/* Copyright JS Foundation and other contributors, http://js.foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * This file is based on work under the following copyright and permission * notice: * * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * * @(#)e_asin.c 1.3 95/01/18 */ #include "jerry-libm-internal.h" /* asin(x) * * Method: * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... * we approximate asin(x) on [0,0.5] by * asin(x) = x + x*x^2*R(x^2) * where * R(x^2) is a rational approximation of (asin(x)-x)/x^3 * and its remez error is bounded by * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75) * * For x in [0.5,1] * asin(x) = pi/2-2*asin(sqrt((1-x)/2)) * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; * then for x>0.98 * asin(x) = pi/2 - 2*(s+s*z*R(z)) * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) * For x<=0.98, let pio4_hi = pio2_hi/2, then * f = hi part of s; * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z) * and * asin(x) = pi/2 - 2*(s+s*z*R(z)) * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) * * Special cases: * if x is NaN, return x itself; * if |x|>1, return NaN with invalid signal. */ #define one 1.00000000000000000000e+00 /* 0x3FF00000, 0x00000000 */ #define huge 1.000e+300 #define pio2_hi 1.57079632679489655800e+00 /* 0x3FF921FB, 0x54442D18 */ #define pio2_lo 6.12323399573676603587e-17 /* 0x3C91A626, 0x33145C07 */ #define pio4_hi 7.85398163397448278999e-01 /* 0x3FE921FB, 0x54442D18 */ /* coefficient for R(x^2) */ #define pS0 1.66666666666666657415e-01 /* 0x3FC55555, 0x55555555 */ #define pS1 -3.25565818622400915405e-01 /* 0xBFD4D612, 0x03EB6F7D */ #define pS2 2.01212532134862925881e-01 /* 0x3FC9C155, 0x0E884455 */ #define pS3 -4.00555345006794114027e-02 /* 0xBFA48228, 0xB5688F3B */ #define pS4 7.91534994289814532176e-04 /* 0x3F49EFE0, 0x7501B288 */ #define pS5 3.47933107596021167570e-05 /* 0x3F023DE1, 0x0DFDF709 */ #define qS1 -2.40339491173441421878e+00 /* 0xC0033A27, 0x1C8A2D4B */ #define qS2 2.02094576023350569471e+00 /* 0x40002AE5, 0x9C598AC8 */ #define qS3 -6.88283971605453293030e-01 /* 0xBFE6066C, 0x1B8D0159 */ #define qS4 7.70381505559019352791e-02 /* 0x3FB3B8C5, 0xB12E9282 */ double asin (double x) { double t, p, q, c, r, s; double_accessor w; int hx, ix; hx = __HI (x); ix = hx & 0x7fffffff; if (ix >= 0x3ff00000) /* |x| >= 1 */ { if (((ix - 0x3ff00000) | __LO (x)) == 0) /* asin(1) = +-pi/2 with inexact */ { return x * pio2_hi + x * pio2_lo; } return NAN; /* asin(|x|>1) is NaN */ } else if (ix < 0x3fe00000) /* |x| < 0.5 */ { if (ix < 0x3e400000) /* if |x| < 2**-27 */ { if (huge + x > one) /* return x with inexact if x != 0 */ { return x; } } t = x * x; p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5))))); q = one + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4))); w.dbl = p / q; return x + x * w.dbl; } /* 1 > |x| >= 0.5 */ w.dbl = one - fabs (x); t = w.dbl * 0.5; p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5))))); q = one + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4))); s = sqrt (t); if (ix >= 0x3FEF3333) /* if |x| > 0.975 */ { w.dbl = p / q; t = pio2_hi - (2.0 * (s + s * w.dbl) - pio2_lo); } else { w.dbl = s; w.as_int.lo = 0; c = (t - w.dbl * w.dbl) / (s + w.dbl); r = p / q; p = 2.0 * s * r - (pio2_lo - 2.0 * c); q = pio4_hi - 2.0 * w.dbl; t = pio4_hi - (p - q); } if (hx > 0) { return t; } else { return -t; } } /* asin */ #undef one #undef huge #undef pio2_hi #undef pio2_lo #undef pio4_hi #undef pS0 #undef pS1 #undef pS2 #undef pS3 #undef pS4 #undef pS5 #undef qS1 #undef qS2 #undef qS3 #undef qS4