/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/gpu/geometry/GrShape.h" #include GrShape& GrShape::operator=(const GrShape& that) { fStyle = that.fStyle; this->changeType(that.fType, Type::kPath == that.fType ? &that.path() : nullptr); switch (fType) { case Type::kEmpty: break; case Type::kInvertedEmpty: break; case Type::kRRect: fRRectData = that.fRRectData; break; case Type::kArc: fArcData = that.fArcData; break; case Type::kLine: fLineData = that.fLineData; break; case Type::kPath: fPathData.fGenID = that.fPathData.fGenID; break; } fInheritedKey.reset(that.fInheritedKey.count()); sk_careful_memcpy(fInheritedKey.get(), that.fInheritedKey.get(), sizeof(uint32_t) * fInheritedKey.count()); if (that.fInheritedPathForListeners.isValid()) { fInheritedPathForListeners.set(*that.fInheritedPathForListeners.get()); } else { fInheritedPathForListeners.reset(); } return *this; } static bool flip_inversion(bool originalIsInverted, GrShape::FillInversion inversion) { switch (inversion) { case GrShape::FillInversion::kPreserve: return false; case GrShape::FillInversion::kFlip: return true; case GrShape::FillInversion::kForceInverted: return !originalIsInverted; case GrShape::FillInversion::kForceNoninverted: return originalIsInverted; } return false; } static bool is_inverted(bool originalIsInverted, GrShape::FillInversion inversion) { switch (inversion) { case GrShape::FillInversion::kPreserve: return originalIsInverted; case GrShape::FillInversion::kFlip: return !originalIsInverted; case GrShape::FillInversion::kForceInverted: return true; case GrShape::FillInversion::kForceNoninverted: return false; } return false; } GrShape GrShape::MakeFilled(const GrShape& original, FillInversion inversion) { if (original.style().isSimpleFill() && !flip_inversion(original.inverseFilled(), inversion)) { // By returning the original rather than falling through we can preserve any inherited style // key. Otherwise, we wipe it out below since the style change invalidates it. return original; } GrShape result; if (original.fInheritedPathForListeners.isValid()) { result.fInheritedPathForListeners.set(*original.fInheritedPathForListeners.get()); } switch (original.fType) { case Type::kRRect: result.fType = original.fType; result.fRRectData.fRRect = original.fRRectData.fRRect; result.fRRectData.fDir = kDefaultRRectDir; result.fRRectData.fStart = kDefaultRRectStart; result.fRRectData.fInverted = is_inverted(original.fRRectData.fInverted, inversion); break; case Type::kArc: result.fType = original.fType; result.fArcData.fOval = original.fArcData.fOval; result.fArcData.fStartAngleDegrees = original.fArcData.fStartAngleDegrees; result.fArcData.fSweepAngleDegrees = original.fArcData.fSweepAngleDegrees; result.fArcData.fUseCenter = original.fArcData.fUseCenter; result.fArcData.fInverted = is_inverted(original.fArcData.fInverted, inversion); break; case Type::kLine: // Lines don't fill. if (is_inverted(original.fLineData.fInverted, inversion)) { result.fType = Type::kInvertedEmpty; } else { result.fType = Type::kEmpty; } break; case Type::kEmpty: result.fType = is_inverted(false, inversion) ? Type::kInvertedEmpty : Type::kEmpty; break; case Type::kInvertedEmpty: result.fType = is_inverted(true, inversion) ? Type::kInvertedEmpty : Type::kEmpty; break; case Type::kPath: result.initType(Type::kPath, &original.fPathData.fPath); result.fPathData.fGenID = original.fPathData.fGenID; if (flip_inversion(original.fPathData.fPath.isInverseFillType(), inversion)) { result.fPathData.fPath.toggleInverseFillType(); } if (!original.style().isSimpleFill()) { // Going from a non-filled style to fill may allow additional simplifications (e.g. // closing an open rect that wasn't closed in the original shape because