/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_sqrt_q31.c * Description: Q31 square root function * * $Date: 23 April 2021 * $Revision: V1.9.0 * * Target Processor: Cortex-M and Cortex-A cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dsp/fast_math_functions.h" #include "arm_common_tables.h" /** @ingroup groupFastMath */ /** @addtogroup SQRT @{ */ /** @brief Q31 square root function. @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF @param[out] pOut points to square root of input value @return execution status - \ref ARM_MATH_SUCCESS : input value is positive - \ref ARM_MATH_ARGUMENT_ERROR : input value is negative; *pOut is set to 0 */ arm_status arm_sqrt_q31( q31_t in, q31_t * pOut) { q31_t bits_val1; q31_t number, temp1, var1, signBits1, half; float32_t temp_float1; union { q31_t fracval; float32_t floatval; } tempconv; number = in; /* If the input is a positive number then compute the signBits. */ if (number > 0) { signBits1 = __CLZ(number) - 1; /* Shift by the number of signBits1 */ if ((signBits1 % 2) == 0) { number = number << signBits1; } else { number = number << (signBits1 - 1); } /* Calculate half value of the number */ half = number >> 1; /* Store the number for later use */ temp1 = number; /* Convert to float */ temp_float1 = number * 4.6566128731e-010f; /* Store as integer */ tempconv.floatval = temp_float1; bits_val1 = tempconv.fracval; /* Subtract the shifted value from the magic number to give intial guess */ bits_val1 = 0x5f3759df - (bits_val1 >> 1); /* gives initial guess */ /* Store as float */ tempconv.fracval = bits_val1; temp_float1 = tempconv.floatval; /* Convert to integer format */ var1 = (q31_t) (temp_float1 * 1073741824); /* 1st iteration */ var1 = ((q31_t) ((q63_t) var1 * (0x30000000 - ((q31_t) ((((q31_t) (((q63_t) var1 * var1) >> 31)) * (q63_t) half) >> 31))) >> 31)) << 2; /* 2nd iteration */ var1 = ((q31_t) ((q63_t) var1 * (0x30000000 - ((q31_t) ((((q31_t) (((q63_t) var1 * var1) >> 31)) * (q63_t) half) >> 31))) >> 31)) << 2; /* 3rd iteration */ var1 = ((q31_t) ((q63_t) var1 * (0x30000000 - ((q31_t) ((((q31_t) (((q63_t) var1 * var1) >> 31)) * (q63_t) half) >> 31))) >> 31)) << 2; /* Multiply the inverse square root with the original value */ var1 = ((q31_t) (((q63_t) temp1 * var1) >> 31)) << 1; /* Shift the output down accordingly */ if ((signBits1 % 2) == 0) { var1 = var1 >> (signBits1 / 2); } else { var1 = var1 >> ((signBits1 - 1) / 2); } *pOut = var1; return (ARM_MATH_SUCCESS); } /* If the number is a negative number then store zero as its square root value */ else { *pOut = 0; return (ARM_MATH_ARGUMENT_ERROR); } } /** @} end of SQRT group */