/* * Copyright © 2016 Red Hat. * Copyright © 2016 Bas Nieuwenhuizen * * based in part on anv driver which is: * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #ifndef RADV_PRIVATE_H #define RADV_PRIVATE_H #include #include #include #include #include #include #ifdef HAVE_VALGRIND #include #include #define VG(x) x #else #define VG(x) ((void)0) #endif #include "c11/threads.h" #ifndef _WIN32 #include #include #endif #include "compiler/shader_enums.h" #include "util/bitscan.h" #include "util/cnd_monotonic.h" #include "util/list.h" #include "util/macros.h" #include "util/rwlock.h" #include "util/xmlconfig.h" #include "vk_alloc.h" #include "vk_debug_report.h" #include "vk_device.h" #include "vk_format.h" #include "vk_instance.h" #include "vk_log.h" #include "vk_physical_device.h" #include "vk_shader_module.h" #include "vk_command_buffer.h" #include "vk_queue.h" #include "vk_util.h" #include "ac_binary.h" #include "ac_gpu_info.h" #include "ac_shader_util.h" #include "ac_sqtt.h" #include "ac_surface.h" #include "radv_constants.h" #include "radv_descriptor_set.h" #include "radv_radeon_winsys.h" #include "radv_shader.h" #include "sid.h" /* Pre-declarations needed for WSI entrypoints */ struct wl_surface; struct wl_display; typedef struct xcb_connection_t xcb_connection_t; typedef uint32_t xcb_visualid_t; typedef uint32_t xcb_window_t; #include #include #include #include #include "radv_entrypoints.h" #include "wsi_common.h" #ifdef __cplusplus extern "C" { #endif /* Helper to determine if we should compile * any of the Android AHB support. * * To actually enable the ext we also need * the necessary kernel support. */ #if defined(ANDROID) && ANDROID_API_LEVEL >= 26 #define RADV_SUPPORT_ANDROID_HARDWARE_BUFFER 1 #include #else #define RADV_SUPPORT_ANDROID_HARDWARE_BUFFER 0 #endif #ifdef _WIN32 #define RADV_SUPPORT_CALIBRATED_TIMESTAMPS 0 #else #define RADV_SUPPORT_CALIBRATED_TIMESTAMPS 1 #endif #ifdef _WIN32 #define radv_printflike(a, b) #else #define radv_printflike(a, b) __attribute__((__format__(__printf__, a, b))) #endif static inline uint32_t align_u32(uint32_t v, uint32_t a) { assert(a != 0 && a == (a & -a)); return (v + a - 1) & ~(a - 1); } static inline uint32_t align_u32_npot(uint32_t v, uint32_t a) { return (v + a - 1) / a * a; } static inline uint64_t align_u64(uint64_t v, uint64_t a) { assert(a != 0 && a == (a & -a)); return (v + a - 1) & ~(a - 1); } static inline int32_t align_i32(int32_t v, int32_t a) { assert(a != 0 && a == (a & -a)); return (v + a - 1) & ~(a - 1); } /** Alignment must be a power of 2. */ static inline bool radv_is_aligned(uintmax_t n, uintmax_t a) { assert(a == (a & -a)); return (n & (a - 1)) == 0; } static inline uint32_t round_up_u32(uint32_t v, uint32_t a) { return (v + a - 1) / a; } static inline uint64_t round_up_u64(uint64_t v, uint64_t a) { return (v + a - 1) / a; } static inline uint32_t radv_minify(uint32_t n, uint32_t levels) { if (unlikely(n == 0)) return 0; else return MAX2(n >> levels, 1); } static inline float radv_clamp_f(float f, float min, float max) { assert(min < max); if (f > max) return max; else if (f < min) return min; else return f; } static inline bool radv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask) { if (*inout_mask & clear_mask) { *inout_mask &= ~clear_mask; return true; } else { return false; } } /* Whenever we generate an error, pass it through this function. Useful for * debugging, where we can break on it. Only call at error site, not when * propagating errors. Might be useful to plug in a stack trace here. */ struct radv_image_view; struct radv_instance; void radv_loge(const char *format, ...) radv_printflike(1, 2); void radv_loge_v(const char *format, va_list va); void radv_logi(const char *format, ...) radv_printflike(1, 2); void radv_logi_v(const char *format, va_list va); /* A non-fatal assert. Useful for debugging. */ #ifdef NDEBUG #define radv_assert(x) \ do { \ } while (0) #else #define radv_assert(x) \ do { \ if (unlikely(!(x))) \ fprintf(stderr, "%s:%d ASSERT: %s\n", __FILE__, __LINE__, #x); \ } while (0) #endif int radv_get_instance_entrypoint_index(const char *name); int radv_get_device_entrypoint_index(const char *name); int radv_get_physical_device_entrypoint_index(const char *name); const char *radv_get_instance_entry_name(int index); const char *radv_get_physical_device_entry_name(int index); const char *radv_get_device_entry_name(int index); struct radv_physical_device { struct vk_physical_device vk; /* Link in radv_instance::physical_devices */ struct list_head link; struct radv_instance *instance; struct radeon_winsys *ws; struct radeon_info rad_info; char name[VK_MAX_PHYSICAL_DEVICE_NAME_SIZE]; uint8_t driver_uuid[VK_UUID_SIZE]; uint8_t device_uuid[VK_UUID_SIZE]; uint8_t cache_uuid[VK_UUID_SIZE]; int local_fd; int master_fd; struct wsi_device wsi_device; bool out_of_order_rast_allowed; /* Whether DCC should be enabled for MSAA textures. */ bool dcc_msaa_allowed; /* Whether to enable NGG. */ bool use_ngg; /* Whether to enable NGG culling. */ bool use_ngg_culling; /* Whether to enable NGG streamout. */ bool use_ngg_streamout; /* Number of threads per wave. */ uint8_t ps_wave_size; uint8_t cs_wave_size; uint8_t ge_wave_size; /* Whether to use the LLVM compiler backend */ bool use_llvm; /* This is the drivers on-disk cache used as a fallback as opposed to * the pipeline cache defined by apps. */ struct disk_cache *disk_cache; VkPhysicalDeviceMemoryProperties memory_properties; enum radeon_bo_domain memory_domains[VK_MAX_MEMORY_TYPES]; enum radeon_bo_flag memory_flags[VK_MAX_MEMORY_TYPES]; unsigned heaps; #ifndef _WIN32 int available_nodes; drmPciBusInfo bus_info; dev_t primary_devid; dev_t render_devid; #endif nir_shader_compiler_options nir_options; }; struct radv_instance { struct vk_instance vk; VkAllocationCallbacks alloc; uint64_t debug_flags; uint64_t perftest_flags; bool physical_devices_enumerated; struct list_head physical_devices; struct driOptionCache dri_options; struct driOptionCache available_dri_options; /** * Workarounds for game bugs. */ bool enable_mrt_output_nan_fixup; bool disable_tc_compat_htile_in_general; bool disable_shrink_image_store; bool absolute_depth_bias; bool report_apu_as_dgpu; }; VkResult radv_init_wsi(struct radv_physical_device *physical_device); void radv_finish_wsi(struct radv_physical_device *physical_device); struct cache_entry; struct radv_pipeline_cache { struct vk_object_base base; struct radv_device *device; mtx_t mutex; VkPipelineCacheCreateFlags flags; uint32_t total_size; uint32_t table_size; uint32_t kernel_count; struct cache_entry **hash_table; bool modified; VkAllocationCallbacks alloc; }; struct radv_shader_binary; struct radv_shader_variant; struct radv_pipeline_shader_stack_size; void radv_pipeline_cache_init(struct radv_pipeline_cache *cache, struct radv_device *device); void radv_pipeline_cache_finish(struct radv_pipeline_cache *cache); bool radv_pipeline_cache_load(struct radv_pipeline_cache *cache, const void *data, size_t size); bool radv_create_shader_variants_from_pipeline_cache( struct radv_device *device, struct radv_pipeline_cache *cache, const unsigned char *sha1, struct radv_shader_variant **variants, struct radv_pipeline_shader_stack_size **stack_sizes, uint32_t *num_stack_sizes, bool *found_in_application_cache); void radv_pipeline_cache_insert_shaders( struct radv_device *device, struct radv_pipeline_cache *cache, const unsigned char *sha1, struct radv_shader_variant **variants, struct radv_shader_binary *const *binaries, const struct radv_pipeline_shader_stack_size *stack_sizes, uint32_t num_stack_sizes); enum radv_blit_ds_layout { RADV_BLIT_DS_LAYOUT_TILE_ENABLE, RADV_BLIT_DS_LAYOUT_TILE_DISABLE, RADV_BLIT_DS_LAYOUT_COUNT, }; static inline enum radv_blit_ds_layout radv_meta_blit_ds_to_type(VkImageLayout layout) { return (layout == VK_IMAGE_LAYOUT_GENERAL) ? RADV_BLIT_DS_LAYOUT_TILE_DISABLE : RADV_BLIT_DS_LAYOUT_TILE_ENABLE; } static inline VkImageLayout radv_meta_blit_ds_to_layout(enum radv_blit_ds_layout ds_layout) { return ds_layout == RADV_BLIT_DS_LAYOUT_TILE_ENABLE ? VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL : VK_IMAGE_LAYOUT_GENERAL; } enum radv_meta_dst_layout { RADV_META_DST_LAYOUT_GENERAL, RADV_META_DST_LAYOUT_OPTIMAL, RADV_META_DST_LAYOUT_COUNT, }; static inline enum radv_meta_dst_layout radv_meta_dst_layout_from_layout(VkImageLayout layout) { return (layout == VK_IMAGE_LAYOUT_GENERAL) ? RADV_META_DST_LAYOUT_GENERAL : RADV_META_DST_LAYOUT_OPTIMAL; } static inline VkImageLayout radv_meta_dst_layout_to_layout(enum radv_meta_dst_layout layout) { return layout == RADV_META_DST_LAYOUT_OPTIMAL ? VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL : VK_IMAGE_LAYOUT_GENERAL; } struct radv_meta_state { VkAllocationCallbacks alloc; struct radv_pipeline_cache cache; /* * For on-demand pipeline creation, makes sure that * only one thread tries to build a pipeline at the same time. */ mtx_t mtx; /** * Use array element `i` for images with `2^i` samples. */ struct { VkRenderPass render_pass[NUM_META_FS_KEYS]; VkPipeline color_pipelines[NUM_META_FS_KEYS]; VkRenderPass depthstencil_rp; VkPipeline depth_only_pipeline[NUM_DEPTH_CLEAR_PIPELINES]; VkPipeline stencil_only_pipeline[NUM_DEPTH_CLEAR_PIPELINES]; VkPipeline depthstencil_pipeline[NUM_DEPTH_CLEAR_PIPELINES]; VkPipeline depth_only_unrestricted_pipeline[NUM_DEPTH_CLEAR_PIPELINES]; VkPipeline stencil_only_unrestricted_pipeline[NUM_DEPTH_CLEAR_PIPELINES]; VkPipeline depthstencil_unrestricted_pipeline[NUM_DEPTH_CLEAR_PIPELINES]; } clear[MAX_SAMPLES_LOG2]; VkPipelineLayout clear_color_p_layout; VkPipelineLayout clear_depth_p_layout; VkPipelineLayout clear_depth_unrestricted_p_layout; /* Optimized compute fast HTILE clear for stencil or depth only. */ VkPipeline clear_htile_mask_pipeline; VkPipelineLayout clear_htile_mask_p_layout; VkDescriptorSetLayout clear_htile_mask_ds_layout; /* Copy VRS into HTILE. */ VkPipeline copy_vrs_htile_pipeline; VkPipelineLayout copy_vrs_htile_p_layout; VkDescriptorSetLayout copy_vrs_htile_ds_layout; /* Clear DCC with comp-to-single. */ VkPipeline clear_dcc_comp_to_single_pipeline[2]; /* 0: 1x, 1: 2x/4x/8x */ VkPipelineLayout clear_dcc_comp_to_single_p_layout; VkDescriptorSetLayout clear_dcc_comp_to_single_ds_layout; struct { VkRenderPass render_pass[NUM_META_FS_KEYS][RADV_META_DST_LAYOUT_COUNT]; /** Pipeline that blits from a 1D image. */ VkPipeline pipeline_1d_src[NUM_META_FS_KEYS]; /** Pipeline that blits from a 2D image. */ VkPipeline pipeline_2d_src[NUM_META_FS_KEYS]; /** Pipeline that blits from a 3D image. */ VkPipeline pipeline_3d_src[NUM_META_FS_KEYS]; VkRenderPass depth_only_rp[RADV_BLIT_DS_LAYOUT_COUNT]; VkPipeline depth_only_1d_pipeline; VkPipeline depth_only_2d_pipeline; VkPipeline depth_only_3d_pipeline; VkRenderPass stencil_only_rp[RADV_BLIT_DS_LAYOUT_COUNT]; VkPipeline stencil_only_1d_pipeline; VkPipeline stencil_only_2d_pipeline; VkPipeline stencil_only_3d_pipeline; VkPipelineLayout pipeline_layout; VkDescriptorSetLayout ds_layout; } blit; struct { VkPipelineLayout p_layouts[5]; VkDescriptorSetLayout ds_layouts[5]; VkPipeline pipelines[5][NUM_META_FS_KEYS]; VkPipeline depth_only_pipeline[5]; VkPipeline stencil_only_pipeline[5]; } blit2d[MAX_SAMPLES_LOG2]; VkRenderPass blit2d_render_passes[NUM_META_FS_KEYS][RADV_META_DST_LAYOUT_COUNT]; VkRenderPass blit2d_depth_only_rp[RADV_BLIT_DS_LAYOUT_COUNT]; VkRenderPass blit2d_stencil_only_rp[RADV_BLIT_DS_LAYOUT_COUNT]; struct { VkPipelineLayout img_p_layout; VkDescriptorSetLayout img_ds_layout; VkPipeline pipeline; VkPipeline pipeline_3d; } itob; struct { VkPipelineLayout img_p_layout; VkDescriptorSetLayout img_ds_layout; VkPipeline pipeline; VkPipeline pipeline_3d; } btoi; struct { VkPipelineLayout img_p_layout; VkDescriptorSetLayout img_ds_layout; VkPipeline pipeline; } btoi_r32g32b32; struct { VkPipelineLayout img_p_layout; VkDescriptorSetLayout img_ds_layout; VkPipeline pipeline[MAX_SAMPLES_LOG2]; VkPipeline pipeline_3d; } itoi; struct { VkPipelineLayout img_p_layout; VkDescriptorSetLayout img_ds_layout; VkPipeline pipeline; } itoi_r32g32b32; struct { VkPipelineLayout img_p_layout; VkDescriptorSetLayout img_ds_layout; VkPipeline pipeline[MAX_SAMPLES_LOG2]; VkPipeline pipeline_3d; } cleari; struct { VkPipelineLayout img_p_layout; VkDescriptorSetLayout img_ds_layout; VkPipeline pipeline; } cleari_r32g32b32; struct { VkPipelineLayout p_layout; VkPipeline pipeline[NUM_META_FS_KEYS]; VkRenderPass pass[NUM_META_FS_KEYS]; } resolve; struct { VkDescriptorSetLayout ds_layout; VkPipelineLayout p_layout; struct { VkPipeline pipeline; VkPipeline i_pipeline; VkPipeline srgb_pipeline; } rc[MAX_SAMPLES_LOG2]; VkPipeline depth_zero_pipeline; struct { VkPipeline average_pipeline; VkPipeline max_pipeline; VkPipeline min_pipeline; } depth[MAX_SAMPLES_LOG2]; VkPipeline stencil_zero_pipeline; struct { VkPipeline max_pipeline; VkPipeline min_pipeline; } stencil[MAX_SAMPLES_LOG2]; } resolve_compute; struct { VkDescriptorSetLayout ds_layout; VkPipelineLayout p_layout; struct { VkRenderPass render_pass[NUM_META_FS_KEYS][RADV_META_DST_LAYOUT_COUNT]; VkPipeline pipeline[NUM_META_FS_KEYS]; } rc[MAX_SAMPLES_LOG2]; VkRenderPass depth_render_pass; VkPipeline depth_zero_pipeline; struct { VkPipeline average_pipeline; VkPipeline max_pipeline; VkPipeline min_pipeline; } depth[MAX_SAMPLES_LOG2]; VkRenderPass stencil_render_pass; VkPipeline stencil_zero_pipeline; struct { VkPipeline max_pipeline; VkPipeline min_pipeline; } stencil[MAX_SAMPLES_LOG2]; } resolve_fragment; struct { VkPipelineLayout p_layout; VkPipeline decompress_pipeline; VkPipeline resummarize_pipeline; VkRenderPass pass; } depth_decomp[MAX_SAMPLES_LOG2]; VkDescriptorSetLayout expand_depth_stencil_compute_ds_layout; VkPipelineLayout expand_depth_stencil_compute_p_layout; VkPipeline expand_depth_stencil_compute_pipeline; struct { VkPipelineLayout p_layout; VkPipeline cmask_eliminate_pipeline; VkPipeline fmask_decompress_pipeline; VkPipeline dcc_decompress_pipeline; VkRenderPass pass; VkDescriptorSetLayout dcc_decompress_compute_ds_layout; VkPipelineLayout dcc_decompress_compute_p_layout; VkPipeline dcc_decompress_compute_pipeline; } fast_clear_flush; struct { VkPipelineLayout fill_p_layout; VkPipelineLayout copy_p_layout; VkDescriptorSetLayout fill_ds_layout; VkDescriptorSetLayout copy_ds_layout; VkPipeline fill_pipeline; VkPipeline copy_pipeline; } buffer; struct { VkDescriptorSetLayout ds_layout; VkPipelineLayout p_layout; VkPipeline occlusion_query_pipeline; VkPipeline pipeline_statistics_query_pipeline; VkPipeline tfb_query_pipeline; VkPipeline timestamp_query_pipeline; } query; struct { VkDescriptorSetLayout ds_layout; VkPipelineLayout p_layout; VkPipeline pipeline[MAX_SAMPLES_LOG2]; } fmask_expand; struct { VkDescriptorSetLayout ds_layout; VkPipelineLayout p_layout; VkPipeline pipeline[32]; } dcc_retile; struct { VkPipelineLayout leaf_p_layout; VkPipeline leaf_pipeline; VkPipelineLayout internal_p_layout; VkPipeline internal_pipeline; VkPipelineLayout copy_p_layout; VkPipeline copy_pipeline; } accel_struct_build; }; /* queue types */ #define RADV_QUEUE_GENERAL 0 #define RADV_QUEUE_COMPUTE 1 #define RADV_QUEUE_TRANSFER 2 /* Not a real queue family */ #define RADV_QUEUE_FOREIGN 3 #define RADV_MAX_QUEUE_FAMILIES 3 #define RADV_NUM_HW_CTX (RADEON_CTX_PRIORITY_REALTIME + 1) struct radv_deferred_queue_submission; enum ring_type radv_queue_family_to_ring(int f); struct radv_queue { struct vk_queue vk; struct radv_device *device; struct radeon_winsys_ctx *hw_ctx; enum radeon_ctx_priority priority; uint32_t scratch_size_per_wave; uint32_t scratch_waves; uint32_t compute_scratch_size_per_wave; uint32_t compute_scratch_waves; uint32_t esgs_ring_size; uint32_t gsvs_ring_size; bool has_tess_rings; bool has_gds; bool has_gds_oa; bool has_sample_positions; struct radeon_winsys_bo *scratch_bo; struct radeon_winsys_bo *descriptor_bo; struct radeon_winsys_bo *compute_scratch_bo; struct radeon_winsys_bo *esgs_ring_bo; struct radeon_winsys_bo *gsvs_ring_bo; struct radeon_winsys_bo *tess_rings_bo; struct radeon_winsys_bo *gds_bo; struct radeon_winsys_bo *gds_oa_bo; struct radeon_cmdbuf *initial_preamble_cs; struct radeon_cmdbuf *initial_full_flush_preamble_cs; struct radeon_cmdbuf *continue_preamble_cs; struct list_head pending_submissions; mtx_t pending_mutex; mtx_t thread_mutex; struct u_cnd_monotonic thread_cond; struct radv_deferred_queue_submission *thread_submission; thrd_t submission_thread; bool thread_exit; bool thread_running; bool cond_created; }; #define RADV_BORDER_COLOR_COUNT 4096 #define RADV_BORDER_COLOR_BUFFER_SIZE (sizeof(VkClearColorValue) * RADV_BORDER_COLOR_COUNT) struct radv_device_border_color_data { bool used[RADV_BORDER_COLOR_COUNT]; struct radeon_winsys_bo *bo; VkClearColorValue *colors_gpu_ptr; /* Mutex is required to guarantee vkCreateSampler thread safety * given that we are writing to a buffer and checking color occupation */ mtx_t mutex; }; enum radv_force_vrs { RADV_FORCE_VRS_NONE = 0, RADV_FORCE_VRS_2x2, RADV_FORCE_VRS_2x1, RADV_FORCE_VRS_1x2, }; struct radv_device { struct vk_device vk; struct radv_instance *instance; struct radeon_winsys *ws; struct radeon_winsys_ctx *hw_ctx[RADV_NUM_HW_CTX]; struct radv_meta_state meta_state; struct radv_queue *queues[RADV_MAX_QUEUE_FAMILIES]; int queue_count[RADV_MAX_QUEUE_FAMILIES]; struct radeon_cmdbuf *empty_cs[RADV_MAX_QUEUE_FAMILIES]; bool pbb_allowed; uint32_t