, 3.581, 3.500, 3.438, 3.388, 3.347 }, { 5.117, 4.256, 3.863, 3.633, 3.482, 3.374, 3.293, 3.230, 3.179, 3.137 }, { 4.965, 4.103, 3.708, 3.478, 3.326, 3.217, 3.135, 3.072, 3.020, 2.978 }, { 4.844, 3.982, 3.587, 3.357, 3.204, 3.095, 3.012, 2.948, 2.896, 2.854 }, { 4.747, 3.885, 3.490, 3.259, 3.106, 2.996, 2.913, 2.849, 2.796, 2.753 }, { 4.667, 3.806, 3.411, 3.179, 3.025, 2.915, 2.832, 2.767, 2.714, 2.671 }, { 4.600, 3.739, 3.344, 3.112, 2.958, 2.848, 2.764, 2.699, 2.646, 2.602 }, { 4.543, 3.682, 3.287, 3.056, 2.901, 2.790, 2.707, 2.641, 2.588, 2.544 }, { 4.494, 3.634, 3.239, 3.007, 2.852, 2.741, 2.657, 2.591, 2.538, 2.494 }, { 4.451, 3.592, 3.197, 2.965, 2.810, 2.699, 2.614, 2.548, 2.494, 2.450 }, { 4.414, 3.555, 3.160, 2.928, 2.773, 2.661, 2.577, 2.510, 2.456, 2.412 }, { 4.381, 3.522, 3.127, 2.895, 2.740, 2.628, 2.544, 2.477, 2.423, 2.378 }, { 4.351, 3.493, 3.098, 2.866, 2.711, 2.599, 2.514, 2.447, 2.393, 2.348 }, { 4.325, 3.467, 3.072, 2.840, 2.685, 2.573, 2.488, 2.420, 2.366, 2.321 }, { 4.301, 3.443, 3.049, 2.817, 2.661, 2.549, 2.464, 2.397, 2.342, 2.297 }, { 4.279, 3.422, 3.028, 2.796, 2.640, 2.528, 2.442, 2.375, 2.320, 2.275 }, { 4.260, 3.403, 3.009, 2.776, 2.621, 2.508, 2.423, 2.355, 2.300, 2.255 }, { 4.242, 3.385, 2.991, 2.759, 2.603, 2.490, 2.405, 2.337, 2.282, 2.236 }, { 4.225, 3.369, 2.975, 2.743, 2.587, 2.474, 2.388, 2.321, 2.265, 2.220 }, { 4.210, 3.354, 2.960, 2.728, 2.572, 2.459, 2.373, 2.305, 2.250, 2.204 }, { 4.196, 3.340, 2.947, 2.714, 2.558, 2.445, 2.359, 2.291, 2.236, 2.190 }, { 4.183, 3.328, 2.934, 2.701, 2.545, 2.432, 2.346, 2.278, 2.223, 2.177 }, { 4.171, 3.316, 2.922, 2.690, 2.534, 2.421, 2.334, 2.266, 2.211, 2.165 }, { 4.160, 3.305, 2.911, 2.679, 2.523, 2.409, 2.323, 2.255, 2.199, 2.153 }, { 4.149, 3.295, 2.901, 2.668, 2.512, 2.399, 2.313, 2.244, 2.189, 2.142 }, { 4.139, 3.285, 2.892, 2.659, 2.503, 2.389, 2.303, 2.235, 2.179, 2.133 }, { 4.130, 3.276, 2.883, 2.650, 2.494, 2.380, 2.294, 2.225, 2.170, 2.123 }, { 4.121, 3.267, 2.874, 2.641, 2.485, 2.372, 2.285, 2.217, 2.161, 2.114 }, { 4.113, 3.259, 2.866, 2.634, 2.477, 2.364, 2.277, 2.209, 2.153, 2.106 }, { 4.105, 3.252, 2.859, 2.626, 2.470, 2.356, 2.270, 2.201, 2.145, 2.098 }, { 4.098, 3.245, 2.852, 2.619, 2.463, 2.349, 2.262, 2.194, 2.138, 2.091 }, { 4.091, 3.238, 2.845, 2.612, 2.456, 2.342, 2.255, 2.187, 2.131, 2.084 }, { 4.085, 3.232, 2.839, 2.606, 2.449, 2.336, 2.249, 2.180, 2.124, 2.077 }, { 4.079, 3.226, 2.833, 2.600, 2.443, 2.330, 2.243, 2.174, 2.118, 2.071 }, { 4.073, 3.220, 2.827, 2.594, 2.438, 2.324, 2.237, 2.168, 2.112, 2.065 }, { 4.067, 3.214, 2.822, 2.589, 2.432, 2.318, 2.232, 2.163, 2.106, 2.059 }, { 4.062, 3.209, 2.816, 2.584, 2.427, 2.313, 2.226, 2.157, 2.101, 2.054 }, { 4.057, 3.204, 2.812, 2.579, 2.422, 2.308, 2.221, 2.152, 2.096, 2.049 }, { 4.052, 3.200, 2.807, 