// Copyright (C) 2006 Google Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Author: Jim Meehan #include #include #include #include #include "phonenumbers/default_logger.h" #include "phonenumbers/utf/unicodetext.h" #include "phonenumbers/utf/stringpiece.h" #include "phonenumbers/utf/utf.h" #include "phonenumbers/utf/unilib.h" namespace i18n { namespace phonenumbers { using std::string; using std::stringstream; using std::max; using std::hex; using std::dec; static int CodepointDistance(const char* start, const char* end) { int n = 0; // Increment n on every non-trail-byte. for (const char* p = start; p < end; ++p) { n += (*reinterpret_cast(p) >= -0x40); } return n; } static int CodepointCount(const char* utf8, int len) { return CodepointDistance(utf8, utf8 + len); } UnicodeText::const_iterator::difference_type distance(const UnicodeText::const_iterator& first, const UnicodeText::const_iterator& last) { return CodepointDistance(first.it_, last.it_); } // ---------- Utility ---------- static int ConvertToInterchangeValid(char* start, int len) { // This routine is called only when we've discovered that a UTF-8 buffer // that was passed to CopyUTF8, TakeOwnershipOfUTF8, or PointToUTF8 // was not interchange valid. This indicates a bug in the caller, and // a LOG(WARNING) is done in that case. // This is similar to CoerceToInterchangeValid, but it replaces each // structurally valid byte with a space, and each non-interchange // character with a space, even when that character requires more // than one byte in UTF8. E.g., "\xEF\xB7\x90" (U+FDD0) is // structurally valid UTF8, but U+FDD0 is not an interchange-valid // code point. The result should contain one space, not three. // // Since the conversion never needs to write more data than it // reads, it is safe to change the buffer in place. It returns the // number of bytes written. char* const in = start; char* out = start; char* const end = start + len; while (start < end) { int good = UniLib::SpanInterchangeValid(start, static_cast(end - start)); if (good > 0) { if (out != start) { memmove(out, start, good); } out += good; start += good; if (start == end) { break; } } // Is the current string invalid UTF8 or just non-interchange UTF8? Rune rune; int n; if (isvalidcharntorune(start, static_cast(end - start), &rune, &n)) { // structurally valid UTF8, but not interchange valid start += n; // Skip over the whole character. } else { // bad UTF8 start += 1; // Skip over just one byte } *out++ = ' '; } return static_cast(out - in); } // *************** Data representation ********** // Note: the copy constructor is undefined. // After reserve(), resize(), or clear(), we're an owner, not an alias. void UnicodeText::Repr::reserve(int new_capacity) { // If there's already enough capacity, and we're an owner, do nothing. if (capacity_ >= new_capacity && ours_) return; // Otherwise, allocate a new buffer. capacity_ = max(new_capacity, (3 * capacity_) / 2 + 20); char* new_data = new char[capacity_]; // If there is an old buffer, copy it into the new buffer. if (data_) { memcpy(new_data, data_, size_); if (ours_) delete[] data_; // If we owned the old buffer, free it. } data_ = new_data; ours_ = true; // We own the new buffer. // size_ is unchanged. } void UnicodeText::Repr::resize(int new_size) { if (new_size == 0) { clear(); } else { if (!ours_ || new_size > capacity_) reserve(new_size); // Clear the memory in the expanded part. if (size_ < new_size) memset(data_ + size_, 0, new_size - size_); size_ = new_size; ours_ = true; } } // This implementation of clear() deallocates the buffer if we're an owner. // That's not strictly necessary; we could just set size_ to 0. void UnicodeText::Repr::clear() { if (ours_) delete[] data_; data_ = NULL; size_ = capacity_ = 0; ours_ = true; } void UnicodeText::Repr::Copy(const char* data, int size) { resize(size); memcpy(data_, data, size); } void UnicodeText::Repr::TakeOwnershipOf(char* data, int size, int capacity) { if (data == data_) return; // We already own this memory. (Weird case.) if (ours_ && data_) delete[] data_; // If we owned the old buffer, free it. data_ = data; size_ = size; capacity_ = capacity; ours_ = true; } void UnicodeText::Repr::PointTo(const char* data, int size) { if (ours_ && data_) delete[] data_; // If we owned the old buffer, free it. data_ = const_cast(data); size_ = size; capacity_ = size; ours_ = false; } void UnicodeText::Repr::append(const char* bytes, int