tess_offchip_block_dw_size; uint32_t scratch_waves; uint32_t dispatch_initiator; uint32_t gs_table_depth; /* MSAA sample locations. * The first index is the sample index. * The second index is the coordinate: X, Y. */ float sample_locations_1x[1][2]; float sample_locations_2x[2][2]; float sample_locations_4x[4][2]; float sample_locations_8x[8][2]; /* GFX7 and later */ uint32_t gfx_init_size_dw; struct radeon_winsys_bo *gfx_init; struct radeon_winsys_bo *trace_bo; uint32_t *trace_id_ptr; /* Whether to keep shader debug info, for tracing or VK_AMD_shader_info */ bool keep_shader_info; struct radv_physical_device *physical_device; /* Backup in-memory cache to be used if the app doesn't provide one */ struct radv_pipeline_cache *mem_cache; /* * use different counters so MSAA MRTs get consecutive surface indices, * even if MASK is allocated in between. */ uint32_t image_mrt_offset_counter; uint32_t fmask_mrt_offset_counter; struct list_head shader_arenas; uint8_t shader_free_list_mask; struct list_head shader_free_lists[RADV_SHADER_ALLOC_NUM_FREE_LISTS]; struct list_head shader_block_obj_pool; mtx_t shader_arena_mutex; /* For detecting VM faults reported by dmesg. */ uint64_t dmesg_timestamp; /* Whether the app has enabled the robustBufferAccess/robustBufferAccess2 features. */ bool robust_buffer_access; bool robust_buffer_access2; /* Whether gl_FragCoord.z should be adjusted for VRS due to a hw bug * on some GFX10.3 chips. */ bool adjust_frag_coord_z; /* Whether the driver uses a global BO list. */ bool use_global_bo_list; /* Whether attachment VRS is enabled. */ bool attachment_vrs_enabled; /* Whether shader image 32-bit float atomics are enabled. */ bool image_float32_atomics; /* Whether anisotropy is forced with RADV_TEX_ANISO (-1 is disabled). */ int force_aniso; struct radv_device_border_color_data border_color_data; /* Condition variable for legacy timelines, to notify waiters when a * new point gets submitted. */ struct u_cnd_monotonic timeline_cond; /* Thread trace. */ struct ac_thread_trace_data thread_trace; /* Trap handler. */ struct radv_shader_variant *trap_handler_shader; struct radeon_winsys_bo *tma_bo; /* Trap Memory Address */ uint32_t *tma_ptr; /* Overallocation. */ bool overallocation_disallowed; uint64_t allocated_memory_size[VK_MAX_MEMORY_HEAPS]; mtx_t overallocation_mutex; /* Track the number of device loss occurs. */ int lost; /* Whether the user forced VRS rates on GFX10.3+. */ enum radv_force_vrs force_vrs; /* Depth image for VRS when not bound by the app. */ struct { struct radv_image *image; struct radv_buffer *buffer; /* HTILE */ struct radv_device_memory *mem; } vrs; struct u_rwlock vs_prologs_lock; struct hash_table *vs_prologs; struct radv_shader_prolog *simple_vs_prologs[MAX_VERTEX_ATTRIBS]; struct radv_shader_prolog *instance_rate_vs_prologs[816]; }; VkResult _radv_device_set_lost(struct radv_device *device, const char *file, int line, const char *msg, ...) radv_printflike(4, 5); #define radv_device_set_lost(dev, ...) _radv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__) static inline bool radv_device_is_lost(const struct radv_device *device) { return unlikely(p_atomic_read(&device->lost)); } struct radv_device_memory { struct vk_object_base base; struct radeon_winsys_bo *bo; /* for dedicated allocations */ struct radv_image *image; struct radv_buffer *buffer; uint32_t heap_index; uint64_t alloc_size; void *map; void *user_ptr; #if RADV_SUPPORT_ANDROID_HARDWARE_BUFFER struct AHardwareBuffer *android_hardware_buffer; #endif }; void radv_device_memory_init(struct radv_device_memory *mem, struct radv_device *device, struct radeon_winsys_bo *bo); void radv_device_memory_finish(struct radv_device_memory *mem); struct radv_descriptor_range { uint64_t va; uint32_t size; }; struct radv_descriptor_set_header { struct vk_object_base base; const struct radv_descriptor_set_layout *layout; uint32_t size; uint32_t buffer_count; struct radeon_winsys_bo *bo; uint64_t va; uint32_t *mapped_ptr; struct radv_descriptor_range *dynamic_descriptors; }; struct radv_descriptor_set { struct radv_descriptor_set_header header; struct radeon_winsys_bo *descriptors[]; }; struct radv_push_descriptor_set { struct radv_descriptor_set_header set; uint32_t capacity; }; struct radv_descriptor_pool_entry { uint32_t offset; uint32_t size; struct radv_descriptor_set *set; }; struct radv_descriptor_pool { struct vk_object_base base; struct radeon_winsys_bo *bo; uint8_t *host_bo; uint8_t *mapped_ptr; uint64_t current_offset; uint64_t size; uint8_t *host_memory_base; uint8_t *host_memory_ptr; uint8_t *host_memory_end; uint32_t entry_count; uint32_t max_entry_count; struct radv_descriptor_pool_entry entries[0]; }; struct radv_descriptor_update_template_entry { VkDescriptorType descriptor_type; /* The number of descriptors to update */ uint32_t descriptor_count; /* Into mapped_ptr or dynamic_descriptors, in units of the respective array */ uint32_t dst_offset; /* In dwords. Not valid/used for dynamic descriptors */ uint32_t dst_stride; uint32_t buffer_offset; /* Only valid for combined image samplers and samplers */ uint8_t has_sampler; uint8_t sampler_offset; /* In bytes */ size_t src_offset; size_t src_stride; /* For push descriptors */ const uint32_t *immutable_samplers; }; struct radv_descriptor_update_template { struct vk_object_base base; uint32_t entry_count; VkPipelineBindPoint bind_point; struct radv_descriptor_update_template_entry entry[0]; }; struct radv_buffer { struct vk_object_base base; VkDeviceSize size; VkBufferUsageFlags usage; VkBufferCreateFlags flags; /* Set when bound */ struct radeon_winsys_bo *bo; VkDeviceSize offset; bool shareable; }; void radv_buffer_init(struct radv_buffer *buffer, struct radv_device *device, struct radeon_winsys_bo *bo, uint64_t size, uint64_t offset); void radv_buffer_finish(struct radv_buffer *buffer); enum radv_dynamic_state_bits { RADV_DYNAMIC_VIEWPORT = 1ull << 0, RADV_DYNAMIC_SCISSOR = 1ull << 1, RADV_DYNAMIC_LINE_WIDTH = 1ull << 2, RADV_DYNAMIC_DEPTH_BIAS = 1ull << 3, RADV_DYNAMIC_BLEND_CONSTANTS = 1ull << 4, RADV_DYNAMIC_DEPTH_BOUNDS = 1ull << 5, RADV_DYNAMIC_STENCIL_COMPARE_MASK = 1ull << 6, RADV_DYNAMIC_STENCIL_WRITE_MASK = 1ull << 7, RADV_DYNAMIC_STENCIL_REFERENCE = 1ull << 8, RADV_DYNAMIC_DISCARD_RECTANGLE = 1ull << 9, RADV_DYNAMIC_SAMPLE_LOCATIONS = 1ull << 10, RADV_DYNAMIC_LINE_STIPPLE = 1ull << 11, RADV_DYNAMIC_CULL_MODE = 1ull << 12, RADV_DYNAMIC_FRONT_FACE = 1ull << 13, RADV_DYNAMIC_PRIMITIVE_TOPOLOGY = 1ull << 14, RADV_DYNAMIC_DEPTH_TEST_ENABLE = 1ull << 15, RADV_DYNAMIC_DEPTH_WRITE_ENABLE = 1ull << 16, RADV_DYNAMIC_DEPTH_COMPARE_OP = 1ull << 17, RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE = 1ull << 18, RADV_DYNAMIC_STENCIL_TEST_ENABLE = 1ull << 19, RADV_DYNAMIC_STENCIL_OP = 1ull << 20, RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE = 1ull << 21, RADV_DYNAMIC_FRAGMENT_SHADING_RATE = 1ull << 22, RADV_DYNAMIC_PATCH_CONTROL_POINTS = 1ull << 23, RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE = 1ull << 24, RADV_DYNAMIC_DEPTH_BIAS_ENABLE = 1ull << 25, RADV_DYNAMIC_LOGIC_OP = 1ull << 26, RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE = 1ull << 27, RADV_DYNAMIC_COLOR_WRITE_ENABLE = 1ull << 28, RADV_DYNAMIC_VERTEX_INPUT = 1ull << 29, RADV_DYNAMIC_ALL = (1ull << 30) - 1, }; enum radv_cmd_dirty_bits { /* Keep the dynamic state dirty bits in sync with * enum radv_dynamic_state_bits */ RADV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1ull << 0, RADV_CMD_DIRTY_DYNAMIC_SCISSOR = 1ull << 1, RADV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1ull << 2, RADV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1ull << 3, RADV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1ull << 4, RADV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1ull << 5, RADV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1ull << 6, RADV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1ull << 7, RADV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1ull << 8, RADV_CMD_DIRTY_DYNAMIC_DISCARD_RECTANGLE = 1ull << 9, RADV_CMD_DIRTY_DYNAMIC_SAMPLE_LOCATIONS = 1ull << 10, RADV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1ull << 11, RADV_CMD_DIRTY_DYNAMIC_CULL_MODE = 1ull << 12, RADV_CMD_DIRTY_DYNAMIC_FRONT_FACE = 1ull << 13, RADV_CMD_DIRTY_DYNAMIC_PRIMITIVE_TOPOLOGY = 1ull << 14, RADV_CMD_DIRTY_DYNAMIC_DEPTH_TEST_ENABLE = 1ull << 15, RADV_CMD_DIRTY_DYNAMIC_DEPTH_WRITE_ENABLE = 1ull << 16, RADV_CMD_DIRTY_DYNAMIC_DEPTH_COMPARE_OP = 1ull << 17, RADV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE = 1ull << 18, RADV_CMD_DIRTY_DYNAMIC_STENCIL_TEST_ENABLE = 1ull << 19, RADV_CMD_DIRTY_DYNAMIC_STENCIL_OP = 1ull << 20, RADV_CMD_DIRTY_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE = 1ull << 21, RADV_CMD_DIRTY_DYNAMIC_FRAGMENT_SHADING_RATE = 1ull << 22, RADV_CMD_DIRTY_DYNAMIC_PATCH_CONTROL_POINTS = 1ull << 23, RADV_CMD_DIRTY_DYNAMIC_RASTERIZER_DISCARD_ENABLE = 1ull << 24, RADV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS_ENABLE = 1ull << 25, RADV_CMD_DIRTY_DYNAMIC_LOGIC_OP = 1ull << 26, RADV_CMD_DIRTY_DYNAMIC_PRIMITIVE_RESTART_ENABLE = 1ull << 27, RADV_CMD_DIRTY_DYNAMIC_COLOR_WRITE_ENABLE = 1ull << 28, RADV_CMD_DIRTY_DYNAMIC_VERTEX_INPUT = 1ull << 29, RADV_CMD_DIRTY_DYNAMIC_ALL = (1ull << 30) - 1, RADV_CMD_DIRTY_PIPELINE = 1ull << 30, RADV_CMD_DIRTY_INDEX_BUFFER = 1ull << 31, RADV_CMD_DIRTY_FRAMEBUFFER = 1ull << 32, RADV_CMD_DIRTY_VERTEX_BUFFER = 1ull << 33, RADV_CMD_DIRTY_STREAMOUT_BUFFER = 1ull << 34, }; enum radv_cmd_flush_bits { /* Instruction cache. */ RADV_CMD_FLAG_INV_ICACHE = 1 << 0, /* Scalar L1 cache. */ RADV_CMD_FLAG_INV_SCACHE = 1 << 1, /* Vector L1 cache. */ RADV_CMD_FLAG_INV_VCACHE = 1 << 2, /* L2 cache + L2 metadata cache writeback & invalidate. * GFX6-8: Used by shaders only. GFX9-10: Used by everything. */ RADV_CMD_FLAG_INV_L2 = 1 << 3, /* L2 writeback (write dirty L2 lines to memory for non-L2 clients). * Only used for coherency with non-L2 clients like CB, DB, CP on GFX6-8. * GFX6-7 will do complete invalidation, because the writeback is unsupported. */ RADV_CMD_FLAG_WB_L2 = 1 << 4, /* Invalidate the metadata cache. To be used when the DCC/HTILE metadata * changed and we want to read an image from shaders. */ RADV_CMD_FLAG_INV_L2_METADATA = 1 << 5, /* Framebuffer caches */ RADV_CMD_FLAG_FLUSH_AND_INV_CB_META = 1 << 6, RADV_CMD_FLAG_FLUSH_AND_INV_DB_META = 1 << 7, RADV_CMD_FLAG_FLUSH_AND_INV_DB = 1 << 8, RADV_CMD_FLAG_FLUSH_AND_INV_CB = 1 << 9, /* Engine synchronization. */ RADV_CMD_FLAG_VS_PARTIAL_FLUSH = 1 << 10, RADV_CMD_FLAG_PS_PARTIAL_FLUSH = 1 << 11, RADV_CMD_FLAG_CS_PARTIAL_FLUSH = 1 << 12, RADV_CMD_FLAG_VGT_FLUSH = 1 << 13, /* Pipeline query controls. */ RADV_CMD_FLAG_START_PIPELINE_STATS = 1 << 14, RADV_CMD_FLAG_STOP_PIPELINE_STATS = 1 << 15, RADV_CMD_FLAG_VGT_STREAMOUT_SYNC = 1 << 16, RADV_CMD_FLUSH_AND_INV_FRAMEBUFFER = (RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_CB_META | RADV_CMD_FLAG_FLUSH_AND_INV_DB | RADV_CMD_FLAG_FLUSH_AND_INV_DB_META) }; struct radv_vertex_binding { struct radv_buffer *buffer; VkDeviceSize offset; VkDeviceSize size; VkDeviceSize stride; }; struct radv_streamout_binding { struct radv_buffer *buffer; VkDeviceSize offset; VkDeviceSize size; }; struct radv_streamout_state { /* Mask of bound streamout buffers. */ uint8_t enabled_mask; /* External state that comes from the last vertex stage, it must be * set explicitely when binding a new graphics pipeline. */ uint16_t stride_in_dw[MAX_SO_BUFFERS]; uint32_t enabled_stream_buffers_mask; /* stream0 buffers0-3 in 4 LSB */ /* State of VGT_STRMOUT_BUFFER_(CONFIG|END) */ uint32_t hw_enabled_mask; /* State of VGT_STRMOUT_(CONFIG|EN) */ bool streamout_enabled; }; struct radv_viewport_state { uint32_t count; VkViewport viewports[MAX_VIEWPORTS]; struct { float scale[3]; float translate[3]; } xform[MAX_VIEWPORTS]; }; struct radv_scissor_state { uint32_t count; VkRect2D scissors[MAX_SCISSORS]; }; struct radv_discard_rectangle_state { uint32_t count; VkRect2D rectangles[MAX_DISCARD_RECTANGLES]; }; struct radv_sample_locations_state { VkSampleCountFlagBits per_pixel; VkExtent2D grid_size; uint32_t count; VkSampleLocationEXT locations[MAX_SAMPLE_LOCATIONS]; }; struct radv_dynamic_state { /** * Bitmask of (1ull << VK_DYNAMIC_STATE_*). * Defines the set of saved dynamic state. */ uint64_t mask; struct radv_viewport_state viewport; struct radv_scissor_state scissor; float line_width; struct { float bias; float clamp; float slope; } depth_bias; float blend_constants[4]; struct { float min; float max; } depth_bounds; struct { uint32_t front; uint32_t back; } stencil_compare_mask; struct { uint32_t front; uint32_t back; } stencil_write_mask; struct { struct { VkStencilOp fail_op; VkStencilOp pass_op; VkStencilOp depth_fail_op; VkCompareOp compare_op; } front; struct { VkStencilOp fail_op; VkStencilOp pass_op; VkStencilOp depth_fail_op; VkCompareOp compare_op; } back; } stencil_op; struct { uint32_t front; uint32_t back; } stencil_reference; struct radv_discard_rectangle_state discard_rectangle; struct radv_sample_locations_state sample_location; struct { uint32_t factor; uint16_t pattern; } line_stipple; VkCullModeFlags cull_mode; VkFrontFace front_face; unsigned primitive_topology; bool depth_test_enable; bool depth_write_enable; VkCompareOp depth_compare_op; bool depth_bounds_test_enable; bool stencil_test_enable; struct { VkExtent2D size; VkFragmentShadingRateCombinerOpKHR combiner_ops[2]; } fragment_shading_rate; bool depth_bias_enable; bool primitive_restart_enable; bool rasterizer_discard_enable; unsigned logic_op; uint32_t color_write_enable; }; extern const struct radv_dynamic_state default_dynamic_state; const char *radv_get_debug_option_name(int id); const char *radv_get_perftest_option_name(int id); int radv_get_int_debug_option(const char *name, int default_value); struct radv_color_buffer_info { uint64_t cb_color_base; uint64_t cb_color_cmask; uint64_t cb_color_fmask; uint64_t cb_dcc_base; uint32_t cb_color_slice; uint32_t cb_color_view; uint32_t cb_color_info; uint32_t cb_color_attrib; uint32_t cb_color_attrib2; /* GFX9 and later */ uint32_t cb_color_attrib3; /* GFX10 and later */ uint32_t cb_dcc_control; uint32_t cb_color_cmask_slice; uint32_t cb_color_fmask_slice; union { uint32_t cb_color_pitch; // GFX6-GFX8 uint32_t cb_mrt_epitch; // GFX9+ }; }; struct radv_ds_buffer_info { uint64_t db_z_read_base; uint64_t db_stencil_read_base; uint64_t db_z_write_base; uint64_t db_stencil_write_base; uint64_t db_htile_data_base; uint32_t db_depth_info; uint32_t db_z_info; uint32_t db_stencil_info; uint32_t db_depth_view; uint32_t db_depth_size; uint32_t db_depth_slice; uint32_t db_htile_surface; uint32_t pa_su_poly_offset_db_fmt_cntl; uint32_t db_z_info2; /* GFX9 only */ uint32_t db_stencil_info2; /* GFX9 only */ }; void radv_initialise_color_surface(struct radv_device *device, struct radv_color_buffer_info *cb, struct radv_image_view *iview); void radv_initialise_ds_surface(struct radv_device *device, struct radv_ds_buffer_info *ds, struct radv_image_view *iview); void radv_initialise_vrs_surface(struct radv_image *image, struct radv_buffer *htile_buffer, struct radv_ds_buffer_info *ds); /** * Attachment state when recording a renderpass instance. * * The clear value is valid only if there exists a pending clear. */ struct radv_attachment_state { VkImageAspectFlags pending_clear_aspects; uint32_t cleared_views; VkClearValue clear_value; VkImageLayout current_layout; VkImageLayout current_stencil_layout; bool current_in_render_loop; bool disable_dcc; struct radv_sample_locations_state sample_location; union { struct radv_color_buffer_info cb; struct radv_ds_buffer_info ds; }; struct radv_image_view *iview; }; struct radv_descriptor_state { struct radv_descriptor_set *sets[MAX_SETS]; uint32_t dirty; uint32_t valid; struct radv_push_descriptor_set push_set; bool push_dirty; uint32_t dynamic_buffers[4 * MAX_DYNAMIC_BUFFERS]; }; struct radv_subpass_sample_locs_state { uint32_t subpass_idx; struct radv_sample_locations_state sample_location; }; enum rgp_flush_bits { RGP_FLUSH_WAIT_ON_EOP_TS = 0x1, RGP_FLUSH_VS_PARTIAL_FLUSH = 0x2, RGP_FLUSH_PS_PARTIAL_FLUSH = 0x4, RGP_FLUSH_CS_PARTIAL_FLUSH = 0x8, RGP_FLUSH_PFP_SYNC_ME = 0x10, RGP_FLUSH_SYNC_CP_DMA = 0x20, RGP_FLUSH_INVAL_VMEM_L0 = 0x40, RGP_FLUSH_INVAL_ICACHE = 0x80, RGP_FLUSH_INVAL_SMEM_L0 = 0x100, RGP_FLUSH_FLUSH_L2 = 0x200, RGP_FLUSH_INVAL_L2 = 0x400, RGP_FLUSH_FLUSH_CB = 0x800, RGP_FLUSH_INVAL_CB = 0x1000, RGP_FLUSH_FLUSH_DB = 0x2000, RGP_FLUSH_INVAL_DB = 0x4000, RGP_FLUSH_INVAL_L1 = 0x8000, }; struct radv_cmd_state { /* Vertex descriptors */ uint64_t vb_va; bool predicating; uint64_t dirty; uint32_t prefetch_L2_mask; struct radv_pipeline *pipeline; struct radv_pipeline *emitted_pipeline; struct radv_pipeline *compute_pipeline; struct radv_pipeline *emitted_compute_pipeline; struct radv_pipeline *rt_pipeline; /* emitted = emitted_compute_pipeline */ struct radv_framebuffer *framebuffer; struct radv_render_pass *pass; const struct radv_subpass *subpass; struct radv_dynamic_state dynamic; struct radv_vs_input_state dynamic_vs_input; struct radv_attachment_state *attachments; struct radv_streamout_state streamout; VkRect2D render_area; uint32_t num_subpass_sample_locs; struct radv_subpass_sample_locs_state *subpass_sample_locs; /* Index buffer */ struct radv_buffer *index_buffer; uint64_t index_offset; uint32_t index_type; uint32_t