/* Copyright JS Foundation and other contributors, http://js.foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * This file is based on work under the following copyright and permission * notice: * * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. * * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * * @(#)e_pow.c 1.5 04/04/22 */ #include "jerry-libm-internal.h" /* pow(x,y) return x**y * * n * Method: Let x = 2 * (1+f) * 1. Compute and return log2(x) in two pieces: * log2(x) = w1 + w2, * where w1 has 53-24 = 29 bit trailing zeros. * 2. Perform y*log2(x) = n+y' by simulating muti-precision * arithmetic, where |y'|<=0.5. * 3. Return x**y = 2**n*exp(y'*log2) * * Special cases: * 0. +1 ** (anything) is 1 * 1. (anything) ** 0 is 1 * 2. (anything) ** 1 is itself * 3. (anything) ** NAN is NAN * 4. NAN ** (anything except 0) is NAN * 5. +-(|x| > 1) ** +INF is +INF * 6. +-(|x| > 1) ** -INF is +0 * 7. +-(|x| < 1) ** +INF is +0 * 8. +-(|x| < 1) ** -INF is +INF * 9. -1 ** +-INF is 1 * 10. +0 ** (+anything except 0, NAN) is +0 * 11. -0 ** (+anything except 0, NAN, odd integer) is +0 * 12. +0 ** (-anything except 0, NAN) is +INF * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF * 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) * 15. +INF ** (+anything except 0,NAN) is +INF * 16. +INF ** (-anything except 0,NAN) is +0 * 17. -INF ** (anything) = -0 ** (-anything) * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) * 19. (-anything except 0 and inf) ** (non-integer) is NAN * * Accuracy: * pow(x,y) returns x**y nearly rounded. In particular * pow(integer,integer) * always returns the correct integer provided it is * representable. * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ static const double bp[] = { 1.0, 1.5, }; static const double dp_h[] = { 0.0, 5.84962487220764160156e-01, /* 0x3FE2B803, 0x40000000 */ }; static const double dp_l[] = { 0.0, 1.35003920212974897128e-08, /* 0x3E4CFDEB, 0x43CFD006 */ }; #define zero 0.0 #define one 1.0 #define two 2.0 #define two53 9007199254740992.0 /* 0x43400000, 0x00000000 */ #define huge 1.0e300 #define tiny 1.0e-300 /* poly coefs for (3/2) * (log(x) - 2s - 2/3 * s**3 */ #define L1 5.99999999999994648725e-01 /* 0x3FE33333, 0x33333303 */ #define L2 4.28571428578550184252e-01 /* 0x3FDB6DB6, 0xDB6FABFF */ #define L3 3.33333329818377432918e-01 /* 0x3FD55555, 0x518F264D */ #define L4 2.72728123808534006489e-01 /* 0x3FD17460, 0xA91D4101 */ #define L5 2.30660745775561754067e-01 /* 0x3FCD864A, 0x93C9DB65 */ #define L6 2.06975017800338417784e-01 /* 0x3FCA7E28, 0x4A454EEF */ #define P1 1.66666666666666019037e-01 /* 0x3FC55555, 0x5555553E */ #define P2 -2.77777777770155933842e-03 /* 0xBF66C16C, 0x16BEBD93 */ #define P3 6.61375632143793436117e-05 /* 0x3F11566A, 0xAF25DE2C */ #define P4 -1.65339022054652515390e-06 /* 0xBEBBBD41, 0xC5D26BF1 */ #define P5 4.13813679705723846039e-08 /* 0x3E663769, 0x72BEA4D0 */ #define lg2 6.93147180559945286227e-01 /* 0x3FE62E42, 0xFEFA39EF */ #define lg2_h 6.93147182464599609375e-01 /* 0x3FE62E43, 0x00000000 */ #define lg2_l -1.90465429995776804525e-09 /* 0xBE205C61, 0x0CA86C39 */ #define ovt 8.0085662595372944372e-0017 /* -(1024-log2(ovfl+.5ulp)) */ #define cp 9.61796693925975554329e-01 /* 0x3FEEC709, 0xDC3A03FD = 2 / (3 ln2) */ #define cp_h 9.61796700954437255859e-01 /* 0x3FEEC709, 0xE0000000 = (float) cp */ #define cp_l -7.02846165095275826516e-09 /* 