byte_length) { reserve(size_ + byte_length); memcpy(data_ + size_, bytes, byte_length); size_ += byte_length; } string UnicodeText::Repr::DebugString() const { stringstream ss; ss << "{Repr " << hex << this << " data=" << data_ << " size=" << dec << size_ << " capacity=" << capacity_ << " " << (ours_ ? "Owned" : "Alias") << "}"; string result; ss >> result; return result; } // *************** UnicodeText ****************** // ----- Constructors ----- // Default constructor UnicodeText::UnicodeText() { } // Copy constructor UnicodeText::UnicodeText(const UnicodeText& src) { Copy(src); } // Substring constructor UnicodeText::UnicodeText(const UnicodeText::const_iterator& first, const UnicodeText::const_iterator& last) { assert(first <= last && "Incompatible iterators"); repr_.append(first.it_, static_cast(last.it_ - first.it_)); } string UnicodeText::UTF8Substring(const const_iterator& first, const const_iterator& last) { assert(first <= last && "Incompatible iterators"); return string(first.it_, last.it_ - first.it_); } // ----- Copy ----- UnicodeText& UnicodeText::operator=(const UnicodeText& src) { if (this != &src) { Copy(src); } return *this; } UnicodeText& UnicodeText::Copy(const UnicodeText& src) { repr_.Copy(src.repr_.data_, src.repr_.size_); return *this; } UnicodeText& UnicodeText::CopyUTF8(const char* buffer, int byte_length) { repr_.Copy(buffer, byte_length); repr_.utf8_was_valid_ = UniLib:: IsInterchangeValid(buffer, byte_length); if (!repr_.utf8_was_valid_) { LOG(WARNING) << "UTF-8 buffer is not interchange-valid."; repr_.size_ = ConvertToInterchangeValid(repr_.data_, byte_length); } return *this; } UnicodeText& UnicodeText::UnsafeCopyUTF8(const char* buffer, int byte_length) { repr_.Copy(buffer, byte_length); return *this; } // ----- TakeOwnershipOf ----- UnicodeText& UnicodeText::TakeOwnershipOfUTF8(char* buffer, int byte_length, int byte_capacity) { repr_.TakeOwnershipOf(buffer, byte_length, byte_capacity); repr_.utf8_was_valid_ = UniLib:: IsInterchangeValid(buffer, byte_length); if (!repr_.utf8_was_valid_) { LOG(WARNING) << "UTF-8 buffer is not interchange-valid."; repr_.size_ = ConvertToInterchangeValid(repr_.data_, byte_length); } return *this; } UnicodeText& UnicodeText::UnsafeTakeOwnershipOfUTF8(char* buffer, int byte_length, int byte_capacity) { repr_.TakeOwnershipOf(buffer, byte_length, byte_capacity); return *this; } // ----- PointTo ----- UnicodeText& UnicodeText::PointToUTF8(const char* buffer, int byte_length) { repr_.utf8_was_valid_ = UniLib:: IsInterchangeValid(buffer, byte_length); if (repr_.utf8_was_valid_) { repr_.PointTo(buffer, byte_length); } else { LOG(WARNING) << "UTF-8 buffer is not interchange-valid."; repr_.Copy(buffer, byte_length); repr_.size_ = ConvertToInterchangeValid(repr_.data_, byte_length); } return *this; } UnicodeText& UnicodeText::UnsafePointToUTF8(const char* buffer, int byte_length) { repr_.PointTo(buffer, byte_length); return *this; } UnicodeText& UnicodeText::PointTo(const UnicodeText& src) { repr_.PointTo(src.repr_.data_, src.repr_.size_); return *this; } UnicodeText& UnicodeText::PointTo(const const_iterator &first, const const_iterator &last) { assert(first <= last && " Incompatible iterators"); repr_.PointTo(first.utf8_data(), static_cast(last.utf8_data() - first.utf8_data())); return *this; } // ----- Append ----- UnicodeText& UnicodeText::append(const UnicodeText& u) { repr_.append(u.repr_.data_, u.repr_.size_); return *this; } UnicodeText& UnicodeText::append(const const_iterator& first, const const_iterator& last) { assert(first <= last && "Incompatible iterators"); repr_.append(first.it_, static_cast(last.it_ - first.it_)); return *this; } UnicodeText& UnicodeText::UnsafeAppendUTF8(const char* utf8, int len) { repr_.append(utf8, len); return *this; } // ----- substring searching ----- UnicodeText::const_iterator UnicodeText::find(const UnicodeText& look, const_iterator start_pos) const { assert(start_pos.utf8_data() >= utf8_data()); assert(start_pos.utf8_data() <= utf8_data() + utf8_length()); return UnsafeFind(look, start_pos); } UnicodeText::const_iterator UnicodeText::find(const UnicodeText& look) const { return UnsafeFind(look, begin()); } UnicodeText::const_iterator UnicodeText::UnsafeFind( const UnicodeText& look, const_iterator start_pos) const { // Due to the magic of the UTF8 encoding, searching for a sequence of // letters is equivalent to substring search. StringPiece searching(utf8_data(), utf8_length()); StringPiece