/* * This source code is a product of Sun Microsystems, Inc. and is provided * for unrestricted use. Users may copy or modify this source code without * charge. * * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. * * Sun source code is provided with no support and without any obligation on * the part of Sun Microsystems, Inc. to assist in its use, correction, * modification or enhancement. * * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE * OR ANY PART THEREOF. * * In no event will Sun Microsystems, Inc. be liable for any lost revenue * or profits or other special, indirect and consequential damages, even if * Sun has been advised of the possibility of such damages. * * Sun Microsystems, Inc. * 2550 Garcia Avenue * Mountain View, California 94043 */ /* * g72x.c * * Common routines for G.721 and G.723 conversions. */ #include #include #include #include "g72x.h" #include "g72x_priv.h" static G72x_STATE * g72x_state_new (void) ; static int unpack_bytes (int bits, int blocksize, const unsigned char * block, short * samples) ; static int pack_bytes (int bits, const short * samples, unsigned char * block) ; static short power2 [15] = { 1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80, 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000 } ; /* * quan () * * quantizes the input val against the table of size short integers. * It returns i if table [i - 1] <= val < table [i]. * * Using linear search for simple coding. */ static int quan (int val, short *table, int size) { int i ; for (i = 0 ; i < size ; i++) if (val < *table++) break ; return i ; } /* * fmult () * * returns the integer product of the 14-bit integer "an" and * "floating point" representation (4-bit exponent, 6-bit mantessa) "srn". */ static int fmult (int an, int srn) { short anmag, anexp, anmant ; short wanexp, wanmant ; short retval ; anmag = (an > 0) ? an : ((-an) & 0x1FFF) ; anexp = quan (anmag, power2, 15) - 6 ; anmant = (anmag == 0) ? 32 : (anexp >= 0) ? anmag >> anexp : anmag << -anexp ; wanexp = anexp + ((srn >> 6) & 0xF) - 13 ; /* ** The original was : ** wanmant = (anmant * (srn & 0x3F) + 0x30) >> 4 ; ** but could see no valid reason for the + 0x30. ** Removed it and it improved the SNR of the codec. */ wanmant = (anmant * (srn & 0x3F)) >> 4 ; retval = (wanexp >= 0) ? ((wanmant << wanexp) & 0x7FFF) : (wanmant >> -wanexp) ; return (((an ^ srn) < 0) ? -retval : retval) ; } static G72x_STATE * g72x_state_new (void) { return calloc (1, sizeof (G72x_STATE)) ; } /* * private_init_state () * * This routine initializes and/or resets the G72x_PRIVATE structure * pointed to by 'state_ptr'. * All the initial state values are specified in the CCITT G.721 document. */ void private_init_state (G72x_STATE *state_ptr) { int cnta ; state_ptr->yl = 34816 ; state_ptr->yu = 544 ; state_ptr->dms = 0 ; state_ptr->dml = 0 ; state_ptr->ap = 0 ; for (cnta = 0 ; cnta < 2 ; cnta++) { state_ptr->a [cnta] = 0 ; state_ptr->pk [cnta] = 0 ; state_ptr->sr [cnta] = 32 ; } for (cnta = 0 ; cnta < 6 ; cnta++) { state_ptr->b [cnta] = 0 ; state_ptr->dq [cnta] = 32 ; } state_ptr->td = 0 ; } /* private_init_state */ struct g72x_state * g72x_reader_init (int