/* Copyright JS Foundation and other contributors, http://js.foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * This file is based on work under the following copyright and permission * notice: * * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * * @(#)s_atan.c 1.3 95/01/18 */ #include "jerry-libm-internal.h" /* atan(x) * * Method: * 1. Reduce x to positive by atan(x) = -atan(-x). * 2. According to the integer k=4t+0.25 chopped, t=x, the argument * is further reduced to one of the following intervals and the * arctangent of t is evaluated by the corresponding formula: * * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) * [39/16,INF] atan(x) = atan(INF) + atan( -1/t ) * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ static const double atanhi[] = { 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */ 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */ 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */ 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */ }; static const double atanlo[] = { 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */ 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */ 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */ 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */ }; #define aT0 3.33333333333329318027e-01 /* 0x3FD55555, 0x5555550D */ #define aT1 -1.99999999998764832476e-01 /* 0xBFC99999, 0x9998EBC4 */ #define aT2 1.42857142725034663711e-01 /* 0x3FC24924, 0x920083FF */ #define aT3 -1.11111104054623557880e-01 /* 0xBFBC71C6, 0xFE231671 */ #define aT4 9.09088713343650656196e-02 /* 0x3FB745CD, 0xC54C206E */ #define aT5 -7.69187620504482999495e-02 /* 0xBFB3B0F2, 0xAF749A6D */ #define aT6 6.66107313738753120669e-02 /* 0x3FB10D66, 0xA0D03D51 */ #define aT7 -5.83357013379057348645e-02 /* 0xBFADDE2D, 0x52DEFD9A */ #define aT8 4.97687799461593236017e-02 /* 0x3FA97B4B, 0x24760DEB */ #define aT9 -3.65315727442169155270e-02 /* 0xBFA2B444, 0x2C6A6C2F */ #define aT10 1.62858201153657823623e-02 /* 0x3F90AD3A, 0xE322DA11 */ #define one 1.0 #define huge 1.0e300 double atan (double x) { double w, s1, s2, z; int ix, hx, id; hx = __HI (x); ix = hx & 0x7fffffff; if (ix >= 0x44100000) /* if |x| >= 2^66 */ { if (ix > 0x7ff00000 || (ix == 0x7ff00000 && (__LO (x) != 0))) { return x + x; /* NaN */ } if (hx > 0) { return atanhi[3] + atanlo[3]; } else { return -atanhi[3] - atanlo[3]; } } if (ix < 0x3fdc0000) /* |x| < 0.4375 */ { if (ix < 0x3e200000) /* |x| < 2^-29 */ { if (huge + x > one) /* raise inexact */ { return x; } } id = -1; } else { x = fabs (x); if (ix < 0x3ff30000) /* |x| < 1.1875 */ { if (ix < 0x3fe60000) /* 7/16 <= |x| < 11/16 */ { id = 0; x = (2.0 * x - one) / (2.0 + x); } else /* 11/16 <= |x| < 19/16 */ { id = 1; x = (x - one) / (x + one); } } else { if (ix < 0x40038000) /* |x| < 2.4375 */ { id = 2; x = (x - 1.5) / (one + 1.5 * x); } else /* 2.4375 <= |x| < 2^66 */ { id = 3; x = -1.0 / x; } } } /* end of argument reduction */ z = x * x; w = z * z; /* break sum from i=0 to 10 aT[i] z**(i+1) into odd and even poly */ s1 = z * (aT0 + w * (aT2 + w * (aT4 + w * (aT6 + w * (aT8 + w * aT10))))); s2 = w * (aT1 + w * (aT3 + w * (aT5 + w * (aT7 + w * aT9)))); if (id < 0) { return x - x * (s1 + s2); } else { z = atanhi[id] - ((x * (s1 + s2) - atanlo[id]) - x); return (hx < 0) ? -z : z; } } /* atan */ #undef aT0 #undef aT1 #undef aT2 #undef aT3 #undef aT4 #undef aT5 #undef aT6 #undef aT7 #undef aT8 #undef aT9 #undef aT10 #undef one #undef huge