/* Copyright JS Foundation and other contributors, http://js.foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * This file is based on work under the following copyright and permission * notice: * * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * * @(#)e_log.c 1.3 95/01/18 */ #include "jerry-libm-internal.h" /* log(x) * Return the logrithm of x * * Method : * 1. Argument Reduction: find k and f such that * x = 2^k * (1+f), * where sqrt(2)/2 < 1+f < sqrt(2) . * * 2. Approximation of log(1+f). * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) * = 2s + 2/3 s**3 + 2/5 s**5 + ....., * = 2s + s*R * We use a special Reme algorithm on [0,0.1716] to generate * a polynomial of degree 14 to approximate R The maximum error * of this polynomial approximation is bounded by 2**-58.45. In * other words, * 2 4 6 8 10 12 14 * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s * (the values of Lg1 to Lg7 are listed in the program) * and * | 2 14 | -58.45 * | Lg1*s +...+Lg7*s - R(z) | <= 2 * | | * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. * In order to guarantee error in log below 1ulp, we compute log * by * log(1+f) = f - s*(f - R) (if f is not too large) * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) * * 3. Finally, log(x) = k*ln2 + log(1+f). * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) * Here ln2 is split into two floating point number: * ln2_hi + ln2_lo, * where n*ln2_hi is always exact for |n| < 2000. * * Special cases: * log(x) is NaN with signal if x < 0 (including -INF) ; * log(+INF) is +INF; log(0) is -INF with signal; * log(NaN) is that NaN with no signal. * * Accuracy: * according to an error analysis, the error is always less than * 1 ulp (unit in the last place). * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ #define zero 0.0 #define ln2_hi 6.93147180369123816490e-01 /* 3fe62e42 fee00000 */ #define ln2_lo 1.90821492927058770002e-10 /* 3dea39ef 35793c76 */ #define two54 1.80143985094819840000e+16 /* 43500000 00000000 */ #define Lg1 6.666666666666735130e-01 /* 3FE55555 55555593 */ #define Lg2 3.999999999940941908e-01 /* 3FD99999 9997FA04 */ #define Lg3 2.857142874366239149e-01 /* 3FD24924 94229359 */ #define Lg4 2.222219843214978396e-01 /* 3FCC71C5 1D8E78AF */ #define Lg5 1.818357216161805012e-01 /* 3FC74664 96CB03DE */ #define Lg6 1.531383769920937332e-01 /* 3FC39A09 D078C69F */ #define Lg7 1.479819860511658591e-01 /* 3FC2F112 DF3E5244 */ double log (double x) { double hfsq, f, s, z, R, w, t1, t2, dk; int k, hx, i, j; unsigned lx; hx = __HI (x); /* high word of x */ lx = __LO (x); /* low word of x */ k = 0; if (hx < 0x00100000) /* x < 2**-1022 */ { if (((hx & 0x7fffffff) | lx) == 0) /* log(+-0) = -inf */ { return -two54 / zero; } if (hx < 0) /* log(-#) = NaN */ { return (x - x) / zero; } k -= 54; x *= two54; /* subnormal number, scale up x */ hx = __HI (x); /* high word of x */ } if (hx >= 0x7ff00000) { return x + x; } k += (hx >> 20) - 1023; hx &= 0x000fffff; i = (hx + 0x95f64) & 0x100000; double_accessor temp; temp.dbl = x; temp.as_int.hi = hx | (i ^ 0x3ff00000); /* normalize x or x / 2 */ k += (i >> 20); f = temp.dbl - 1.0; if ((0x000fffff & (2 + hx)) < 3) /* |f| < 2**-20 */ { if (f == zero) { if (k == 0) { return zero; } else { dk = (double) k; return dk * ln2_hi + dk * ln2_lo; } } R = f * f * (0.5 - 0.33333333333333333 * f); if (k == 0) { return f - R; } else { dk = (double) k; return dk * ln2_hi - ((R - dk * ln2_lo) - f); } } s = f / (2.0 + f); dk = (double) k; z = s * s; i = hx - 0x6147a; w = z * z; j = 0x6b851 - hx; t1 = w * (Lg2 + w * (Lg4 + w * Lg6)); t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7))); i |= j; R = t2 + t1; if (i > 0) { hfsq = 0.5 * f * f; if (k == 0) { return f - (hfsq - s * (hfsq + R)); } else { return dk * ln2_hi - ((hfsq - (s * (hfsq + R) + dk * ln2_lo)) - f); } } else { if (k == 0) { return f - s * (f - R); } else { return dk * ln2_hi - ((s * (f - R) - dk * ln2_lo) - f); } } } /* log */ #undef zero #undef ln2_hi #undef ln2_lo #undef two54 #undef Lg1 #undef Lg2 #undef Lg3 #undef Lg4 #undef Lg5 #undef Lg6 #undef Lg7