max_index_count; uint64_t index_va; int32_t last_index_type; int32_t last_primitive_reset_en; uint32_t last_primitive_reset_index; enum radv_cmd_flush_bits flush_bits; unsigned active_occlusion_queries; bool perfect_occlusion_queries_enabled; unsigned active_pipeline_queries; unsigned active_pipeline_gds_queries; uint32_t trace_id; uint32_t last_ia_multi_vgt_param; uint32_t last_num_instances; uint32_t last_first_instance; uint32_t last_vertex_offset; uint32_t last_drawid; uint32_t last_sx_ps_downconvert; uint32_t last_sx_blend_opt_epsilon; uint32_t last_sx_blend_opt_control; /* Whether CP DMA is busy/idle. */ bool dma_is_busy; /* Whether any images that are not L2 coherent are dirty from the CB. */ bool rb_noncoherent_dirty; /* Conditional rendering info. */ uint8_t predication_op; /* 32-bit or 64-bit predicate value */ int predication_type; /* -1: disabled, 0: normal, 1: inverted */ uint64_t predication_va; /* Inheritance info. */ VkQueryPipelineStatisticFlags inherited_pipeline_statistics; bool context_roll_without_scissor_emitted; /* SQTT related state. */ uint32_t current_event_type; uint32_t num_events; uint32_t num_layout_transitions; bool pending_sqtt_barrier_end; enum rgp_flush_bits sqtt_flush_bits; /* NGG culling state. */ uint32_t last_nggc_settings; int8_t last_nggc_settings_sgpr_idx; bool last_nggc_skip; uint8_t cb_mip[MAX_RTS]; /* Whether DRAW_{INDEX}_INDIRECT_MULTI is emitted. */ bool uses_draw_indirect_multi; uint32_t rt_stack_size; struct radv_shader_prolog *emitted_vs_prolog; uint32_t *emitted_vs_prolog_key; uint32_t emitted_vs_prolog_key_hash; uint32_t vbo_misaligned_mask; uint32_t vbo_bound_mask; }; struct radv_cmd_pool { struct vk_object_base base; VkAllocationCallbacks alloc; struct list_head cmd_buffers; struct list_head free_cmd_buffers; uint32_t queue_family_index; }; struct radv_cmd_buffer_upload { uint8_t *map; unsigned offset; uint64_t size; struct radeon_winsys_bo *upload_bo; struct list_head list; }; enum radv_cmd_buffer_status { RADV_CMD_BUFFER_STATUS_INVALID, RADV_CMD_BUFFER_STATUS_INITIAL, RADV_CMD_BUFFER_STATUS_RECORDING, RADV_CMD_BUFFER_STATUS_EXECUTABLE, RADV_CMD_BUFFER_STATUS_PENDING, }; struct radv_cmd_buffer { struct vk_command_buffer vk; struct radv_device *device; struct radv_cmd_pool *pool; struct list_head pool_link; VkCommandBufferUsageFlags usage_flags; VkCommandBufferLevel level; enum radv_cmd_buffer_status status; struct radeon_cmdbuf *cs; struct radv_cmd_state state; struct radv_vertex_binding vertex_bindings[MAX_VBS]; struct radv_streamout_binding streamout_bindings[MAX_SO_BUFFERS]; uint32_t queue_family_index; uint8_t push_constants[MAX_PUSH_CONSTANTS_SIZE]; VkShaderStageFlags push_constant_stages; struct radv_descriptor_set_header meta_push_descriptors; struct radv_descriptor_state descriptors[MAX_BIND_POINTS]; struct radv_cmd_buffer_upload upload; uint32_t scratch_size_per_wave_needed; uint32_t scratch_waves_wanted; uint32_t compute_scratch_size_per_wave_needed; uint32_t compute_scratch_waves_wanted; uint32_t esgs_ring_size_needed; uint32_t gsvs_ring_size_needed; bool tess_rings_needed; bool gds_needed; /* for GFX10 streamout and NGG GS queries */ bool gds_oa_needed; /* for GFX10 streamout */ bool sample_positions_needed; VkResult record_result; uint64_t gfx9_fence_va; uint32_t gfx9_fence_idx; uint64_t gfx9_eop_bug_va; /** * Whether a query pool has been resetted and we have to flush caches. */ bool pending_reset_query; /** * Bitmask of pending active query flushes. */ enum radv_cmd_flush_bits active_query_flush_bits; }; struct radv_image; struct radv_image_view; bool radv_cmd_buffer_uses_mec(struct radv_cmd_buffer *cmd_buffer); void si_emit_graphics(struct radv_device *device, struct radeon_cmdbuf *cs); void si_emit_compute(struct radv_device *device, struct radeon_cmdbuf *cs); void cik_create_gfx_config(struct radv_device *device); void si_write_scissors(struct radeon_cmdbuf *cs, int first, int count, const VkRect2D *scissors, const VkViewport *viewports, bool can_use_guardband); uint32_t si_get_ia_multi_vgt_param(struct radv_cmd_buffer *cmd_buffer, bool instanced_draw, bool indirect_draw, bool count_from_stream_output, uint32_t draw_vertex_count, unsigned topology, bool prim_restart_enable); void si_cs_emit_write_event_eop(struct radeon_cmdbuf *cs, enum chip_class chip_class, bool is_mec, unsigned event, unsigned event_flags, unsigned dst_sel, unsigned data_sel, uint64_t va, uint32_t new_fence, uint64_t gfx9_eop_bug_va); void radv_cp_wait_mem(struct radeon_cmdbuf *cs, uint32_t op, uint64_t va, uint32_t ref, uint32_t mask); void si_cs_emit_cache_flush(struct radeon_cmdbuf *cs, enum chip_class chip_class, uint32_t *fence_ptr, uint64_t va, bool is_mec, enum radv_cmd_flush_bits flush_bits, enum rgp_flush_bits *sqtt_flush_bits, uint64_t gfx9_eop_bug_va); void si_emit_cache_flush(struct radv_cmd_buffer *cmd_buffer); void si_emit_set_predication_state(struct radv_cmd_buffer *cmd_buffer, bool draw_visible, unsigned pred_op, uint64_t va); void si_cp_dma_buffer_copy(struct radv_cmd_buffer *cmd_buffer, uint64_t src_va, uint64_t dest_va, uint64_t size); void si_cp_dma_prefetch(struct radv_cmd_buffer *cmd_buffer, uint64_t va, unsigned size); void si_cp_dma_clear_buffer(struct radv_cmd_buffer *cmd_buffer, uint64_t va, uint64_t size, unsigned value); void si_cp_dma_wait_for_idle(struct radv_cmd_buffer *cmd_buffer); void radv_set_db_count_control(struct radv_cmd_buffer *cmd_buffer); unsigned radv_instance_rate_prolog_index(unsigned num_attributes, uint32_t instance_rate_inputs); uint32_t radv_hash_vs_prolog(const void *key_); bool radv_cmp_vs_prolog(const void *a_, const void *b_); bool radv_cmd_buffer_upload_alloc(struct radv_cmd_buffer *cmd_buffer, unsigned size, unsigned *out_offset, void **ptr); void radv_cmd_buffer_set_subpass(struct radv_cmd_buffer *cmd_buffer, const struct radv_subpass *subpass); void radv_cmd_buffer_restore_subpass(struct radv_cmd_buffer *cmd_buffer, const struct radv_subpass *subpass); bool radv_cmd_buffer_upload_data(struct radv_cmd_buffer *cmd_buffer, unsigned size, const void *data, unsigned *out_offset); void radv_cmd_buffer_clear_subpass(struct radv_cmd_buffer *cmd_buffer); void radv_cmd_buffer_resolve_subpass(struct radv_cmd_buffer *cmd_buffer); void radv_cmd_buffer_resolve_subpass_cs(struct radv_cmd_buffer *cmd_buffer); void radv_depth_stencil_resolve_subpass_cs(struct radv_cmd_buffer *cmd_buffer, VkImageAspectFlags aspects, VkResolveModeFlagBits resolve_mode); void radv_cmd_buffer_resolve_subpass_fs(struct radv_cmd_buffer *cmd_buffer); void radv_depth_stencil_resolve_subpass_fs(struct radv_cmd_buffer *cmd_buffer, VkImageAspectFlags aspects, VkResolveModeFlagBits resolve_mode); void radv_emit_default_sample_locations(struct radeon_cmdbuf *cs, int nr_samples); unsigned radv_get_default_max_sample_dist(int log_samples); void radv_device_init_msaa(struct radv_device *device); VkResult radv_device_init_vrs_state(struct radv_device *device); void radv_update_ds_clear_metadata(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview, VkClearDepthStencilValue ds_clear_value, VkImageAspectFlags aspects); void radv_update_color_clear_metadata(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview, int cb_idx, uint32_t color_values[2]); bool radv_image_use_dcc_image_stores(const struct radv_device *device, const struct radv_image *image); bool radv_image_use_dcc_predication(const struct radv_device *device, const struct radv_image *image); void radv_update_fce_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *range, bool value); void radv_update_dcc_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *range, bool value); enum radv_cmd_flush_bits radv_src_access_flush(struct radv_cmd_buffer *cmd_buffer, VkAccessFlags src_flags, const struct radv_image *image); enum radv_cmd_flush_bits radv_dst_access_flush(struct radv_cmd_buffer *cmd_buffer, VkAccessFlags dst_flags, const struct radv_image *image); uint32_t radv_fill_buffer(struct radv_cmd_buffer *cmd_buffer, const struct radv_image *image, struct radeon_winsys_bo *bo, uint64_t offset, uint64_t size, uint32_t value); void radv_cmd_buffer_trace_emit(struct radv_cmd_buffer *cmd_buffer); bool radv_get_memory_fd(struct radv_device *device, struct radv_device_memory *memory, int *pFD); void radv_free_memory(struct radv_device *device, const VkAllocationCallbacks *pAllocator, struct radv_device_memory *mem); static inline void radv_emit_shader_pointer_head(struct radeon_cmdbuf *cs, unsigned sh_offset, unsigned pointer_count, bool use_32bit_pointers) { radeon_emit(cs, PKT3(PKT3_SET_SH_REG, pointer_count * (use_32bit_pointers ? 