it had // stroke style). result.attemptToSimplifyPath(); } break; } // We don't copy the inherited key since it can contain path effect information that we just // stripped. return result; } SkRect GrShape::bounds() const { // Bounds where left == bottom or top == right can indicate a line or point shape. We return // inverted bounds for a truly empty shape. static constexpr SkRect kInverted = SkRect::MakeLTRB(1, 1, -1, -1); switch (fType) { case Type::kEmpty: return kInverted; case Type::kInvertedEmpty: return kInverted; case Type::kLine: { SkRect bounds; if (fLineData.fPts[0].fX < fLineData.fPts[1].fX) { bounds.fLeft = fLineData.fPts[0].fX; bounds.fRight = fLineData.fPts[1].fX; } else { bounds.fLeft = fLineData.fPts[1].fX; bounds.fRight = fLineData.fPts[0].fX; } if (fLineData.fPts[0].fY < fLineData.fPts[1].fY) { bounds.fTop = fLineData.fPts[0].fY; bounds.fBottom = fLineData.fPts[1].fY; } else { bounds.fTop = fLineData.fPts[1].fY; bounds.fBottom = fLineData.fPts[0].fY; } return bounds; } case Type::kRRect: return fRRectData.fRRect.getBounds(); case Type::kArc: // Could make this less conservative by looking at angles. return fArcData.fOval; case Type::kPath: return this->path().getBounds(); } SK_ABORT("Unknown shape type"); } SkRect GrShape::styledBounds() const { if (this->isEmpty() && !fStyle.hasNonDashPathEffect()) { return SkRect::MakeEmpty(); } SkRect bounds; fStyle.adjustBounds(&bounds, this->bounds()); return bounds; } // If the path is small enough to be keyed from its data this returns key length, otherwise -1. static int path_key_from_data_size(const SkPath& path) { const int verbCnt = path.countVerbs(); if (verbCnt > GrShape::kMaxKeyFromDataVerbCnt) { return -1; } const int pointCnt = path.countPoints(); const int conicWeightCnt = SkPathPriv::ConicWeightCnt(path); GR_STATIC_ASSERT(sizeof(SkPoint) == 2 * sizeof(uint32_t)); GR_STATIC_ASSERT(sizeof(SkScalar) == sizeof(uint32_t)); // 2 is for the verb cnt and a fill type. Each verb is a byte but we'll pad the verb data out to // a uint32_t length. return 2 + (SkAlign4(verbCnt) >> 2) + 2 * pointCnt + conicWeightCnt; } // Writes the path data key into the passed pointer. static void write_path_key_from_data(const SkPath& path, uint32_t* origKey) { uint32_t* key = origKey; // The check below should take care of negative values casted positive. const int verbCnt = path.countVerbs(); const int pointCnt = path.countPoints(); const int conicWeightCnt = SkPathPriv::ConicWeightCnt(path); SkASSERT(verbCnt <= GrShape::kMaxKeyFromDataVerbCnt); SkASSERT(pointCnt && verbCnt); *key++ = path.getFillType(); *key++ = verbCnt; memcpy(key, SkPathPriv::VerbData(path), verbCnt * sizeof(uint8_t)); int verbKeySize = SkAlign4(verbCnt); // pad out to uint32_t alignment using value that will stand out when debugging. uint8_t* pad = reinterpret_cast(key)+ verbCnt; memset(pad, 0xDE, verbKeySize - verbCnt); key += verbKeySize >> 2; memcpy(key, SkPathPriv::PointData(path), sizeof(SkPoint) * pointCnt); GR_STATIC_ASSERT(sizeof(SkPoint) == 2 * sizeof(uint32_t)); key += 2 * pointCnt; sk_careful_memcpy(key, SkPathPriv::ConicWeightData(path), sizeof(SkScalar) * conicWeightCnt); GR_STATIC_ASSERT(sizeof(SkScalar) == sizeof(uint32_t)); SkDEBUGCODE(key += conicWeightCnt); SkASSERT(key - origKey == path_key_from_data_size(path)); } int GrShape::unstyledKeySize() const { if (fInheritedKey.count()) { return fInheritedKey.count(); } switch (fType) { case Type::kEmpty: return 1; case Type::kInvertedEmpty: return 1; case Type::kRRect: SkASSERT(!fInheritedKey.count()); GR_STATIC_ASSERT(0 == SkRRect::kSizeInMemory % sizeof(uint32_t)); // + 1 for the direction, start index, and inverseness. return SkRRect::kSizeInMemory / sizeof(uint32_t) + 1; case Type::kArc: SkASSERT(!fInheritedKey.count()); GR_STATIC_ASSERT(0 == sizeof(fArcData) % sizeof(uint32_t)); return sizeof(fArcData) / sizeof(uint32_t); case Type::kLine: GR_STATIC_ASSERT(2 * sizeof(uint32_t) == sizeof(SkPoint)); // 4 for the end points and 1 for the inverseness return 5; case Type::kPath: { if (0 == fPathData.fGenID) { return -1; } int dataKeySize = path_key_from_data_size(fPathData.fPath); if (dataKeySize >= 0) { return dataKeySize; } // The key is the path ID and fill type. return 2; } } SK_ABORT("Should never get here."); } void GrShape::writeUnstyledKey(uint32_t* key) const { SkASSERT(this->unstyledKeySize()); SkDEBUGCODE(uint32_t* origKey = key;) if (fInheritedKey.count()) { memcpy(key, fInheritedKey.get(), sizeof(uint32_t) * fInheritedKey.count()); SkDEBUGCODE(key += fInheritedKey.count();) } else { switch (fType) { case Type::kEmpty: *key++ = 1; break; case Type::kInvertedEmpty: *key++ = 2; break; case Type::kRRect: fRRectData.fRRect.writeToMemory(key); key += SkRRect::kSizeInMemory / sizeof(uint32_t); *key = (fRRectData.fDir == SkPath::kCCW_Direction) ? (1 << 31) : 0; *key |= fRRectData.fInverted ? (1 << 30) : 0; *key++ |= fRRectData.fStart; SkASSERT(fRRectData.fStart < 8); break; case Type::kArc: memcpy(key, &fArcData, sizeof(fArcData)); key += sizeof(fArcData) / sizeof(uint32_t); break; case Type::kLine: memcpy(key, fLineData.fPts, 2 * sizeof(SkPoint)); key += 4; *key++ = fLineData.fInverted ? 1 : 0; break; case Type::kPath: { SkASSERT(fPathData.fGenID); int dataKeySize = path_key_from_data_size(fPathData.fPath); if (dataKeySize >= 0) { write_path_key_from_data(fPathData.fPath, key); return; } *key++ = fPathData.fGenID; // We could canonicalize the fill rule for paths that don't differentiate between // even/odd or winding fill (e.g. convex). *key++ = this->path().getFillType(); break; } } } SkASSERT(key - origKey == this->unstyledKeySize()); } void GrShape::setInheritedKey(const GrShape &parent, GrStyle::Apply apply, SkScalar scale) { SkASSERT(!fInheritedKey.count()); // If the output shape turns out to be simple, then we will just use its geometric key if (Type::kPath == fType) { // We want ApplyFullStyle(ApplyPathEffect(shape)) to have the same key as // ApplyFullStyle(shape). // The full key is structured as (geo,path_effect,stroke). // If we do ApplyPathEffect we get geo,path_effect as the inherited key. If we then // do ApplyFullStyle we'll memcpy geo,path_effect into the new inherited key // and then append the style key (which should now be stroke only) at the end. int parentCnt = parent.fInheritedKey.count(); bool useParentGeoKey = !parentCnt; if (useParentGeoKey) { parentCnt = parent.unstyledKeySize(); if (parentCnt < 0) { // The parent's geometry has no key so we will have no key. fPathData.fGenID = 0; return; } } uint32_t styleKeyFlags = 0; if (parent.knownToBeClosed()) { styleKeyFlags |= GrStyle::kClosed_KeyFlag; } if (parent.asLine(nullptr, nullptr)) { styleKeyFlags |= GrStyle::kNoJoins_KeyFlag; } int styleCnt = GrStyle::KeySize(parent.fStyle, apply, styleKeyFlags); if (styleCnt < 0) { // The style doesn't allow a key, set the path gen ID to 0 so that we fail when // we try to get a key for the shape. fPathData.fGenID = 0; return; } fInheritedKey.reset(parentCnt + styleCnt); if (useParentGeoKey) { // This will be the geo key. parent.writeUnstyledKey(fInheritedKey.get()); } else { // This should be (geo,path_effect). memcpy(fInheritedKey.get(), parent.fInheritedKey.get(), parentCnt * sizeof(uint32_t)); } // Now turn (geo,path_effect) or (geo) into (geo,path_effect,stroke) GrStyle::WriteKey(fInheritedKey.get() + parentCnt, parent.fStyle, apply, scale, styleKeyFlags); } } const SkPath* GrShape::originalPathForListeners() const { if (fInheritedPathForListeners.isValid()) { return fInheritedPathForListeners.get(); } else if (Type::kPath == fType && !fPathData.fPath.isVolatile()) { return &fPathData.fPath; } return nullptr; } void GrShape::addGenIDChangeListener(sk_sp listener) const { if (const auto* lp = this->originalPathForListeners()) { SkPathPriv::AddGenIDChangeListener(*lp, std::move(listener)); } } GrShape GrShape::MakeArc(const SkRect& oval, SkScalar startAngleDegrees, SkScalar sweepAngleDegrees, bool useCenter, const GrStyle& style) { GrShape result; result.changeType(Type::kArc); result.fArcData.fOval = oval; result.fArcData.fStartAngleDegrees = startAngleDegrees; result.fArcData.fSweepAngleDegrees = sweepAngleDegrees; result.fArcData.fUseCenter = useCenter; result.fArcData.fInverted = false; result.fStyle = style; result.attemptToSimplifyArc(); return result; } GrShape::GrShape(const GrShape& that) : fStyle(that.fStyle) { const SkPath* thatPath = Type::kPath == that.fType ? &that.fPathData.fPath : nullptr; this->initType(that.fType, thatPath); switch (fType) { case Type::kEmpty: break; case Type::kInvertedEmpty: break; case Type::kRRect: fRRectData = that.fRRectData; break; case Type::kArc: fArcData = that.fArcData; break; case Type::kLine: fLineData = that.fLineData; break; case Type::kPath: fPathData.fGenID = that.fPathData.fGenID; break; } fInheritedKey.reset(that.fInheritedKey.count()); sk_careful_memcpy(fInheritedKey.get(), that.fInheritedKey.get(), sizeof(uint32_t) * fInheritedKey.count()); if (that.fInheritedPathForListeners.isValid()) { fInheritedPathForListeners.set(*that.fInheritedPathForListeners.get()); } } GrShape::GrShape(const GrShape& parent, GrStyle::Apply apply, SkScalar scale) { // TODO: Add some quantization of scale for better cache performance here or leave that up // to caller? // TODO: For certain shapes and stroke params we could ignore the scale. (e.g. miter or bevel // stroke of a rect). if (!parent.style().applies() || (GrStyle::Apply::kPathEffectOnly == apply && !parent.style().pathEffect())) { this->initType(Type::kEmpty); *this = parent; return; } SkPathEffect* pe = parent.fStyle.pathEffect(); SkTLazy tmpPath; const GrShape* parentForKey = &parent; SkTLazy tmpParent; this->initType(Type::kPath); fPathData.fGenID = 0; if (pe) { const SkPath* srcForPathEffect; if (parent.fType == Type::kPath) { srcForPathEffect = &parent.path(); } else { srcForPathEffect = tmpPath.init(); parent.asPath(tmpPath.get()); } // Should we consider bounds? Would have to include in key, but it'd be nice to know // if the bounds actually modified anything before including in key. SkStrokeRec strokeRec = parent.fStyle.strokeRec(); if (!parent.fStyle.applyPathEffectToPath(&this->path(), &strokeRec, *srcForPathEffect, scale)) { tmpParent.init(*srcForPathEffect, GrStyle(strokeRec, nullptr)); *this = tmpParent.get()->applyStyle(apply, scale); return; } // A path effect has access to change the res scale but we aren't expecting it to and it // would mess up our key computation. SkASSERT(scale == strokeRec.getResScale()); if (GrStyle::Apply::kPathEffectAndStrokeRec == apply && strokeRec.needToApply()) { // The intermediate shape may not be a general path. If we we're just applying // the path effect then attemptToReduceFromPath would catch it. This means that // when we subsequently applied the remaining strokeRec we would have a non-path // parent shape that would be used to determine the the stroked path's key. // We detect that case here and change parentForKey to a temporary that represents // the simpler shape so that applying both path effect and the strokerec all at // once produces the same key. tmpParent.init(this->path(), GrStyle(strokeRec, nullptr)); tmpParent.get()->setInheritedKey(parent, GrStyle::Apply::kPathEffectOnly, scale); if (!tmpPath.isValid()) { tmpPath.init(); } tmpParent.get()->asPath(tmpPath.get()); SkStrokeRec::InitStyle fillOrHairline; // The parent shape may have simplified away the strokeRec, check for that here. if (tmpParent.get()->style().applies()) { SkAssertResult(tmpParent.get()->style().applyToPath(&this->path(), &fillOrHairline, *tmpPath.get(), scale)); } else if (tmpParent.get()->style().isSimpleFill()) { fillOrHairline = SkStrokeRec::kFill_InitStyle; } else { SkASSERT(tmpParent.get()->style().isSimpleHairline()); fillOrHairline = SkStrokeRec::kHairline_InitStyle; } fStyle.resetToInitStyle(fillOrHairline); parentForKey = tmpParent.get(); } else { fStyle = GrStyle(strokeRec, nullptr); } } else { const SkPath* srcForParentStyle; if (parent.fType == Type::kPath) { srcForParentStyle = &parent.path(); } else { srcForParentStyle = tmpPath.init(); parent.asPath(tmpPath.get()); } SkStrokeRec::InitStyle fillOrHairline; SkASSERT(parent.fStyle.applies()); SkASSERT(!parent.fStyle.pathEffect()); SkAssertResult(parent.fStyle.applyToPath(&this->path(), &fillOrHairline, *srcForParentStyle, scale)); fStyle.resetToInitStyle(fillOrHairline); } if (parent.fInheritedPathForListeners.isValid()) { fInheritedPathForListeners.set(*parent.fInheritedPathForListeners.get()); } else if (Type::kPath == parent.fType && !parent.fPathData.fPath.isVolatile()) { fInheritedPathForListeners.set(parent.fPathData.fPath); } this->attemptToSimplifyPath(); this->setInheritedKey(*parentForKey, apply, scale); } void GrShape::attemptToSimplifyPath() { SkRect rect; SkRRect rrect; SkPath::Direction rrectDir; unsigned rrectStart; bool inverted = this->path().isInverseFillType(); SkPoint pts[2]; if (this->path().isEmpty()) { // Dashing ignores inverseness skbug.com/5421. this->changeType(inverted && !this->style().isDashed() ? Type::kInvertedEmpty : Type::kEmpty); } else if (this->path().isLine(pts)) { this->changeType(Type::kLine); fLineData.fPts[0] = pts[0]; fLineData.fPts[1] = pts[1]; fLineData.fInverted = inverted; } else if (SkPathPriv::IsRRect(this->path(), &rrect, &rrectDir, &rrectStart)) { this->changeType(Type::kRRect); fRRectData.fRRect = rrect; fRRectData.fDir = rrectDir; fRRectData.fStart = rrectStart; fRRectData.fInverted = inverted; SkASSERT(!fRRectData.fRRect.isEmpty()); } else if (SkPathPriv::IsOval(this->path(), &rect, &rrectDir, &rrectStart)) { this->changeType(Type::kRRect); fRRectData.fRRect.setOval(rect); fRRectData.fDir = rrectDir; fRRectData.fInverted = inverted; // convert from oval indexing to rrect indexiing. fRRectData.fStart = 2 * rrectStart; } else if (SkPathPriv::IsSimpleClosedRect(this->path(), &rect, &rrectDir, &rrectStart)) { this->changeType(Type::kRRect); // When there is a path effect we restrict rect detection to the narrower API that // gives us the starting position. Otherwise, we will retry with the more aggressive // isRect(). fRRectData.fRRect.setRect(rect); fRRectData.fInverted = inverted; fRRectData.fDir = rrectDir; // convert from rect indexing to rrect indexiing. fRRectData.fStart = 2 * rrectStart; } else if (!this->style().hasPathEffect()) { bool closed; if (this->path().isRect(&rect, &closed, nullptr)) { if (closed || this->style().isSimpleFill()) { this->changeType(Type::kRRect); fRRectData.fRRect.setRect(rect); // Since there is no path effect the dir and start index is immaterial. fRRectData.fDir = kDefaultRRectDir; fRRectData.fStart = kDefaultRRectStart; // There isn't dashing so we will have to preserver inverseness. fRRectData.fInverted = inverted; } } } if (Type::kPath != fType) { fInheritedKey.reset(0); // Whenever we simplify to a non-path, break the chain so we no longer refer to the // original path. This