/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_svm_linear_predict_f32.c * Description: SVM Linear Classifier * * $Date: 23 April 2021 * $Revision: V1.9.0 * * Target Processor: Cortex-M and Cortex-A cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dsp/svm_functions.h" #include #include /** * @addtogroup linearsvm * @{ */ /** * @brief SVM linear prediction * @param[in] S Pointer to an instance of the linear SVM structure. * @param[in] in Pointer to input vector * @param[out] pResult Decision value * @return none. * */ #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) #include "arm_helium_utils.h" void arm_svm_linear_predict_f32( const arm_svm_linear_instance_f32 *S, const float32_t * in, int32_t * pResult) { /* inlined Matrix x Vector function interleaved with dot prod */ uint32_t numRows = S->nbOfSupportVectors; uint32_t numCols = S->vectorDimension; const float32_t *pSupport = S->supportVectors; const float32_t *pSrcA = pSupport; const float32_t *pInA0; const float32_t *pInA1; uint32_t row; uint32_t blkCnt; /* loop counters */ const float32_t *pDualCoef = S->dualCoefficients; float32_t sum = S->intercept; row = numRows; /* * compute 4 rows in parrallel */ while (row >= 4) { const float32_t *pInA2, *pInA3; float32_t const *pSrcA0Vec, *pSrcA1Vec, *pSrcA2Vec, *pSrcA3Vec, *pInVec; f32x4_t vecIn, acc0, acc1, acc2, acc3; float32_t const *pSrcVecPtr = in; /* * Initialize the pointers to 4 consecutive MatrixA rows */ pInA0 = pSrcA; pInA1 = pInA0 + numCols; pInA2 = pInA1 + numCols; pInA3 = pInA2 + numCols; /* * Initialize the vector pointer */ pInVec = pSrcVecPtr; /* * reset accumulators */ acc0 = vdupq_n_f32(0.0f); acc1 = vdupq_n_f32(0.0f); acc2 = vdupq_n_f32(0.0f); acc3 = vdupq_n_f32(0.0f); pSrcA0Vec = pInA0; pSrcA1Vec = pInA1; pSrcA2Vec = pInA2; pSrcA3Vec = pInA3; blkCnt = numCols >> 2; while (blkCnt > 0U) { f32x4_t vecA; vecIn = vld1q(pInVec); pInVec += 4; vecA = vld1q(pSrcA0Vec); pSrcA0Vec += 4; acc0 = vfmaq(acc0, vecIn, vecA); vecA = vld1q(pSrcA1Vec); pSrcA1Vec += 4; acc1 = vfmaq(acc1, vecIn, vecA); vecA = vld1q(pSrcA2Vec); pSrcA2Vec += 4; acc2 = vfmaq(acc2, vecIn, vecA); vecA = vld1q(pSrcA3Vec); pSrcA3Vec += 4; acc3 = vfmaq(acc3, vecIn, vecA); blkCnt--; } /* * tail * (will be merged thru tail predication) */ blkCnt = numCols & 3; if (blkCnt > 0U) { mve_pred16_t p0 = vctp32q(blkCnt); f32x4_t vecA; vecIn = vldrwq_z_f32(pInVec, p0); vecA = vldrwq_z_f32(pSrcA0Vec, p0); acc0 = vfmaq(acc0, vecIn, vecA); vecA = vldrwq_z_f32(pSrcA1Vec, p0); acc1 = vfmaq(acc1, vecIn, vecA); vecA = vldrwq_z_f32(pSrcA2Vec, p0); acc2 = vfmaq(acc2, vecIn, vecA); vecA = vldrwq_z_f32(pSrcA3Vec, p0); acc3 = vfmaq(acc3, vecIn, vecA); } /* * Sum the partial parts */ acc0 = vmulq_n_f32(acc0,*pDualCoef++); acc0 = vfmaq_n_f32(acc0,acc1,*pDualCoef++); acc0 = vfmaq_n_f32(acc0,acc2,*pDualCoef++); acc0 = vfmaq_n_f32(acc0,acc3,*pDualCoef++); sum += vecAddAcrossF32Mve(acc0); pSrcA += numCols * 4; /* * Decrement the row loop counter */ row -= 4; } /* * compute 2 rows in parallel */ if (row >= 2) { float32_t const *pSrcA0Vec, *pSrcA1Vec, *pInVec; f32x4_t vecIn, acc0, acc1; float32_t const *pSrcVecPtr = in; /* * Initialize the pointers to 2 consecutive MatrixA rows */ pInA0 = pSrcA; pInA1 = pInA0 + numCols; /* * Initialize the vector pointer */ pInVec = pSrcVecPtr; /* * reset accumulators */ acc0 = vdupq_n_f32(0.0f); acc1 = vdupq_n_f32(0.0f); pSrcA0Vec = pInA0; pSrcA1Vec = pInA1; blkCnt = numCols >> 2; while (blkCnt > 0U) { f32x4_t vecA; vecIn = vld1q(pInVec); pInVec += 4; vecA = vld1q(pSrcA0Vec); pSrcA0Vec += 4; acc0 = vfmaq(acc0, vecIn, vecA); vecA = vld1q(pSrcA1Vec); pSrcA1Vec += 4; acc1 = vfmaq(acc1, vecIn, vecA); blkCnt--; } /* * tail * (will be merged thru tail predication) */ blkCnt = numCols & 3; if (blkCnt > 0U) { mve_pred16_t p0 = vctp32q(blkCnt); f32x4_t vecA; vecIn = vldrwq_z_f32(pInVec, p0); vecA = vldrwq_z_f32(pSrcA0Vec, p0); acc0 = vfmaq(acc0, vecIn, vecA); vecA = vldrwq_z_f32(pSrcA1Vec, p0); acc1 = vfmaq(acc1, vecIn, vecA); } /* * Sum the partial parts */ acc0 = vmulq_n_f32(acc0,*pDualCoef++); acc0 = vfmaq_n_f32(acc0,acc1,*pDualCoef++); sum += vecAddAcrossF32Mve(acc0); pSrcA += numCols * 2; row -= 2; } if (row >= 1) { f32x4_t vecIn, acc0; float32_t const *pSrcA0Vec, *pInVec; float32_t const *pSrcVecPtr = in; /* * Initialize the pointers to last MatrixA row */ pInA0 = pSrcA; /* * Initialize the vector pointer */ pInVec = pSrcVecPtr; /* * reset accumulators */ acc0 = vdupq_n_f32(0.0f); pSrcA0Vec = pInA0; blkCnt = numCols >> 2; while (blkCnt > 0U) { f32x4_t vecA; vecIn = vld1q(pInVec); pInVec += 4; vecA = vld1q(pSrcA0Vec); pSrcA0Vec += 4; acc0 = vfmaq(acc0, vecIn, vecA); blkCnt--; } /* * tail * (will be merged thru tail predication) */ blkCnt = numCols & 3; if (blkCnt > 0U) { mve_pred16_t p0 = vctp32q(blkCnt); f32x4_t vecA; vecIn = vldrwq_z_f32(pInVec, p0); vecA = vldrwq_z_f32(pSrcA0Vec, p0); acc0 = vfmaq(acc0, vecIn, vecA); } /* * Sum the partial parts */ sum += *pDualCoef++ * vecAddAcrossF32Mve(acc0); } *pResult = S->classes[STEP(sum)]; } #else #if defined(ARM_MATH_NEON) void arm_svm_linear_predict_f32( const arm_svm_linear_instance_f32 *S, const float32_t * in, int32_t * pResult) { float32_t sum = S->intercept; float32_t dot; float32x4_t dotV; float32x4_t accuma,accumb,accumc,accumd,accum; float32x2_t accum2; float32x4_t vec1; float32x4_t vec2,vec2a,vec2b,vec2c,vec2d; uint32_t blkCnt; uint32_t vectorBlkCnt; const float32_t *pIn = in; const float32_t *pSupport = S->supportVectors; const float32_t *pSupporta = S->supportVectors; const float32_t *pSupportb; const float32_t *pSupportc; const float32_t *pSupportd; pSupportb = pSupporta + S->vectorDimension; pSupportc = pSupportb + S->vectorDimension; pSupportd = pSupportc + S->vectorDimension; const float32_t *pDualCoefs = S->dualCoefficients; vectorBlkCnt = S->nbOfSupportVectors >> 2; while (vectorBlkCnt > 0U) { accuma = vdupq_n_f32(0); accumb = vdupq_n_f32(0); accumc = vdupq_n_f32(0); accumd = vdupq_n_f32(0); pIn = in; blkCnt = S->vectorDimension >> 2; while (blkCnt > 0U) { vec1 = vld1q_f32(pIn); vec2a = vld1q_f32(pSupporta); vec2b = vld1q_f32(pSupportb); vec2c = vld1q_f32(pSupportc); vec2d = vld1q_f32(pSupportd); pIn += 4; pSupporta += 4; pSupportb += 4; pSupportc += 4; pSupportd += 4; accuma = vmlaq_f32(accuma, vec1,vec2a); accumb = vmlaq_f32(accumb, vec1,vec2b); accumc = vmlaq_f32(accumc, vec1,vec2c); accumd = vmlaq_f32(accumd, vec1,vec2d); blkCnt -- ; } accum2 = vpadd_f32(vget_low_f32(accuma),vget_high_f32(accuma)); dotV = vsetq_lane_f32(vget_lane_f32(accum2, 0) + vget_lane_f32(accum2, 1),dotV,0); accum2 = vpadd_f32(vget_low_f32(accumb),vget_high_f32(accumb)); dotV = vsetq_lane_f32(vget_lane_f32(accum2, 0) + vget_lane_f32(accum2, 1),dotV,1); accum2 = vpadd_f32(vget_low_f32(accumc),vget_high_f32(accumc)); dotV = vsetq_lane_f32(vget_lane_f32(accum2, 0) + vget_lane_f32(accum2, 1),dotV,2); accum2 = vpadd_f32(vget_low_f32(accumd),vget_high_f32(accumd)); dotV = vsetq_lane_f32(vget_lane_f32(accum2, 0) + vget_lane_f32(accum2, 1),dotV,3); blkCnt = S->vectorDimension & 3; while (blkCnt > 0U) { dotV = vsetq_lane_f32(vgetq_lane_f32(dotV,0) + *pIn * *pSupporta++, dotV,0); dotV = vsetq_lane_f32(vgetq_lane_f32(dotV,1) + *pIn * *pSupportb++, dotV,1); dotV = vsetq_lane_f32(vgetq_lane_f32(dotV,2) + *pIn * *pSupportc++, dotV,2); dotV = vsetq_lane_f32(vgetq_lane_f32(dotV,3) + *pIn * *pSupportd++, dotV,3); pIn++; blkCnt -- ; } vec1 = vld1q_f32(pDualCoefs); pDualCoefs += 4; accum = vmulq_f32(vec1,dotV); accum2 = vpadd_f32(vget_low_f32(accum),vget_high_f32(accum)); sum += vget_lane_f32(accum2, 0) + vget_lane_f32(accum2, 1); pSupporta += 3*S->vectorDimension; pSupportb += 3*S->vectorDimension; pSupportc += 3*S->vectorDimension; pSupportd += 3*S->vectorDimension; vectorBlkCnt -- ; } pSupport = pSupporta; vectorBlkCnt = S->nbOfSupportVectors & 3; while (vectorBlkCnt > 0U) { accum = vdupq_n_f32(0); dot = 0.0f; pIn = in; blkCnt = S->vectorDimension >> 2; while (blkCnt > 0U) { vec1 = vld1q_f32(pIn); vec2 = vld1q_f32(pSupport); pIn += 4; pSupport += 4; accum = vmlaq_f32(accum, vec1,vec2); blkCnt -- ; } accum2 = vpadd_f32(vget_low_f32(accum),vget_high_f32(accum)); dot = vget_lane_f32(accum2, 0) + vget_lane_f32(accum2, 1); blkCnt = S->vectorDimension & 3; while (blkCnt > 0U) { dot = dot + *pIn++ * *pSupport++; blkCnt -- ; } sum += *pDualCoefs++ * dot; vectorBlkCnt -- ; } *pResult=S->classes[STEP(sum)]; } #else void arm_svm_linear_predict_f32( const arm_svm_linear_instance_f32 *S, const float32_t * in, int32_t * pResult) { float32_t sum=S->intercept; float32_t dot=0; uint32_t i,j; const float32_t *pSupport = S->supportVectors; for(i=0; i < S->nbOfSupportVectors; i++) { dot=0; for(j=0; j < S->vectorDimension; j++) { dot = dot + in[j]* *pSupport++; } sum += S->dualCoefficients[i] * dot; } *pResult=S->classes[STEP(sum)]; } #endif #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */ /** * @} end of linearsvm group */