2.574, 2.417, 2.304, 2.216, 2.147, 2.091, 2.044 }, { 4.047, 3.195, 2.802, 2.570, 2.413, 2.299, 2.212, 2.143, 2.086, 2.039 }, { 4.043, 3.191, 2.798, 2.565, 2.409, 2.295, 2.207, 2.138, 2.082, 2.035 }, { 4.038, 3.187, 2.794, 2.561, 2.404, 2.290, 2.203, 2.134, 2.077, 2.030 }, { 4.034, 3.183, 2.790, 2.557, 2.400, 2.286, 2.199, 2.130, 2.073, 2.026 }, { 4.030, 3.179, 2.786, 2.553, 2.397, 2.283, 2.195, 2.126, 2.069, 2.022 }, { 4.027, 3.175, 2.783, 2.550, 2.393, 2.279, 2.192, 2.122, 2.066, 2.018 }, { 4.023, 3.172, 2.779, 2.546, 2.389, 2.275, 2.188, 2.119, 2.062, 2.015 }, { 4.020, 3.168, 2.776, 2.543, 2.386, 2.272, 2.185, 2.115, 2.059, 2.011 }, { 4.016, 3.165, 2.773, 2.540, 2.383, 2.269, 2.181, 2.112, 2.055, 2.008 }, { 4.013, 3.162, 2.769, 2.537, 2.380, 2.266, 2.178, 2.109, 2.052, 2.005 }, { 4.010, 3.159, 2.766, 2.534, 2.377, 2.263, 2.175, 2.106, 2.049, 2.001 }, { 4.007, 3.156, 2.764, 2.531, 2.374, 2.260, 2.172, 2.103, 2.046, 1.998 }, { 4.004, 3.153, 2.761, 2.528, 2.371, 2.257, 2.169, 2.100, 2.043, 1.995 }, { 4.001, 3.150, 2.758, 2.525, 2.368, 2.254, 2.167, 2.097, 2.040, 1.993 }, { 3.998, 3.148, 2.755, 2.523, 2.366, 2.251, 2.164, 2.094, 2.037, 1.990 }, { 3.996, 3.145, 2.753, 2.520, 2.363, 2.249, 2.161, 2.092, 2.035, 1.987 }, { 3.993, 3.143, 2.751, 2.518, 2.361, 2.246, 2.159, 2.089, 2.032, 1.985 }, { 3.991, 3.140, 2.748, 2.515, 2.358, 2.244, 2.156, 2.087, 2.030, 1.982 }, { 3.989, 3.138, 2.746, 2.513, 2.356, 2.242, 2.154, 2.084, 2.027, 1.980 }, { 3.986, 3.136, 2.744, 2.511, 2.354, 2.239, 2.152, 2.082, 2.025, 1.977 }, { 3.984, 3.134, 2.742, 2.509, 2.352, 2.237, 2.150, 2.080, 2.023, 1.975 }, { 3.982, 3.132, 2.740, 2.507, 2.350, 2.235, 2.148, 2.078, 2.021, 1.973 }, { 3.980, 3.130, 2.737, 2.505, 2.348, 2.233, 2.145, 2.076, 2.019, 1.971 }, { 3.978, 3.128, 2.736, 2.503, 2.346, 2.231, 2.143, 2.074, 2.017, 1.969 }, { 3.976, 3.126, 2.734, 2.501, 2.344, 2.229, 2.142, 2.072, 2.015, 1.967 }, { 3.974, 3.124, 2.732, 2.499, 2.342, 2.227, 2.140, 2.070, 2.013, 1.965 }, { 3.972, 3.122, 2.730, 2.497, 2.340, 2.226, 2.138, 2.068, 2.011, 1.963 }, { 3.970, 3.120, 2.728, 2.495, 2.338, 2.224, 2.136, 2.066, 2.009, 1.961 }, { 3.968, 3.119, 2.727, 2.494, 2.337, 2.222, 2.134, 2.064, 2.007, 1.959 }, { 3.967, 3.117, 2.725, 2.492, 2.335, 2.220, 2.133, 2.063, 2.006, 1.958 }, { 3.965, 3.115, 2.723, 2.490, 2.333, 2.219, 2.131, 2.061, 2.004, 1.956 }, { 3.963, 3.114, 2.722, 2.489, 2.332, 2.217, 2.129, 2.059, 2.002, 1.954 }, { 3.962, 3.112, 2.720, 2.487, 2.330, 2.216, 2.128, 2.058, 2.001, 1.953 }, { 3.960, 3.111, 2.719, 2.486, 2.329, 2.214, 2.126, 2.056, 1.999, 1.951 }, { 3.959, 3.109, 2.717, 2.484, 2.327, 2.213, 2.125, 2.055, 1.998, 1.950 }, { 3.957, 3.108, 2.716, 2.483, 2.326, 2.211, 2.123, 2.053, 1.996, 1.948 }, { 3.956, 3.107, 2.715, 2.482, 2.324, 2.210, 2.122, 2.052, 1.995, 1.947 }, { 3.955, 