0xBE3E2FE0, 0x145B01F5 = tail of cp_h */ #define ivln2 1.44269504088896338700e+00 /* 0x3FF71547, 0x652B82FE = 1 / ln2 */ #define ivln2_h 1.44269502162933349609e+00 /* 0x3FF71547, 0x60000000 = 24b 1 / ln2 */ #define ivln2_l 1.92596299112661746887e-08 /* 0x3E54AE0B, 0xF85DDF44 = 1 / ln2 tail */ double pow (double x, double y) { double_accessor t1, ax, p_h, y1, t, z; double z_h, z_l, p_l; double t2, r, s, u, v, w; int i, j, k, yisint, n; int hx, hy, ix, iy; unsigned lx, ly; hx = __HI (x); lx = __LO (x); hy = __HI (y); ly = __LO (y); ix = hx & 0x7fffffff; iy = hy & 0x7fffffff; /* x == one: 1**y = 1 */ if (((hx - 0x3ff00000) | lx) == 0) { return one; } /* y == zero: x**0 = 1 */ if ((iy | ly) == 0) { return one; } /* +-NaN return x + y */ if (ix > 0x7ff00000 || ((ix == 0x7ff00000) && (lx != 0)) || iy > 0x7ff00000 || ((iy == 0x7ff00000) && (ly != 0))) { return x + y; } /* determine if y is an odd int when x < 0 * yisint = 0 ... y is not an integer * yisint = 1 ... y is an odd int * yisint = 2 ... y is an even int */ yisint = 0; if (hx < 0) { if (iy >= 0x43400000) /* even integer y */ { yisint = 2; } else if (iy >= 0x3ff00000) { k = (iy >> 20) - 0x3ff; /* exponent */ if (k > 20) { j = ly >> (52 - k); if ((j << (52 - k)) == ly) { yisint = 2 - (j & 1); } } else if (ly == 0) { j = iy >> (20 - k); if ((j << (20 - k)) == iy) { yisint = 2 - (j & 1); } } } } /* special value of y */ if (ly == 0) { if (iy == 0x7ff00000) /* y is +-inf */ { if (((ix - 0x3ff00000) | lx) == 0) /* +-1**+-inf is 1 */ { return one; } else if (ix >= 0x3ff00000) /* (|x|>1)**+-inf = inf,0 */ { return (hy >= 0) ? y : zero; } else /* (|x|<1)**-,+inf = inf,0 */ { return (hy < 0) ? -y : zero; } } if (iy == 0x3ff00000) /* y is +-1 */ { if (hy < 0) { return one / x; } else { return x; } } if (hy == 0x40000000) /* y is 2 */ { return x * x; } if (hy == 0x3fe00000) /* y is 0.5 */ { if (hx >= 0) /* x >= +0 */ { return sqrt (x); } } } ax.dbl = fabs (x); /* special value of x */ if (lx == 0) { if (ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000) { z.dbl = ax.dbl; /* x is +-0,+-inf,+-1 */ if (hy < 0) { z.dbl = one / z.dbl; /* z = (1 / |x|) */ } if (hx < 0) { if (((ix - 0x3ff00000) | yisint) == 0) { z.dbl = NAN; /* (-1)**non-int is NaN */ } else if (yisint == 1) { z.dbl = -z.dbl; /* (x<0)**odd = -(|x|**odd) */ } } return z.dbl; } } n = (hx < 0) ? 0 : 1; /* (x<0)**(non-int) is NaN */ if ((n | yisint) == 0) { return NAN; } s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ if ((n | (yisint - 1)) == 0) { s = -one; /* (-ve)**(odd int) */ } /* |y| is huge */ if (iy > 0x41e00000) /* if |y| > 2**31 */ { if (iy > 0x43f00000) /* if |y| > 2**64, must o/uflow */ { if (ix <= 0x3fefffff) { return (hy < 0) ? huge * huge : tiny * tiny; } if (ix >= 0x3ff00000) { return (hy > 0) ? huge * huge : tiny * tiny; } } /* over/underflow if x is not close to one */ if (ix < 0x3fefffff) { return (hy < 0) ? s * huge * huge : s * tiny * tiny; } if (ix > 0x3ff00000) { return (hy > 0) ? s * huge * huge : s * tiny * tiny; } /* now |1 - x| is tiny <= 2**-20, suffice to compute log(x) by x - x^2 / 2 + x^3 / 3 - x^4 / 4 */ t.dbl = ax.dbl - one; /* t has 20 trailing zeros */ w = (t.dbl * t.dbl) * (0.5 - t.dbl * (0.3333333333333333333333 - t.dbl * 0.25)); u = ivln2_h * t.dbl; /* ivln2_h has 21 sig. bits */ v = t.dbl * ivln2_l - w * ivln2; t1.dbl = u + v; t1.as_int.lo = 0; t2 = v - (t1.dbl - u); } else { double_accessor