codec, int *blocksize, int *samplesperblock) { G72x_STATE *pstate ; if ((pstate = g72x_state_new ()) == NULL) return NULL ; private_init_state (pstate) ; pstate->encoder = NULL ; switch (codec) { case G723_16_BITS_PER_SAMPLE : /* 2 bits per sample. */ pstate->decoder = g723_16_decoder ; *blocksize = G723_16_BYTES_PER_BLOCK ; *samplesperblock = G723_16_SAMPLES_PER_BLOCK ; pstate->codec_bits = 2 ; pstate->blocksize = G723_16_BYTES_PER_BLOCK ; pstate->samplesperblock = G723_16_SAMPLES_PER_BLOCK ; break ; case G723_24_BITS_PER_SAMPLE : /* 3 bits per sample. */ pstate->decoder = g723_24_decoder ; *blocksize = G723_24_BYTES_PER_BLOCK ; *samplesperblock = G723_24_SAMPLES_PER_BLOCK ; pstate->codec_bits = 3 ; pstate->blocksize = G723_24_BYTES_PER_BLOCK ; pstate->samplesperblock = G723_24_SAMPLES_PER_BLOCK ; break ; case G721_32_BITS_PER_SAMPLE : /* 4 bits per sample. */ pstate->decoder = g721_decoder ; *blocksize = G721_32_BYTES_PER_BLOCK ; *samplesperblock = G721_32_SAMPLES_PER_BLOCK ; pstate->codec_bits = 4 ; pstate->blocksize = G721_32_BYTES_PER_BLOCK ; pstate->samplesperblock = G721_32_SAMPLES_PER_BLOCK ; break ; case G721_40_BITS_PER_SAMPLE : /* 5 bits per sample. */ pstate->decoder = g723_40_decoder ; *blocksize = G721_40_BYTES_PER_BLOCK ; *samplesperblock = G721_40_SAMPLES_PER_BLOCK ; pstate->codec_bits = 5 ; pstate->blocksize = G721_40_BYTES_PER_BLOCK ; pstate->samplesperblock = G721_40_SAMPLES_PER_BLOCK ; break ; default : free (pstate) ; return NULL ; } ; return pstate ; } /* g72x_reader_init */ struct g72x_state * g72x_writer_init (int codec, int *blocksize, int *samplesperblock) { G72x_STATE *pstate ; if ((pstate = g72x_state_new ()) == NULL) return NULL ; private_init_state (pstate) ; pstate->decoder = NULL ; switch (codec) { case G723_16_BITS_PER_SAMPLE : /* 2 bits per sample. */ pstate->encoder = g723_16_encoder ; *blocksize = G723_16_BYTES_PER_BLOCK ; *samplesperblock = G723_16_SAMPLES_PER_BLOCK ; pstate->codec_bits = 2 ; pstate->blocksize = G723_16_BYTES_PER_BLOCK ; pstate->samplesperblock = G723_16_SAMPLES_PER_BLOCK ; break ; case G723_24_BITS_PER_SAMPLE : /* 3 bits per sample. */ pstate->encoder = g723_24_encoder ; *blocksize = G723_24_BYTES_PER_BLOCK ; *samplesperblock = G723_24_SAMPLES_PER_BLOCK ; pstate->codec_bits = 3 ; pstate->blocksize = G723_24_BYTES_PER_BLOCK ; pstate->samplesperblock = G723_24_SAMPLES_PER_BLOCK ; break ; case G721_32_BITS_PER_SAMPLE : /* 4 bits per sample. */ pstate->encoder = g721_encoder ; *blocksize = G721_32_BYTES_PER_BLOCK ; *samplesperblock = G721_32_SAMPLES_PER_BLOCK ; pstate->codec_bits = 4 ; pstate->blocksize = G721_32_BYTES_PER_BLOCK ; pstate->samplesperblock = G721_32_SAMPLES_PER_BLOCK ; break ; case G721_40_BITS_PER_SAMPLE : /* 5 bits per sample. */ pstate->encoder = g723_40_encoder ; *blocksize = G721_40_BYTES_PER_BLOCK ; *samplesperblock = G721_40_SAMPLES_PER_BLOCK ; pstate->codec_bits = 5 ; pstate->blocksize = G721_40_BYTES_PER_BLOCK ; pstate->samplesperblock = G721_40_SAMPLES_PER_BLOCK ; break ; default : free (pstate) ; return NULL ; } ; return pstate ; } /* g72x_writer_init */ int g72x_decode_block (G72x_STATE *pstate, const unsigned char *block, short *samples) { int k, count ; count = unpack_bytes (pstate->codec_bits, pstate->blocksize, block, samples) ; for (k = 0 ; k < count ; k++) samples [k] = pstate->decoder (samples [k], pstate) ; return 0 ; } /* g72x_decode_block */ int g72x_encode_block (G72x_STATE *pstate, short *samples, unsigned char *block) { int k, count ; for (k = 0 ; k < pstate->samplesperblock ; k++) samples [k] = pstate->encoder (samples [k], pstate) ; count = pack_bytes (pstate->codec_bits, samples, block) ; return count ; } /* g72x_encode_block */ /* * predictor_zero () * * computes the estimated signal from 6-zero predictor. * */ int predictor_zero (G72x_STATE *state_ptr) { int i ; int sezi ; sezi = fmult (state_ptr->b [0] >> 2, state_ptr->dq [0]) ; for (i = 1 ; i < 6 ; i++) /* ACCUM */ sezi += fmult (state_ptr->b [i] >> 2, state_ptr->dq [i]) ; return sezi ; } /* * predictor_pole () * * computes the estimated signal from 2-pole predictor. * */ int predictor_pole (G72x_STATE *state_ptr) { return (fmult (state_ptr->a [1] >> 2, state_ptr->sr [1]) + fmult (state_ptr->a [0] >> 2, state_ptr->sr [0])) ; } /* * step_size () * * computes the quantization step size of the adaptive quantizer. * */ int step_size (G72x_STATE *state_ptr) { int y ; int dif ; int al ; if (state_ptr->ap >= 256) return (state_ptr->yu) ; else { y = state_ptr->yl >> 6 ; dif = state_ptr->yu - y ; al = state_ptr->ap >> 2 ; if (dif > 0) y += (dif * al) >> 6 ; else if (dif < 0) y += (dif * al + 0x3F) >> 6 ; return y ; } } /* * quantize () * * Given a raw sample, 'd', of the difference signal and a * quantization step size scale factor, 'y', this routine returns the * ADPCM codeword to which that sample gets quantized. The step * size scale factor division operation is done in the log base 2 domain * as a subtraction. */ int quantize ( int d, /* Raw difference signal sample */ int y, /* Step size multiplier */ short *table, /* quantization table */ int size) /* table size of short integers */ { short dqm ; /* Magnitude of 'd' */ short expon ; /* Integer part of base 2 log of 'd' */ short mant ; /* Fractional part of base 2 log */ short dl ; /* Log of magnitude of 'd' */ short dln ; /* Step size scale factor normalized log */ int i ; /* * LOG * * Compute base 2 log of 'd', and store in 'dl'. */ dqm = abs (d) ; expon = quan (dqm >> 1, power2, 15) ; mant = ((dqm << 7) >> expon) & 0x7F ; /* Fractional portion. */ dl = (expon << 7) + mant ; /* * SUBTB * * "Divide" by step size multiplier. */ dln = dl - (y >> 2) ; /* * QUAN * * Obtain codword i for 'd'. */ i = quan (dln, table, size) ; if (d < 0) /* take 1's complement of i */ return ((size << 1) + 1 - i) ; else if (i == 0) /* take 1's complement of 0 */ return ((size << 1) + 1) ; /* new in 1988 */ return i ; } /* * reconstruct () * * Returns reconstructed difference signal 'dq' obtained from * codeword 'i' and quantization step size scale factor 'y'. * Multiplication is performed in log base 2 domain as addition. */ int reconstruct ( int sign, /* 0 for non-negative value */ int dqln, /* G.72x codeword */ int y) /* Step size multiplier */ { short dql ; /* Log of 'dq' magnitude */ short dex ; /* Integer part of log */ short dqt ; short dq ; /* Reconstructed difference signal sample */ dql = dqln + (y >> 2) ; /* ADDA */ if (dql < 0) return ((sign) ? -0x8000 : 0) ; else /* ANTILOG */ { dex = (dql >> 7) & 15 ; dqt = 128 + (dql & 127) ; dq = (dqt << 7) >> (14 - dex) ; return ((sign) ? (dq - 0x8000) : dq) ; } } /* * update () * * updates the state variables for each output code */ void update ( int code_size, /* distinguish 723_40 with others */ int y, /* quantizer step size */ int wi, /* scale factor multiplier */ int fi, /* for long/short term energies */ int dq, /* quantized prediction difference */ int sr, /* reconstructed signal */ int dqsez, /* difference from 2-pole predictor */ G72x_STATE *state_ptr) /* coder state pointer */ { int cnt ; short mag, expon ; /* Adaptive predictor, FLOAT A */ short a2p = 0 ; /* LIMC */ short a1ul ; /* UPA1 */ short pks1 ; /* UPA2 */ short fa1 ; char tr ; /* tone/transition detector */ short ylint, thr2, dqthr ; short ylfrac, thr1 ; short pk0 ; pk0 = (dqsez < 0) ? 1 : 0 ; /* needed in updating predictor poles */ mag = dq & 0x7FFF ; /* prediction difference magnitude */ /* TRANS */ ylint = state_ptr->yl >> 15 ; /* exponent part of yl */ ylfrac = (state_ptr->yl >> 10) & 0x1F ; /* fractional part of yl */ thr1 = (32 + ylfrac) << ylint ; /* threshold */ thr2 = (ylint > 9) ? 31 << 10 : thr1 ; /* limit thr2 to 31 << 10 */ dqthr = (thr2 + (thr2 >> 1)) >> 1 ; /* dqthr = 0.75 * thr2 */ if (state_ptr->td == 0) /* signal supposed voice */ tr = 0 ; else if (mag <= dqthr) /* supposed data, but small mag */ tr = 0 ; /* treated as voice */ else /* signal is data (modem) */ tr = 1 ; /* * Quantizer scale factor adaptation. */ /* FUNCTW & FILTD & DELAY */ /* update non-steady state step size multiplier */ state_ptr->yu = y + ((wi - y) >> 5) ; /* LIMB */ if (state_ptr->yu < 544) /* 544 <= yu <= 5120 */ state_ptr->yu = 544 ; else if (state_ptr->yu > 5120) state_ptr->yu = 5120 ; /* FILTE & DELAY */ /* update steady state step size multiplier */ state_ptr->yl += state_ptr->yu + ((-state_ptr->yl) >> 6) ; /* * Adaptive predictor coefficients. */ if (tr == 1) { /* reset a's and b's for modem signal */ state_ptr->a [0] = 0 ; state_ptr->a [1] = 0 ; state_ptr->b [0] = 0 ; state_ptr->b [1] = 0 ; state_ptr->b [2] = 0 ; state_ptr->b [3] = 0 ; state_ptr->b [4] = 0 ; state_ptr->b [5] = 0 ; } else /* update a's and b's */ { pks1 = pk0 ^ state_ptr->pk [0] ; /* UPA2 */ /* update predictor pole a [1] */ a2p = state_ptr->a [1] - (state_ptr->a [1] >> 7) ; if (dqsez != 0) { fa1 = (pks1) ? state_ptr->a [0] : -state_ptr->a [0] ; if (fa1 < -8191) /* a2p = function of fa1 */ a2p -= 0x100 ; else if (fa1 > 8191) a2p += 0xFF ; else a2p += fa1 >> 5 ; if (pk0 ^ state_ptr->pk [1]) { /* LIMC */ if (a2p <= -12160) a2p = -12288 ; else if (a2p >= 12416) a2p = 12288 ; else a2p -= 0x80 ; } else if (a2p <= -12416) a2p = -12288 ; else if (a2p >= 12160) a2p = 12288 ; else a2p += 0x80 ; } /* TRIGB & DELAY */ state_ptr->a [1] = a2p ; /* UPA1 */ /* update predictor pole a [0] */ state_ptr->a [0] -= state_ptr->a [0] >> 8 ; if (dqsez != 0) { if (pks1 == 0) state_ptr->a [0] += 192 ; else state_ptr->a [0] -= 192 ; } ; /* LIMD */ a1ul = 15360 - a2p ; if (state_ptr->a [0] < -a1ul) state_ptr->a [0] = -a1ul ; else if (state_ptr->a [0] > a1ul) state_ptr->a [0] = a1ul ; /* UPB : update predictor zeros b [6] */ for (cnt = 0 ; cnt < 6 ; cnt++) { if (code_size == 5) /* for 40Kbps G.723 */ state_ptr->b [cnt] -= state_ptr->b [cnt] >> 9 ; else /* for G.721 and 24Kbps G.723 */ state_ptr->b [cnt] -= state_ptr->b [cnt] >> 8 ; if (dq & 0x7FFF) /* XOR */ { if ((dq ^ state_ptr->dq [cnt]) >= 0) state_ptr->b [cnt] += 128 ; else state_ptr->b [cnt] -= 128 ; } } } for (cnt = 5 ; cnt > 0 ; cnt--) state_ptr->dq [cnt] = state_ptr->dq [cnt - 1] ; /* FLOAT A : convert dq [0] to 4-bit exp, 6-bit mantissa f.p. */ if (mag == 0) state_ptr->dq [0] = (dq >= 0) ? 0x20 : 0xFC20 ; else { expon = quan (mag, power2, 15) ; state_ptr->dq [0] = (dq >= 0) ? (expon << 6) + ((mag << 6) >> expon) : (expon << 6) + ((mag << 6) >> expon) - 0x400 ; } state_ptr->sr [1] = state_ptr->sr [0] ; /* FLOAT B : convert sr to 4-bit exp., 6-bit mantissa f.p. */ if (sr == 0) state_ptr->sr [0] = 0x20 ; else if (sr > 0) { expon = quan (sr, power2, 15) ; state_ptr->sr [0] = (expon << 6) + ((sr << 6) >> expon) ; } else if (sr > -32768) { mag = -sr ; expon = quan (mag, power2, 15) ; state_ptr->sr [0] = (expon << 6) + ((mag << 6) >> expon) - 0x400 ; } else state_ptr->sr [0] = (short) 0xFC20 ; /* DELAY A */ state_ptr->pk [1] = state_ptr->pk [0] ; state_ptr->pk [0] = pk0 ; /* TONE */ if (tr == 1) /* this sample has been treated as data */ state_ptr->td = 0 ; /* next one will be treated as voice */ else if (a2p < -11776) /* small sample-to-sample correlation */ state_ptr->td = 1 ; /* signal may be data */ else /* signal is voice */ state_ptr->td = 0 ; /* * Adaptation speed control. */ state_ptr->dms += (fi - state_ptr->dms) >> 5 ; /* FILTA */ state_ptr->dml += (((fi << 2) - state_ptr->dml) >> 7) ; /* FILTB */ if (tr == 1) state_ptr->ap = 256 ; else if (y < 1536) /* SUBTC */ state_ptr->ap += (0x200 - state_ptr->ap) >> 4 ; else if (state_ptr->td == 1) state_ptr->ap += (0x200 - state_ptr->ap) >> 4 ; else if (abs ((state_ptr->dms << 2) - state_ptr->dml) >= (state_ptr->dml >> 3)) state_ptr->ap += (0x200 - state_ptr->ap) >> 4 ; else state_ptr->ap += (-state_ptr->ap) >> 4 ; return ; } /* update */ /*------------------------------------------------------------------------------ */ static int unpack_bytes (int bits, int blocksize, const unsigned char * block, short * samples) { unsigned int in_buffer = 0 ; unsigned char in_byte ; int k, in_bits = 0, bindex = 0 ; for (k = 0 ; bindex <= blocksize && k < G72x_BLOCK_SIZE ; k++) { if (in_bits < bits) { in_byte = block [bindex++] ; in_buffer |= (in_byte << in_bits) ; in_bits += 8 ; } samples [k] = in_buffer & ((1 << bits) - 1) ; in_buffer >>= bits ; in_bits -= bits ; } ; return k ; } /* unpack_bytes */ static int pack_bytes (int bits, const short * samples, unsigned char * block) { unsigned int out_buffer = 0 ; int k, bindex = 0, out_bits = 0 ; unsigned char out_byte ; for (k = 0 ; k < G72x_BLOCK_SIZE ; k++) { out_buffer |= (samples [k] << out_bits) ; out_bits += bits ; if (out_bits >= 8) { out_byte = out_buffer & 0xFF ; out_bits -= 8 ; out_buffer >>= 8 ; block [bindex++] = out_byte ; } } ; return bindex ; } /* pack_bytes */