3.105, 2.713, 2.480, 2.323, 2.209, 2.121, 2.051, 1.993, 1.945 }, { 3.953, 3.104, 2.712, 2.479, 2.322, 2.207, 2.119, 2.049, 1.992, 1.944 }, { 3.952, 3.103, 2.711, 2.478, 2.321, 2.206, 2.118, 2.048, 1.991, 1.943 }, { 3.951, 3.101, 2.709, 2.476, 2.319, 2.205, 2.117, 2.047, 1.989, 1.941 }, { 3.949, 3.100, 2.708, 2.475, 2.318, 2.203, 2.115, 2.045, 1.988, 1.940 }, { 3.948, 3.099, 2.707, 2.474, 2.317, 2.202, 2.114, 2.044, 1.987, 1.939 }, { 3.947, 3.098, 2.706, 2.473, 2.316, 2.201, 2.113, 2.043, 1.986, 1.938 }, { 3.946, 3.097, 2.705, 2.472, 2.315, 2.200, 2.112, 2.042, 1.984, 1.936 }, { 3.945, 3.095, 2.704, 2.471, 2.313, 2.199, 2.111, 2.041, 1.983, 1.935 }, { 3.943, 3.094, 2.703, 2.470, 2.312, 2.198, 2.110, 2.040, 1.982, 1.934 }, { 3.942, 3.093, 2.701, 2.469, 2.311, 2.197, 2.109, 2.038, 1.981, 1.933 }, { 3.941, 3.092, 2.700, 2.467, 2.310, 2.196, 2.108, 2.037, 1.980, 1.932 }, { 3.940, 3.091, 2.699, 2.466, 2.309, 2.195, 2.106, 2.036, 1.979, 1.931 }, { 3.939, 3.090, 2.698, 2.465, 2.308, 2.194, 2.105, 2.035, 1.978, 1.930 }, { 3.938, 3.089, 2.697, 2.465, 2.307, 2.193, 2.104, 2.034, 1.977, 1.929 }, { 3.937, 3.088, 2.696, 2.464, 2.306, 2.192, 2.103, 2.033, 1.976, 1.928 }, { 3.936, 3.087, 2.696, 2.463, 2.305, 2.191, 2.103, 2.032, 1.975, 1.927 } }; template // Any floating-point type RealType. void test_spots(RealType) { // Basic sanity checks, test data is to three decimal places only // so set tolerance to 0.002 expressed as a percentage. Note that // we can't even get full 3 digit accuracy since the data we're // using as input has *already been rounded*, leading to even // greater differences in output. As an accuracy test this is // pretty useless, but it is an excellent sanity check. RealType tolerance = 0.002f * 100; cout << "Tolerance = " << tolerance << "%." << endl; using boost::math::fisher_f_distribution; using ::boost::math::fisher_f; using ::boost::math::cdf; using ::boost::math::pdf; for(unsigned i = 0; i < sizeof(upper_critical_values) / sizeof(upper_critical_values[0]); ++i) { for(unsigned j = 0; j < sizeof(upper_critical_values[0])/sizeof(upper_critical_values[0][0]); ++j) { test_spot( static_cast(j+1), // degrees of freedom 1 static_cast(i+1), // degrees of freedom 2 static_cast(upper_critical_values[i][j]), // test statistic F static_cast(0.95), // Probability of result (CDF), P static_cast(0.05), // Q = 1 - P tolerance); } } // http://www.vias.org/simulations/simusoft_distcalc.html // Distcalc version 1.2 Copyright 2002 H Lohninger, TU Wein // H.Lohninger: Teach/Me Data Analysis, Springer-Verlag, Berlin-New York-Tokyo, 1999. ISBN 3-540-14743-8 // The Windows calculator is available zipped distcalc.exe for download at: // http://www.vias.org/simulations/simu_stat.html // This interactive Windows program was used to find some combination for which the // result appears to be exact. No doubt this can be done analytically too, // by mathematicians! // Some combinations for which the result is 'exact', or at least is to 40 decimal digits. // 40 decimal digits includes 128-bit significand User Defined Floating-Point types. // These all pass tests at near epsilon accuracy for the floating-point type. tolerance = boost::math::tools::epsilon() * 5 * 100; cout << "Tolerance = " << tolerance << "%." << endl; BOOST_CHECK_CLOSE( cdf(fisher_f_distribution( static_cast(1.), // df1 static_cast(2.)), // df2 static_cast(2.)/static_cast(3.) ), // F static_cast(0.5), // probability. tolerance); BOOST_CHECK_CLOSE( cdf(complement(fisher_f_distribution( static_cast(1.), // df1 static_cast(2.)), // df2 static_cast(1.6L))), // F static_cast(0.333333333333333333333333333333333333L), // probability. tolerance * 100); // needs higher tolerance at 128-bit precision - value not exact? BOOST_CHECK_CLOSE( cdf(complement(fisher_f_distribution( static_cast(1.), // df1 static_cast(2.)), // df2 static_cast(6.5333333333333333333333333333333333L))), // F static_cast(0.125L), // probability. tolerance); BOOST_CHECK_CLOSE( cdf(complement(fisher_f_distribution( static_cast(2.), // df1 static_cast(2.)), // df2 static_cast(1.))), // F static_cast(0.5L), // probability. tolerance); BOOST_CHECK_CLOSE( cdf(complement(fisher_f_distribution( static_cast(2.), // df1 static_cast(2.)), // df2 static_cast(3.))), // F static_cast(0.25L), // probability. tolerance); BOOST_CHECK_CLOSE( cdf(complement(fisher_f_distribution( static_cast(2.), // df1 static_cast(2.)), // df2 static_cast(3.))), // F static_cast(0.25L), // probability. tolerance); BOOST_CHECK_CLOSE( cdf(complement(fisher_f_distribution( static_cast(2.), // df1 static_cast(2.)), // df2 static_cast(7.))), // F static_cast(0.125L), // probability. tolerance); BOOST_CHECK_CLOSE( cdf(complement(fisher_f_distribution( static_cast(2.), // df1 static_cast(2.)), // df2 static_cast(9.))), // F static_cast(0.1L), // probability. tolerance); BOOST_CHECK_CLOSE( cdf(complement(fisher_f_distribution( static_cast(2.), // df1 static_cast(2.)), // df2 static_cast(19.))), // F static_cast(0.05L), // probability. tolerance); BOOST_CHECK_CLOSE( cdf(complement(fisher_f_distribution( static_cast(2.), // df1 static_cast(2.)), // df2 static_cast(29.))), // F static_cast(0.03333333333333333333333333333333333333333L), // probability. tolerance); BOOST_CHECK_CLOSE( cdf(complement(fisher_f_distribution( static_cast(2.), // df1 static_cast(2.)), // df2 static_cast(99.))), // F static_cast(0.01L), // probability. tolerance); BOOST_CHECK_CLOSE( cdf(complement(fisher_f_distribution( static_cast(4.), // df1 static_cast(4.)), // df2 static_cast(9.))), // F static_cast(0.028L), // probability. tolerance*10); // not quite