1 : 2), 0)); radeon_emit(cs, (sh_offset - SI_SH_REG_OFFSET) >> 2); } static inline void radv_emit_shader_pointer_body(struct radv_device *device, struct radeon_cmdbuf *cs, uint64_t va, bool use_32bit_pointers) { radeon_emit(cs, va); if (use_32bit_pointers) { assert(va == 0 || (va >> 32) == device->physical_device->rad_info.address32_hi); } else { radeon_emit(cs, va >> 32); } } static inline void radv_emit_shader_pointer(struct radv_device *device, struct radeon_cmdbuf *cs, uint32_t sh_offset, uint64_t va, bool global) { bool use_32bit_pointers = !global; radv_emit_shader_pointer_head(cs, sh_offset, 1, use_32bit_pointers); radv_emit_shader_pointer_body(device, cs, va, use_32bit_pointers); } static inline struct radv_descriptor_state * radv_get_descriptors_state(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point) { switch (bind_point) { case VK_PIPELINE_BIND_POINT_GRAPHICS: case VK_PIPELINE_BIND_POINT_COMPUTE: return &cmd_buffer->descriptors[bind_point]; case VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR: return &cmd_buffer->descriptors[2]; default: unreachable("Unhandled bind point"); } } void radv_get_viewport_xform(const VkViewport *viewport, float scale[3], float translate[3]); /* * Takes x,y,z as exact numbers of invocations, instead of blocks. * * Limitations: Can't call normal dispatch functions without binding or rebinding * the compute pipeline. */ void radv_unaligned_dispatch(struct radv_cmd_buffer *cmd_buffer, uint32_t x, uint32_t y, uint32_t z); void radv_indirect_dispatch(struct radv_cmd_buffer *cmd_buffer, struct radeon_winsys_bo *bo, uint64_t va); struct radv_event { struct vk_object_base base; struct radeon_winsys_bo *bo; uint64_t *map; }; #define RADV_HASH_SHADER_CS_WAVE32 (1 << 1) #define RADV_HASH_SHADER_PS_WAVE32 (1 << 2) #define RADV_HASH_SHADER_GE_WAVE32 (1 << 3) #define RADV_HASH_SHADER_LLVM (1 << 4) #define RADV_HASH_SHADER_KEEP_STATISTICS (1 << 8) #define RADV_HASH_SHADER_USE_NGG_CULLING (1 << 13) #define RADV_HASH_SHADER_ROBUST_BUFFER_ACCESS (1 << 14) #define RADV_HASH_SHADER_ROBUST_BUFFER_ACCESS2 (1 << 15) #define RADV_HASH_SHADER_FORCE_EMULATE_RT (1 << 16) struct radv_pipeline_key; void radv_hash_shaders(unsigned char *hash, const VkPipelineShaderStageCreateInfo **stages, const struct radv_pipeline_layout *layout, const struct radv_pipeline_key *key, uint32_t flags); void radv_hash_rt_shaders(unsigned char *hash, const VkRayTracingPipelineCreateInfoKHR *pCreateInfo, uint32_t flags); uint32_t radv_get_hash_flags(const struct radv_device *device, bool stats); bool radv_rt_pipeline_has_dynamic_stack_size(const VkRayTracingPipelineCreateInfoKHR *pCreateInfo); #define RADV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1) #define radv_foreach_stage(stage, stage_bits) \ for (gl_shader_stage stage, __tmp = (gl_shader_stage)((stage_bits)&RADV_STAGE_MASK); \ stage = ffs(__tmp) - 1, __tmp; __tmp &= ~(1 << (stage))) extern const VkFormat radv_fs_key_format_exemplars[NUM_META_FS_KEYS]; unsigned radv_format_meta_fs_key(struct radv_device *device, VkFormat format); struct radv_multisample_state { uint32_t db_eqaa; uint32_t pa_sc_mode_cntl_0; uint32_t pa_sc_mode_cntl_1; uint32_t pa_sc_aa_config; uint32_t pa_sc_aa_mask[2]; unsigned num_samples; }; struct radv_vrs_state { uint32_t pa_cl_vrs_cntl; }; struct radv_prim_vertex_count { uint8_t min; uint8_t incr; }; struct radv_ia_multi_vgt_param_helpers { uint32_t base; bool partial_es_wave; uint8_t primgroup_size; bool ia_switch_on_eoi; bool partial_vs_wave; }; struct radv_binning_state { uint32_t pa_sc_binner_cntl_0; }; #define SI_GS_PER_ES 128 enum radv_pipeline_type { RADV_PIPELINE_GRAPHICS, /* Compute pipeline (incl raytracing pipeline) */ RADV_PIPELINE_COMPUTE, /* Pipeline library. This can't actually run and merely is a partial pipeline. */ RADV_PIPELINE_LIBRARY }; struct radv_pipeline_group_handle { uint32_t handles[2]; }; struct radv_pipeline_shader_stack_size { uint32_t recursive_size; /* anyhit + intersection */ uint32_t non_recursive_size; }; struct radv_pipeline { struct vk_object_base base; enum radv_pipeline_type type; struct radv_device *device; struct radv_dynamic_state dynamic_state; bool need_indirect_descriptor_sets; struct radv_shader_variant *shaders[MESA_SHADER_STAGES]; struct radv_shader_variant *gs_copy_shader; VkShaderStageFlags active_stages; struct radeon_cmdbuf cs; uint32_t ctx_cs_hash; struct radeon_cmdbuf ctx_cs; uint32_t binding_stride[MAX_VBS]; uint8_t attrib_bindings[MAX_VERTEX_ATTRIBS]; uint32_t attrib_ends[MAX_VERTEX_ATTRIBS]; uint32_t attrib_index_offset[MAX_VERTEX_ATTRIBS]; bool use_per_attribute_vb_descs; bool can_use_simple_input; uint8_t last_vertex_attrib_bit; uint8_t next_vertex_stage : 8; uint32_t vb_desc_usage_mask; uint32_t vb_desc_alloc_size; uint32_t user_data_0[MESA_SHADER_STAGES]; union { struct { struct radv_multisample_state ms; struct radv_binning_state binning; struct radv_vrs_state vrs; uint32_t spi_baryc_cntl; unsigned esgs_ring_size; unsigned gsvs_ring_size; uint32_t vtx_base_sgpr; struct radv_ia_multi_vgt_param_helpers ia_multi_vgt_param; uint8_t vtx_emit_num; bool uses_drawid; bool uses_baseinstance; bool can_use_guardband; uint64_t needed_dynamic_state; bool disable_out_of_order_rast_for_occlusion; unsigned tess_patch_control_points; unsigned pa_su_sc_mode_cntl; unsigned db_depth_control; unsigned pa_cl_clip_cntl; unsigned cb_color_control; bool uses_dynamic_stride; bool uses_conservative_overestimate; /* Used for rbplus */ uint32_t col_format; uint32_t cb_target_mask; /* Whether the pipeline uses NGG (GFX10+). */ bool is_ngg; bool has_ngg_culling; /* Last pre-PS API stage */ gl_shader_stage last_vgt_api_stage; } graphics; struct { struct radv_pipeline_group_handle *rt_group_handles; struct radv_pipeline_shader_stack_size *rt_stack_sizes; bool dynamic_stack_size; uint32_t group_count; } compute; struct { unsigned stage_count; VkPipelineShaderStageCreateInfo *stages; unsigned group_count; VkRayTracingShaderGroupCreateInfoKHR *groups; } library; }; unsigned max_waves; unsigned scratch_bytes_per_wave; /* Not NULL if graphics pipeline uses streamout. */ struct radv_shader_variant *streamout_shader; /* Unique pipeline hash identifier. */ uint64_t pipeline_hash; /* Pipeline layout info. */ uint32_t push_constant_size; uint32_t dynamic_offset_count; }; static inline bool radv_pipeline_has_gs(const struct radv_pipeline *pipeline) { return pipeline->shaders[MESA_SHADER_GEOMETRY] ? true : false; } static inline bool radv_pipeline_has_tess(const struct radv_pipeline *pipeline) { return pipeline->shaders[MESA_SHADER_TESS_CTRL] ? true : false; } bool radv_pipeline_has_ngg_passthrough(const struct radv_pipeline *pipeline); bool radv_pipeline_has_gs_copy_shader(const struct radv_pipeline *pipeline); struct radv_userdata_info *radv_lookup_user_sgpr(struct radv_pipeline *pipeline, gl_shader_stage stage, int idx); struct radv_shader_variant *radv_get_shader(const struct radv_pipeline *pipeline, gl_shader_stage stage); struct radv_graphics_pipeline_create_info { bool use_rectlist; bool db_depth_clear; bool db_stencil_clear; bool depth_compress_disable; bool stencil_compress_disable; bool resummarize_enable; uint32_t custom_blend_mode; }; VkResult radv_graphics_pipeline_create(VkDevice device, VkPipelineCache cache, const VkGraphicsPipelineCreateInfo *pCreateInfo, const struct radv_graphics_pipeline_create_info *extra, const VkAllocationCallbacks *alloc, VkPipeline *pPipeline); VkResult radv_compute_pipeline_create(VkDevice _device, VkPipelineCache _cache, const VkComputePipelineCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, const uint8_t *custom_hash, struct radv_pipeline_shader_stack_size *rt_stack_sizes, uint32_t rt_group_count, VkPipeline *pPipeline); void radv_pipeline_destroy(struct radv_device *device, struct radv_pipeline *pipeline, const VkAllocationCallbacks *allocator); struct radv_binning_settings { unsigned context_states_per_bin; /* allowed range: [1, 6] */ unsigned persistent_states_per_bin; /* allowed range: [1, 32] */ unsigned fpovs_per_batch; /* allowed range: [0, 255], 0 = unlimited */ }; struct radv_binning_settings radv_get_binning_settings(const struct radv_physical_device *pdev); struct vk_format_description; uint32_t radv_translate_buffer_dataformat(const struct util_format_description *desc, int first_non_void); uint32_t radv_translate_buffer_numformat(const struct util_format_description *desc, int first_non_void); bool radv_is_buffer_format_supported(VkFormat format, bool *scaled); void radv_translate_vertex_format(const struct radv_physical_device *pdevice, VkFormat format, const struct util_format_description *desc, unsigned *dfmt, unsigned *nfmt, bool *post_shuffle, enum radv_vs_input_alpha_adjust *alpha_adjust); uint32_t radv_translate_colorformat(VkFormat format); uint32_t