s_h, t_h; double ss, s2, s_l, t_l; n = 0; /* take care subnormal number */ if (ix < 0x00100000) { ax.dbl *= two53; n -= 53; ix = ax.as_int.hi; } n += ((ix) >> 20) - 0x3ff; j = ix & 0x000fffff; /* determine interval */ ix = j | 0x3ff00000; /* normalize ix */ if (j <= 0x3988E) /* |x| < sqrt(3/2) */ { k = 0; } else if (j < 0xBB67A) /* |x| < sqrt(3) */ { k = 1; } else { k = 0; n += 1; ix -= 0x00100000; } ax.as_int.hi = ix; /* compute ss = s_h + s_l = (x - 1) / (x + 1) or (x - 1.5) / (x + 1.5) */ u = ax.dbl - bp[k]; /* bp[0] = 1.0, bp[1] = 1.5 */ v = one / (ax.dbl + bp[k]); ss = u * v; s_h.dbl = ss; s_h.as_int.lo = 0; /* t_h = ax + bp[k] High */ t_h.dbl = zero; t_h.as_int.hi = ((ix >> 1) | 0x20000000) + 0x00080000 + (k << 18); t_l = ax.dbl - (t_h.dbl - bp[k]); s_l = v * ((u - s_h.dbl * t_h.dbl) - s_h.dbl * t_l); /* compute log(ax) */ s2 = ss * ss; r = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6))))); r += s_l * (s_h.dbl + ss); s2 = s_h.dbl * s_h.dbl; t_h.dbl = 3.0 + s2 + r; t_h.as_int.lo = 0; t_l = r - ((t_h.dbl - 3.0) - s2); /* u + v = ss * (1 + ...) */ u = s_h.dbl * t_h.dbl; v = s_l * t_h.dbl + t_l * ss; /* 2 / (3 * log2) * (ss + ...) */ p_h.dbl = u + v; p_h.as_int.lo = 0; p_l = v - (p_h.dbl - u); z_h = cp_h * p_h.dbl; /* cp_h + cp_l = 2 / (3 * log2) */ z_l = cp_l * p_h.dbl + p_l * cp + dp_l[k]; /* log2(ax) = (ss + ...) * 2 / (3 * log2) = n + dp_h + z_h + z_l */ t.dbl = (double) n; t1.dbl = (((z_h + z_l) + dp_h[k]) + t.dbl); t1.as_int.lo = 0; t2 = z_l - (((t1.dbl - t.dbl) - dp_h[k]) - z_h); } /* split up y into y1 + y2 and compute (y1 + y2) * (t1 + t2) */ y1.dbl = y; y1.as_int.lo = 0; p_l = (y - y1.dbl) * t1.dbl + y * t2; p_h.dbl = y1.dbl * t1.dbl; z.dbl = p_l + p_h.dbl; j = z.as_int.hi; i = z.as_int.lo; if (j >= 0x40900000) /* z >= 1024 */ { if (((j - 0x40900000) | i) != 0) /* if z > 1024 */ { return s * huge * huge; /* overflow */ } else { if (p_l + ovt > z.dbl - p_h.dbl) { return s * huge * huge; /* overflow */ } } } else if ((j & 0x7fffffff) >= 0x4090cc00) /* z <= -1075 */ { if (((j - 0xc090cc00) | i) != 0) /* z < -1075 */ { return s * tiny * tiny; /* underflow */ } else { if (p_l <= z.dbl - p_h.dbl) { return s * tiny * tiny; /* underflow */ } } } /* * compute 2**(p_h + p_l) */ i = j & 0x7fffffff; k = (i >> 20) - 0x3ff; n = 0; if (i > 0x3fe00000) /* if |z| > 0.5, set n = [z + 0.5] */ { n = j + (0x00100000 >> (k + 1)); k = ((n & 0x7fffffff) >> 20) - 0x3ff; /* new k for n */ t.dbl = zero; t.as_int.hi = (n & ~(0x000fffff >> k)); n = ((n & 0x000fffff) | 0x00100000) >> (20 - k); if (j < 0) { n = -n; } p_h.dbl -= t.dbl; } t.dbl = p_l + p_h.dbl; t.as_int.lo = 0; u = t.dbl * lg2_h; v = (p_l - (t.dbl - p_h.dbl)) * lg2 + t.dbl * lg2_l; z.dbl = u + v; w = v - (z.dbl - u); t.dbl = z.dbl * z.dbl; t1.dbl = z.dbl - t.dbl * (P1 + t.dbl * (P2 + t.dbl * (P3 + t.dbl * (P4 + t.dbl * P5)))); r = (z.dbl * t1.dbl) / (t1.dbl - two) - (w + z.dbl * w); z.dbl = one - (r - z.dbl); j = z.as_int.hi; j += (n << 20); if ((j >> 20) <= 0) /* subnormal output */ { z.dbl = scalbn (z.dbl, n); } else { z.as_int.hi += (n << 20); } return s * z.dbl; } /* pow */ #undef zero #undef one #undef two #undef two53 #undef huge #undef tiny #undef L1 #undef L2 #undef L3 #undef L4 #undef L5 #undef L6 #undef P1 #undef P2 #undef P3 #undef P4 #undef P5 #undef lg2 #undef lg2_h #undef lg2_l #undef ovt #undef cp #undef cp_h #undef cp_l #undef ivln2 #undef ivln2_h #undef ivln2_l