exact??? BOOST_CHECK_CLOSE( cdf(complement(fisher_f_distribution( static_cast(8.), // df1 static_cast(8.)), // df2 static_cast(1.))), // F static_cast(0.5L), // probability. tolerance); // Inverse tests BOOST_CHECK_CLOSE( quantile(complement(fisher_f_distribution( static_cast(2.), // df1 static_cast(2.)), // df2 static_cast(0.03333333333333333333333333333333333333333L))), // probability static_cast(29.), // F expected. tolerance*10); BOOST_CHECK_CLOSE( quantile(fisher_f_distribution( static_cast(2.), // df1 static_cast(2.)), // df2 static_cast(1.0L - 0.03333333333333333333333333333333333333333L)), // probability static_cast(29.), // F expected. tolerance*10); // Also note limit cases for F(1, infinity) == normal distribution // F(1, n2) == Student's t distribution // F(n1, infinity) == Chisq distribution // These might allow some further cross checks? RealType tol2 = boost::math::tools::epsilon() * 5 * 100; // 5 eps as a percent cout << "Tolerance = " << tol2 << "%." << endl; fisher_f_distribution dist(static_cast(8), static_cast(6)); RealType x = 7; using namespace std; // ADL of std names. // mean: BOOST_CHECK_CLOSE( mean(dist) , static_cast(6)/static_cast(4), tol2); // variance: BOOST_CHECK_CLOSE( variance(dist) , static_cast(2 * 6 * 6 * (8 + 6 - 2)) / static_cast(8 * 16 * 2), tol2); // std deviation: BOOST_CHECK_CLOSE( standard_deviation(dist) , sqrt(static_cast(2 * 6 * 6 * (8 + 6 - 2)) / static_cast(8 * 16 * 2)), tol2); // hazard: BOOST_CHECK_CLOSE( hazard(dist, x) , pdf(dist, x) / cdf(complement(dist, x)), tol2); // cumulative hazard: BOOST_CHECK_CLOSE( chf(dist, x) , -log(cdf(complement(dist, x))), tol2); // coefficient_of_variation: BOOST_CHECK_CLOSE( coefficient_of_variation(dist) , standard_deviation(dist) / mean(dist), tol2); BOOST_CHECK_CLOSE( mode(dist) , static_cast(6*6)/static_cast(8*8), tol2); fisher_f_distribution dist2(static_cast(8), static_cast(12)); BOOST_CHECK_CLOSE( skewness(dist2) , static_cast(26 * sqrt(64.0L)) / (12*6), tol2); BOOST_CHECK_CLOSE( kurtosis_excess(dist2) , static_cast(6272) * 12 / 3456, tol2); BOOST_CHECK_CLOSE( kurtosis(dist2) , static_cast(6272) * 12 / 3456 + 3, tol2); // special cases: BOOST_MATH_CHECK_THROW( pdf( fisher_f_distribution(static_cast(1), static_cast(1)), static_cast(0)), std::overflow_error ); BOOST_CHECK_EQUAL( pdf(fisher_f_distribution(2, 2), static_cast(0)) , static_cast(1.0f)); BOOST_CHECK_EQUAL( pdf(fisher_f_distribution(3, 3), static_cast(0)) , static_cast(0.0f)); BOOST_CHECK_EQUAL( cdf(fisher_f_distribution(1, 1), static_cast(0)) , static_cast(0.0f)); BOOST_CHECK_EQUAL( cdf(fisher_f_distribution(2, 2), static_cast(0)) , static_cast(0.0f)); BOOST_CHECK_EQUAL( cdf(fisher_f_distribution(3, 3), static_cast(0)) , static_cast(0.0f)); BOOST_CHECK_EQUAL( cdf(complement(fisher_f_distribution(1, 