/* Copyright JS Foundation and other contributors, http://js.foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * This file is based on work under the following copyright and permission * notice: * * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * * @(#)e_acos.c 1.3 95/01/18 */ #include "jerry-libm-internal.h" /* acos(x) * * Method: * acos(x) = pi/2 - asin(x) * acos(-x) = pi/2 + asin(x) * For |x|<=0.5 * acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c) * For x>0.5 * acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2))) * = 2asin(sqrt((1-x)/2)) * = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z) * = 2f + (2c + 2s*z*R(z)) * where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term * for f so that f+c ~ sqrt(z). * For x<-0.5 * acos(x) = pi - 2asin(sqrt((1-|x|)/2)) * = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z) * * Special cases: * if x is NaN, return x itself; * if |x|>1, return NaN with invalid signal. * * Function needed: sqrt */ #define one 1.00000000000000000000e+00 /* 0x3FF00000, 0x00000000 */ #define pi 3.14159265358979311600e+00 /* 0x400921FB, 0x54442D18 */ #define pio2_hi 1.57079632679489655800e+00 /* 0x3FF921FB, 0x54442D18 */ #define pio2_lo 6.12323399573676603587e-17 /* 0x3C91A626, 0x33145C07 */ #define pS0 1.66666666666666657415e-01 /* 0x3FC55555, 0x55555555 */ #define pS1 -3.25565818622400915405e-01 /* 0xBFD4D612, 0x03EB6F7D */ #define pS2 2.01212532134862925881e-01 /* 0x3FC9C155, 0x0E884455 */ #define pS3 -4.00555345006794114027e-02 /* 0xBFA48228, 0xB5688F3B */ #define pS4 7.91534994289814532176e-04 /* 0x3F49EFE0, 0x7501B288 */ #define pS5 3.47933107596021167570e-05 /* 0x3F023DE1, 0x0DFDF709 */ #define qS1 -2.40339491173441421878e+00 /* 0xC0033A27, 0x1C8A2D4B */ #define qS2 2.02094576023350569471e+00 /* 0x40002AE5, 0x9C598AC8 */ #define qS3 -6.88283971605453293030e-01 /* 0xBFE6066C, 0x1B8D0159 */ #define qS4 7.70381505559019352791e-02 /* 0x3FB3B8C5, 0xB12E9282 */ double acos (double x) { double z, p, q, r, w, s, c; int hx, ix; hx = __HI (x); ix = hx & 0x7fffffff; if (ix >= 0x3ff00000) /* |x| >= 1 */ { if (((ix - 0x3ff00000) | __LO (x)) == 0) /* |x| == 1 */ { if (hx > 0) /* acos(1) = 0 */ { return 0.0; } else /* acos(-1) = pi */ { return pi + 2.0 * pio2_lo; } } return NAN; /* acos(|x|>1) is NaN */ } if (ix < 0x3fe00000) /* |x| < 0.5 */ { if (ix <= 0x3c600000) /* if |x| < 2**-57 */ { return pio2_hi + pio2_lo; } z = x * x; p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5))))); q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4))); r = p / q; return pio2_hi - (x - (pio2_lo - x * r)); } else if (hx < 0) /* x < -0.5 */ { z = (one + x) * 0.5; p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5))))); q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4))); s = sqrt (z); r = p / q; w = r * s - pio2_lo; return pi - 2.0 * (s + w); } else /* x > 0.5 */ { double_accessor df; z = (one - x) * 0.5; s = sqrt (z); df.dbl = s; df.as_int.lo = 0; c = (z - df.dbl * df.dbl) / (s + df.dbl); p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5))))); q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4))); r = p / q; w = r * s + c; return 2.0 * (df.dbl + w); } } /* acos */ #undef one #undef pi #undef pio2_hi #undef pio2_lo #undef pS0 #undef pS1 #undef pS2 #undef pS3 #undef pS4 #undef pS5 #undef qS1 #undef qS2 #undef qS3 #undef qS4