look_piece(look.utf8_data(), look.utf8_length()); StringPiece::size_type found = searching.find(look_piece, start_pos.utf8_data() - utf8_data()); if (found == StringPiece::npos) return end(); return const_iterator(utf8_data() + found); } bool UnicodeText::HasReplacementChar() const { // Equivalent to: // UnicodeText replacement_char; // replacement_char.push_back(0xFFFD); // return find(replacement_char) != end(); StringPiece searching(utf8_data(), utf8_length()); StringPiece looking_for("\xEF\xBF\xBD", 3); return searching.find(looking_for) != StringPiece::npos; } // ----- other methods ----- // Clear operator void UnicodeText::clear() { repr_.clear(); } // Destructor UnicodeText::~UnicodeText() {} void UnicodeText::push_back(char32 c) { if (UniLib::IsValidCodepoint(c)) { char buf[UTFmax]; Rune rune = c; int len = runetochar(buf, &rune); if (UniLib::IsInterchangeValid(buf, len)) { repr_.append(buf, len); } else { fprintf(stderr, "Unicode value 0x%x is not valid for interchange\n", c); repr_.append(" ", 1); } } else { fprintf(stderr, "Illegal Unicode value: 0x%x\n", c); repr_.append(" ", 1); } } int UnicodeText::size() const { return CodepointCount(repr_.data_, repr_.size_); } bool operator==(const UnicodeText& lhs, const UnicodeText& rhs) { if (&lhs == &rhs) return true; if (lhs.repr_.size_ != rhs.repr_.size_) return false; return memcmp(lhs.repr_.data_, rhs.repr_.data_, lhs.repr_.size_) == 0; } string UnicodeText::DebugString() const { stringstream ss; ss << "{UnicodeText " << hex << this << dec << " chars=" << size() << " repr=" << repr_.DebugString() << "}"; #if 0 return StringPrintf("{UnicodeText %p chars=%d repr=%s}", this, size(), repr_.DebugString().c_str()); #endif string result; ss >> result; return result; } // ******************* UnicodeText::const_iterator ********************* // The implementation of const_iterator would be nicer if it // inherited from boost::iterator_facade // (http://boost.org/libs/iterator/doc/iterator_facade.html). UnicodeText::const_iterator::const_iterator() : it_(0) {} UnicodeText::const_iterator::const_iterator(const const_iterator& other) : it_(other.it_) { } UnicodeText::const_iterator& UnicodeText::const_iterator::operator=(const const_iterator& other) { if (&other != this) it_ = other.it_; return *this; } UnicodeText::const_iterator UnicodeText::begin() const { return const_iterator(repr_.data_); } UnicodeText::const_iterator UnicodeText::end() const { return const_iterator(repr_.data_ + repr_.size_); } bool operator<(const UnicodeText::const_iterator& lhs, const UnicodeText::const_iterator& rhs) { return lhs.it_ < rhs.it_; } char32 UnicodeText::const_iterator::operator*() const { // (We could call chartorune here, but that does some // error-checking, and we're guaranteed that our data is valid // UTF-8. Also, we expect this routine to be called very often. So // for speed, we do the calculation ourselves.) // Convert from UTF-8 uint8 byte1 = static_cast(it_[0]); if (byte1 < 0x80) return byte1; uint8 byte2 = static_cast(it_[1]); if (byte1 < 0xE0) return ((byte1 & 0x1F) << 6) | (byte2 & 0x3F); uint8 byte3 = static_cast(it_[2]); if (byte1 < 0xF0) return ((byte1 & 0x0F) << 12) | ((byte2 & 0x3F) << 6) | (byte3 & 0x3F); uint8 byte4 = static_cast(it_[3]); return ((byte1 & 0x07) << 18) | ((byte2 & 0x3F) << 12) | ((byte3 & 0x3F) << 6) | (byte4 & 0x3F); } UnicodeText::const_iterator& UnicodeText::const_iterator::operator++() { it_ += UniLib::OneCharLen(it_); return *this; } UnicodeText::const_iterator& UnicodeText::const_iterator::operator--() { while (UniLib::IsTrailByte(*--it_)) { } return *this; } int UnicodeText::const_iterator::get_utf8(char* utf8_output) const { utf8_output[0] = it_[0]; if (static_cast(it_[0]) < 0x80) return 1; utf8_output[1] = it_[1]; if (static_cast(it_[0]) < 0xE0) return 2; utf8_output[2] = it_[2]; if (static_cast(it_[0]) < 0xF0) return 3; utf8_output[3] = it_[3]; return 4; } UnicodeText::const_iterator UnicodeText::MakeIterator(const char* p) const { #ifndef NDEBUG assert(p != NULL); const char* start = utf8_data(); int len = utf8_length(); const char* end = start + len; assert(p >= start); assert(p <= end); assert(p == end || !UniLib::IsTrailByte(*p)); #endif return const_iterator(p); } string UnicodeText::const_iterator::DebugString() const { stringstream ss; ss << "{iter " << hex << it_ << "}"; string result; ss >> result; return result; } } // namespace phonenumbers } // namespace i18n