prevents attaching genID listeners to temporary paths created when // drawing simple shapes. fInheritedPathForListeners.reset(); if (Type::kRRect == fType) { this->attemptToSimplifyRRect(); } else if (Type::kLine == fType) { this->attemptToSimplifyLine(); } } else { if (fInheritedKey.count() || this->path().isVolatile()) { fPathData.fGenID = 0; } else { fPathData.fGenID = this->path().getGenerationID(); } if (!this->style().hasNonDashPathEffect()) { if (this->style().strokeRec().getStyle() == SkStrokeRec::kStroke_Style || this->style().strokeRec().getStyle() == SkStrokeRec::kHairline_Style) { // Stroke styles don't differentiate between winding and even/odd. // Moreover, dashing ignores inverseness (skbug.com/5421) bool inverse = !this->style().isDashed() && this->path().isInverseFillType(); if (inverse) { this->path().setFillType(kDefaultPathInverseFillType); } else { this->path().setFillType(kDefaultPathFillType); } } else if (this->path().isConvex()) { // There is no distinction between even/odd and non-zero winding count for convex // paths. if (this->path().isInverseFillType()) { this->path().setFillType(kDefaultPathInverseFillType); } else { this->path().setFillType(kDefaultPathFillType); } } } } } void GrShape::attemptToSimplifyRRect() { SkASSERT(Type::kRRect == fType); SkASSERT(!fInheritedKey.count()); if (fRRectData.fRRect.isEmpty()) { // An empty filled rrect is equivalent to a filled empty path with inversion preserved. if (fStyle.isSimpleFill()) { fType = fRRectData.fInverted ? Type::kInvertedEmpty : Type::kEmpty; fStyle = GrStyle::SimpleFill(); return; } // Dashing a rrect with no width or height is equivalent to filling an emtpy path. // When skbug.com/7387 is fixed this should be modified or removed as a dashed zero length // line will produce cap geometry if the effect begins in an "on" interval. if (fStyle.isDashed() && !fRRectData.fRRect.width() && !fRRectData.fRRect.height()) { // Dashing ignores the inverseness (currently). skbug.com/5421. fType = Type::kEmpty; fStyle = GrStyle::SimpleFill(); return; } } if (!this->style().hasPathEffect()) { fRRectData.fDir = kDefaultRRectDir; fRRectData.fStart = kDefaultRRectStart; } else if (fStyle.isDashed()) { // Dashing ignores the inverseness (currently). skbug.com/5421 fRRectData.fInverted = false; // Possible TODO here: Check whether the dash results in a single arc or line. } // Turn a stroke-and-filled miter rect into a filled rect. TODO: more rrect stroke shortcuts. if (!fStyle.hasPathEffect() && fStyle.strokeRec().getStyle() == SkStrokeRec::kStrokeAndFill_Style && fStyle.strokeRec().getJoin() == SkPaint::kMiter_Join && fStyle.strokeRec().getMiter() >= SK_ScalarSqrt2 && fRRectData.fRRect.isRect()) { SkScalar r = fStyle.strokeRec().getWidth() / 2; fRRectData.fRRect = SkRRect::MakeRect(fRRectData.fRRect.rect().makeOutset(r, r)); fStyle = GrStyle::SimpleFill(); } } void GrShape::attemptToSimplifyLine() { SkASSERT(Type::kLine == fType); SkASSERT(!fInheritedKey.count()); if (fStyle.isDashed()) { bool allOffsZero = true; for (int i = 1; i < fStyle.dashIntervalCnt() && allOffsZero; i += 2) { allOffsZero = !fStyle.dashIntervals()[i]; } if (allOffsZero && this->attemptToSimplifyStrokedLineToRRect()) { return; } // Dashing ignores inverseness. fLineData.fInverted = false; return; } else if (fStyle.hasPathEffect()) { return; } if (fStyle.strokeRec().getStyle() == SkStrokeRec::kStrokeAndFill_Style) { // Make stroke + fill be stroke since the fill is empty. SkStrokeRec rec = fStyle.strokeRec(); rec.setStrokeStyle(fStyle.strokeRec().getWidth(), false); fStyle = GrStyle(rec, nullptr); } if (fStyle.isSimpleFill()) { this->changeType(fLineData.fInverted ? Type::kInvertedEmpty : Type::kEmpty); return; } if (fStyle.strokeRec().getStyle() == SkStrokeRec::kStroke_Style && this->attemptToSimplifyStrokedLineToRRect()) { return; } // Only path effects could care about the order of the points. Otherwise canonicalize // the point order. SkPoint* pts = fLineData.fPts; if (pts[1].fY < pts[0].fY || (pts[1].fY == pts[0].fY && pts[1].fX < pts[0].fX)) { using std::swap; swap(pts[0], pts[1]); } } void GrShape::attemptToSimplifyArc() { SkASSERT(fType == Type::kArc); SkASSERT(!fArcData.fInverted); if (fArcData.fOval.isEmpty() || !fArcData.fSweepAngleDegrees) { this->changeType(Type::kEmpty); return; } // Assuming no path effect, a filled, stroked, hairline, or stroke-and-filled arc that traverses // the full circle and doesn't use the center point is an oval. Unless it has square or round // caps. They may protrude out of the oval. Round caps can't protrude out of a circle but we're // ignoring that for now. if (fStyle.isSimpleFill() || (!fStyle.pathEffect() && !fArcData.fUseCenter && fStyle.strokeRec().getCap() == SkPaint::kButt_Cap)) { if (fArcData.fSweepAngleDegrees >= 360.f || fArcData.fSweepAngleDegrees <= -360.f) { auto oval = fArcData.fOval; this->changeType(Type::kRRect); this->fRRectData.fRRect.setOval(oval); this->fRRectData.fDir = kDefaultRRectDir; this->fRRectData.fStart = kDefaultRRectStart; this->fRRectData.fInverted = false; return; } } if (!fStyle.pathEffect()) { // Canonicalize the arc such that the start is always in [0, 360) and the sweep is always // positive. if (fArcData.fSweepAngleDegrees < 0) { fArcData.fStartAngleDegrees = fArcData.fStartAngleDegrees + fArcData.fSweepAngleDegrees; fArcData.fSweepAngleDegrees = -fArcData.fSweepAngleDegrees; } } if (this->fArcData.fStartAngleDegrees < 0 || this->fArcData.fStartAngleDegrees >= 360.f) { this->fArcData.fStartAngleDegrees = SkScalarMod(this->fArcData.fStartAngleDegrees, 360.f); } // Possible TODOs here: Look at whether dash pattern results in a single dash and convert to // non-dashed stroke. Stroke and fill can be fill if circular and no path effect. Just stroke // could as well if the stroke fills the center. } bool GrShape::attemptToSimplifyStrokedLineToRRect() { SkASSERT(Type::kLine == fType); SkASSERT(fStyle.strokeRec().getStyle() == SkStrokeRec::kStroke_Style); SkRect rect; SkVector outset; // If we allowed a rotation angle for rrects we could capture all cases here. if (fLineData.fPts[0].fY == fLineData.fPts[1].fY) { rect.fLeft = SkTMin(fLineData.fPts[0].fX, fLineData.fPts[1].fX); rect.fRight = SkTMax(fLineData.fPts[0].fX, fLineData.fPts[1].fX); rect.fTop = rect.fBottom = fLineData.fPts[0].fY; outset.fY = fStyle.strokeRec().getWidth() / 2.f; outset.fX = SkPaint::kButt_Cap == fStyle.strokeRec().getCap() ? 0.f : outset.fY; } else if (fLineData.fPts[0].fX == fLineData.fPts[1].fX) { rect.fTop = SkTMin(fLineData.fPts[0].fY, fLineData.fPts[1].fY); rect.fBottom = SkTMax(fLineData.fPts[0].fY, fLineData.fPts[1].fY); rect.fLeft = rect.fRight = fLineData.fPts[0].fX; outset.fX = fStyle.strokeRec().getWidth() / 2.f; outset.fY = SkPaint::kButt_Cap == fStyle.strokeRec().getCap() ? 0.f : outset.fX; } else { return false; } rect.outset(outset.fX, outset.fY); if (rect.isEmpty()) { this->changeType(Type::kEmpty); fStyle = GrStyle::SimpleFill(); return true; } SkRRect rrect; if (fStyle.strokeRec().getCap() == SkPaint::kRound_Cap) { SkASSERT(outset.fX == outset.fY); rrect = SkRRect::MakeRectXY(rect, outset.fX, outset.fY); } else { rrect = SkRRect::MakeRect(rect); } bool inverted = fLineData.fInverted && !fStyle.hasPathEffect(); this->changeType(Type::kRRect); fRRectData.fRRect = rrect; fRRectData.fInverted = inverted; fRRectData.fDir = kDefaultRRectDir; fRRectData.fStart = kDefaultRRectStart; fStyle = GrStyle::SimpleFill(); return true; }