1), static_cast(0))) , static_cast(1)); BOOST_CHECK_EQUAL( cdf(complement(fisher_f_distribution(2, 2), static_cast(0))) , static_cast(1)); BOOST_CHECK_EQUAL( cdf(complement(fisher_f_distribution(3, 3), static_cast(0))) , static_cast(1)); BOOST_MATH_CHECK_THROW( pdf( fisher_f_distribution(-1, 2), static_cast(1)), std::domain_error ); BOOST_MATH_CHECK_THROW( pdf( fisher_f_distribution(1, -1), static_cast(1)), std::domain_error ); BOOST_MATH_CHECK_THROW( pdf( fisher_f_distribution(8, 2), static_cast(-1)), std::domain_error ); BOOST_MATH_CHECK_THROW( cdf( fisher_f_distribution(-1, 1), static_cast(1)), std::domain_error ); BOOST_MATH_CHECK_THROW( cdf( fisher_f_distribution(8, 4), static_cast(-1)), std::domain_error ); BOOST_MATH_CHECK_THROW( cdf(complement( fisher_f_distribution(-1, 2), static_cast(1))), std::domain_error ); BOOST_MATH_CHECK_THROW( cdf(complement( fisher_f_distribution(8, 4), static_cast(-1))), std::domain_error ); BOOST_MATH_CHECK_THROW( quantile( fisher_f_distribution(-1, 2), static_cast(0.5)), std::domain_error ); BOOST_MATH_CHECK_THROW( quantile( fisher_f_distribution(8, 8), static_cast(-1)), std::domain_error ); BOOST_MATH_CHECK_THROW( quantile( fisher_f_distribution(8, 8), static_cast(1.1)), std::domain_error ); BOOST_MATH_CHECK_THROW( quantile(complement( fisher_f_distribution(2, -1), static_cast(0.5))), std::domain_error ); BOOST_MATH_CHECK_THROW( quantile(complement( fisher_f_distribution(8, 8), static_cast(-1))), std::domain_error ); BOOST_MATH_CHECK_THROW( quantile(complement( fisher_f_distribution(8, 8), static_cast(1.1))), std::domain_error ); check_out_of_range >(2, 3); } // template void test_spots(RealType) BOOST_AUTO_TEST_CASE( test_main ) { // Check that can generate fisher distribution using the two convenience methods: boost::math::fisher_f myf1(1., 2); // Using typedef fisher_f_distribution<> myf2(1., 2); // Using default RealType double. // Basic sanity-check spot values. // (Parameter value, arbitrarily zero, only communicates the floating point type). test_spots(0.0F); // Test float. test_spots(0.0); // Test double. #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS test_spots(0.0L); // Test long double. #if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582)) test_spots(boost::math::concepts::real_concept(0.)); // Test real concept. #endif #endif } // BOOST_AUTO_TEST_CASE( test_main ) /* Output is: Autorun "i:\boost-06-05-03-1300\libs\math\test\Math_test\debug\test_fisher.exe" Running 1 test case... Tolerance = 0.2%. Tolerance = 5.96046e-005%. Tolerance = 5.96046e-005%. Tolerance = 0.2%. Tolerance = 1.11022e-013%. Tolerance = 1.11022e-013%. Tolerance = 0.2%. Tolerance = 1.11022e-013%. Tolerance = 1.11022e-013%. Tolerance = 0.2%. Tolerance = 1.11022e-013%. Tolerance = 1.11022e-013%. *** No errors detected */