radv_translate_color_numformat(VkFormat format, const struct util_format_description *desc, int first_non_void); uint32_t radv_colorformat_endian_swap(uint32_t colorformat); unsigned radv_translate_colorswap(VkFormat format, bool do_endian_swap); uint32_t radv_translate_dbformat(VkFormat format); uint32_t radv_translate_tex_dataformat(VkFormat format, const struct util_format_description *desc, int first_non_void); uint32_t radv_translate_tex_numformat(VkFormat format, const struct util_format_description *desc, int first_non_void); bool radv_format_pack_clear_color(VkFormat format, uint32_t clear_vals[2], VkClearColorValue *value); bool radv_is_storage_image_format_supported(struct radv_physical_device *physical_device, VkFormat format); bool radv_is_colorbuffer_format_supported(const struct radv_physical_device *pdevice, VkFormat format, bool *blendable); bool radv_dcc_formats_compatible(VkFormat format1, VkFormat format2, bool *sign_reinterpret); bool radv_is_atomic_format_supported(VkFormat format); bool radv_device_supports_etc(struct radv_physical_device *physical_device); struct radv_image_plane { VkFormat format; struct radeon_surf surface; }; struct radv_image { struct vk_object_base base; VkImageType type; /* The original VkFormat provided by the client. This may not match any * of the actual surface formats. */ VkFormat vk_format; VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */ struct ac_surf_info info; VkImageTiling tiling; /** VkImageCreateInfo::tiling */ VkImageCreateFlags flags; /** VkImageCreateInfo::flags */ VkDeviceSize size; uint32_t alignment; unsigned queue_family_mask; bool exclusive; bool shareable; bool l2_coherent; bool dcc_sign_reinterpret; bool support_comp_to_single; /* Set when bound */ struct radeon_winsys_bo *bo; VkDeviceSize offset; bool tc_compatible_cmask; uint64_t clear_value_offset; uint64_t fce_pred_offset; uint64_t dcc_pred_offset; /* * Metadata for the TC-compat zrange workaround. If the 32-bit value * stored at this offset is UINT_MAX, the driver will emit * DB_Z_INFO.ZRANGE_PRECISION=0, otherwise it will skip the * SET_CONTEXT_REG packet. */ uint64_t tc_compat_zrange_offset; /* For VK_ANDROID_native_buffer, the WSI image owns the memory, */ VkDeviceMemory owned_memory; unsigned plane_count; struct radv_image_plane planes[0]; }; /* Whether the image has a htile that is known consistent with the contents of * the image and is allowed to be in compressed form. * * If this is false reads that don't use the htile should be able to return * correct results. */ bool radv_layout_is_htile_compressed(const struct radv_device *device, const struct radv_image *image, VkImageLayout layout, bool in_render_loop, unsigned queue_mask); bool radv_layout_can_fast_clear(const struct radv_device *device, const struct radv_image *image, unsigned level, VkImageLayout layout, bool in_render_loop, unsigned queue_mask); bool radv_layout_dcc_compressed(const struct radv_device *device, const struct radv_image *image, unsigned level, VkImageLayout layout, bool in_render_loop, unsigned queue_mask); bool radv_layout_fmask_compressed(const struct radv_device *device, const struct radv_image *image, VkImageLayout layout, unsigned queue_mask); /** * Return whether the image has CMASK metadata for color surfaces. */ static inline bool radv_image_has_cmask(const struct radv_image *image) { return image->planes[0].surface.cmask_offset; } /** * Return whether the image has FMASK metadata for color surfaces. */ static inline bool radv_image_has_fmask(const struct radv_image *image) { return image->planes[0].surface.fmask_offset; } /** * Return whether the image has DCC metadata for color surfaces. */ static inline bool radv_image_has_dcc(const struct radv_image *image) { return !(image->planes[0].surface.flags & RADEON_SURF_Z_OR_SBUFFER) && image->planes[0].surface.meta_offset; } /** * Return whether the image is TC-compatible CMASK. */ static inline bool radv_image_is_tc_compat_cmask(const struct radv_image *image) { return radv_image_has_fmask(image) && image->tc_compatible_cmask; } /** * Return whether DCC metadata is enabled for a level. */ static inline bool radv_dcc_enabled(const struct radv_image *image, unsigned level) { return radv_image_has_dcc(image) && level < image->planes[0].surface.num_meta_levels; } /** * Return whether the image has CB metadata. */ static inline bool radv_image_has_CB_metadata(const struct radv_image *image) { return radv_image_has_cmask(image) || radv_image_has_fmask(image) || radv_image_has_dcc(image); } /** * Return whether the image has HTILE metadata for depth surfaces. */ static inline bool radv_image_has_htile(const struct radv_image *image) { return image->planes[0].surface.flags & RADEON_SURF_Z_OR_SBUFFER && image->planes[0].surface.meta_size; } /** * Return whether the image has VRS HTILE metadata for depth surfaces */ static inline bool radv_image_has_vrs_htile(const struct radv_device *device, const struct radv_image *image) { /* Any depth buffer can potentially use VRS. */ return device->attachment_vrs_enabled && radv_image_has_htile(image) && (image->usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT); } /** * Return whether HTILE metadata is enabled for a level. */ static inline bool radv_htile_enabled(const struct radv_image *image, unsigned level) { return radv_image_has_htile(image) && level < image->planes[0].surface.num_meta_levels; } /** * Return whether the image is TC-compatible HTILE. */ static inline bool radv_image_is_tc_compat_htile(const struct radv_image *image) { return radv_image_has_htile(image) && (image->planes[0].surface.flags & RADEON_SURF_TC_COMPATIBLE_HTILE); } /** * Return whether the entire HTILE buffer can be used for depth in order to * improve HiZ Z-Range precision. */ static inline bool radv_image_tile_stencil_disabled(const struct radv_device *device, const struct radv_image *image) { if (device->physical_device->rad_info.chip_class >= GFX9) { return !vk_format_has_stencil(image->vk_format) && !radv_image_has_vrs_htile(device, image); } else { /* Due to a hw bug, TILE_STENCIL_DISABLE must be set to 0 for * the TC-compat ZRANGE issue even if no stencil is used. */ return !vk_format_has_stencil(image->vk_format) && !radv_image_is_tc_compat_htile(image); } } static inline bool radv_image_has_clear_value(const struct radv_image *image) { return image->clear_value_offset != 0; } static inline uint64_t radv_image_get_fast_clear_va(const struct radv_image *image, uint32_t base_level) { assert(radv_image_has_clear_value(image)); uint64_t va = radv_buffer_get_va(image->bo); va += image->offset + image->clear_value_offset + base_level * 8; return va; } static inline uint64_t radv_image_get_fce_pred_va(const struct radv_image *image, uint32_t base_level) { assert(image->fce_pred_offset != 0); uint64_t va = radv_buffer_get_va(image->bo); va += image->offset + image->fce_pred_offset + base_level * 8; return va; } static inline uint64_t radv_image_get_dcc_pred_va(const struct radv_image *image, uint32_t base_level) { assert(image->dcc_pred_offset != 0); uint64_t va = radv_buffer_get_va(image->bo); va += image->offset + image->dcc_pred_offset + base_level * 8; return va; } static inline uint64_t radv_get_tc_compat_zrange_va(const struct radv_image *image, uint32_t base_level) { assert(image->tc_compat_zrange_offset != 0); uint64_t va = radv_buffer_get_va(image->bo); va += image->offset + image->tc_compat_zrange_offset + base_level * 4; return va; } static inline uint64_t radv_get_ds_clear_value_va(const struct radv_image *image, uint32_t base_level) { assert(radv_image_has_clear_value(image)); uint64_t va = radv_buffer_get_va(image->bo); va += image->offset + image->clear_value_offset + base_level * 8; return va; } static inline uint32_t radv_get_htile_initial_value(const struct radv_device *device, const struct radv_image *image) { uint32_t initial_value; if (radv_image_tile_stencil_disabled(device, image)) { /* Z only (no stencil): * * |31 18|17 4|3 0| * +---------+---------+-------+ * | Max Z | Min Z | ZMask | */ initial_value = 0xfffc000f; } else { /* Z and stencil: * * |31 12|11 10|9 8|7 6|5 4|3 0| * +-----------+-----+------+-----+-----+-------+ * | Z Range | | SMem | SR1 | SR0 | ZMask | * * SR0/SR1 contains the stencil test results. Initializing * SR0/SR1 to 0x3 means the stencil test result is unknown. * * Z, stencil and 4 bit VRS encoding: * |31 12|11 10|9 8|7 6|5 4|3 0| * +-----------+------------+------+------------+-----+-------+ * | Z Range | VRS y-rate | SMem | VRS x-rate | SR0 | ZMask | */ if (radv_image_has_vrs_htile(device, image)) { /* Initialize the VRS x-rate value at 0, so the hw interprets it as 1 sample. */ initial_value = 0xfffff33f; } else { initial_value = 0xfffff3ff; } } return initial_value; } static inline bool radv_image_get_iterate256(struct radv_device *device, struct radv_image *image) { /* ITERATE_256 is required for depth or stencil MSAA images that are TC-compatible HTILE. */ return device->physical_device->rad_info.chip_class >= GFX10 && (image->usage & (VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT)) && radv_image_is_tc_compat_htile(image) && image->info.samples > 1; } unsigned radv_image_queue_family_mask(const struct radv_image *image, uint32_t family, uint32_t queue_family); static inline uint32_t radv_get_layerCount(const struct radv_image *image, const VkImageSubresourceRange *range) { return range->layerCount == VK_REMAINING_ARRAY_LAYERS ? image->info.array_size - range->baseArrayLayer : range->layerCount; } static inline uint32_t radv_get_levelCount(const struct radv_image *image, const VkImageSubresourceRange *range) { return range->levelCount == VK_REMAINING_MIP_LEVELS ? image->info.levels - range->baseMipLevel : range->levelCount; } bool radv_image_is_renderable(struct radv_device *device, struct radv_image *image); struct radeon_bo_metadata; void radv_init_metadata(struct radv_device *device, struct radv_image *image, struct radeon_bo_metadata *metadata); void radv_image_override_offset_stride(struct radv_device *device, struct radv_image *image, uint64_t offset, uint32_t stride); union radv_descriptor { struct { uint32_t plane0_descriptor[8]; uint32_t fmask_descriptor[8]; }; struct { uint32_t plane_descriptors[3][8]; }; }; struct radv_image_view { struct vk_object_base base; struct radv_image *image; /**< VkImageViewCreateInfo::image */ VkImageViewType type; VkImageAspectFlags aspect_mask; VkFormat vk_format; unsigned plane_id; uint32_t base_layer; uint32_t layer_count; uint32_t base_mip; uint32_t level_count; VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */ /* Whether the image iview supports fast clear. */ bool support_fast_clear; union radv_descriptor descriptor; /* Descriptor for use as a storage image as opposed to a sampled image. * This has a few differences for cube maps (e.g. type). */ union radv_descriptor storage_descriptor; }; struct radv_image_create_info { const VkImageCreateInfo *vk_info; bool scanout; bool no_metadata_planes; const struct radeon_bo_metadata *bo_metadata; }; VkResult radv_image_create_layout(struct radv_device *device, struct radv_image_create_info create_info, const struct VkImageDrmFormatModifierExplicitCreateInfoEXT *mod_info, struct radv_image *image); VkResult radv_image_create(VkDevice _device, const struct radv_image_create_info *info, const VkAllocationCallbacks *alloc, VkImage *pImage); bool radv_are_formats_dcc_compatible(const struct radv_physical_device *pdev, const void *pNext, VkFormat format, VkImageCreateFlags flags, bool *sign_reinterpret); bool vi_alpha_is_on_msb(struct radv_device *device, VkFormat format); VkResult radv_image_from_gralloc(VkDevice device_h, const VkImageCreateInfo *base_info, const VkNativeBufferANDROID *gralloc_info, const VkAllocationCallbacks *alloc, VkImage *out_image_h); uint64_t radv_ahb_usage_from_vk_usage(const VkImageCreateFlags vk_create, const VkImageUsageFlags vk_usage); VkResult radv_import_ahb_memory(struct radv_device *device, struct radv_device_memory *mem, unsigned priority, const VkImportAndroidHardwareBufferInfoANDROID *info); VkResult radv_create_ahb_memory(struct radv_device *device, struct radv_device_memory *mem, unsigned priority, const VkMemoryAllocateInfo *pAllocateInfo); VkFormat radv_select_android_external_format(const void *next, VkFormat default_format); bool radv_android_gralloc_supports_format(VkFormat format, VkImageUsageFlagBits usage); struct radv_image_view_extra_create_info { bool disable_compression; bool enable_compression; }; void radv_image_view_init(struct radv_image_view *view, struct radv_device *device, const VkImageViewCreateInfo *pCreateInfo, const struct radv_image_view_extra_create_info *extra_create_info); void radv_image_view_finish(struct radv_image_view *iview); VkFormat radv_get_aspect_format(struct radv_image *image, VkImageAspectFlags mask); struct radv_sampler_ycbcr_conversion { struct vk_object_base base; VkFormat format; VkSamplerYcbcrModelConversion ycbcr_model; VkSamplerYcbcrRange ycbcr_range; VkComponentMapping components; VkChromaLocation chroma_offsets[2]; VkFilter chroma_filter; }; struct radv_buffer_view { struct vk_object_base base; struct radeon_winsys_bo *bo; VkFormat vk_format; uint64_t range; /**< VkBufferViewCreateInfo::range */ uint32_t state[4]; }; void radv_buffer_view_init(struct radv_buffer_view *view, struct radv_device *device, const VkBufferViewCreateInfo *pCreateInfo); void radv_buffer_view_finish(struct radv_buffer_view *view); static inline struct VkExtent3D radv_sanitize_image_extent(const VkImageType imageType, const struct VkExtent3D imageExtent) { switch (imageType) { case VK_IMAGE_TYPE_1D: return (VkExtent3D){imageExtent.width, 1, 1}; case VK_IMAGE_TYPE_2D: return (VkExtent3D){imageExtent.width, imageExtent.height, 1}; case VK_IMAGE_TYPE_3D: return imageExtent; default: unreachable("invalid image type"); } } static inline struct VkOffset3D radv_sanitize_image_offset(const VkImageType imageType, const struct VkOffset3D imageOffset) { switch (imageType) { case VK_IMAGE_TYPE_1D: return (VkOffset3D){imageOffset.x, 0, 0}; case VK_IMAGE_TYPE_2D: return (VkOffset3D){imageOffset.x, imageOffset.y, 0}; case VK_IMAGE_TYPE_3D: return imageOffset; default: unreachable("invalid image type"); } } static inline bool radv_image_extent_compare(const struct radv_image *image, const VkExtent3D *extent) { if (extent->width != image->info.width || extent->height != image->info.height || extent->depth != image->info.depth) return false; return true; } struct radv_sampler { struct vk_object_base base; uint32_t state[4]; struct radv_sampler_ycbcr_conversion *ycbcr_sampler; uint32_t border_color_slot; }; struct radv_framebuffer { struct vk_object_base base; uint32_t width; uint32_t height; uint32_t layers; bool imageless; uint32_t attachment_count; struct radv_image_view *attachments[0]; }; struct radv_subpass_barrier { VkPipelineStageFlags src_stage_mask; VkAccessFlags src_access_mask; VkAccessFlags dst_access_mask; }; void radv_emit_subpass_barrier(struct radv_cmd_buffer *cmd_buffer, const struct radv_subpass_barrier *barrier); struct radv_subpass_attachment { uint32_t attachment; VkImageLayout layout; VkImageLayout stencil_layout; bool in_render_loop; }; struct radv_subpass { uint32_t attachment_count; struct radv_subpass_attachment *attachments; uint32_t input_count; uint32_t color_count; struct radv_subpass_attachment *input_attachments; struct radv_subpass_attachment *color_attachments; struct radv_subpass_attachment *resolve_attachments; struct radv_subpass_attachment *depth_stencil_attachment; struct radv_subpass_attachment *ds_resolve_attachment; struct radv_subpass_attachment *vrs_attachment; VkResolveModeFlagBits depth_resolve_mode; VkResolveModeFlagBits stencil_resolve_mode; /** Subpass has at least one color resolve attachment */ bool has_color_resolve; /** Subpass has at least one color attachment */ bool has_color_att; struct radv_subpass_barrier start_barrier; uint32_t view_mask; VkSampleCountFlagBits color_sample_count; VkSampleCountFlagBits depth_sample_count; VkSampleCountFlagBits max_sample_count; /* Whether the subpass has ingoing/outgoing external dependencies. */ bool has_ingoing_dep; bool has_outgoing_dep; }; uint32_t radv_get_subpass_id(struct radv_cmd_buffer *cmd_buffer); struct radv_render_pass_attachment { VkFormat format; uint32_t samples; VkAttachmentLoadOp load_op; VkAttachmentLoadOp stencil_load_op; VkImageLayout initial_layout; VkImageLayout final_layout; VkImageLayout stencil_initial_layout; VkImageLayout stencil_final_layout; /* The subpass id in which the attachment will be used first/last. */ uint32_t first_subpass_idx; uint32_t last_subpass_idx; }; struct radv_render_pass { struct vk_object_base base; uint32_t attachment_count; uint32_t subpass_count; struct radv_subpass_attachment *subpass_attachments; struct radv_render_pass_attachment *attachments; struct radv_subpass_barrier end_barrier; struct radv_subpass subpasses[0]; }; VkResult radv_device_init_meta(struct radv_device *device); void radv_device_finish_meta(struct radv_device *device); struct radv_query_pool { struct vk_object_base base; struct radeon_winsys_bo *bo; uint32_t stride; uint32_t availability_offset; uint64_t size; char *ptr; VkQueryType type; uint32_t pipeline_stats_mask; }; typedef enum { RADV_SEMAPHORE_NONE, RADV_SEMAPHORE_SYNCOBJ, RADV_SEMAPHORE_TIMELINE_SYNCOBJ, RADV_SEMAPHORE_TIMELINE, } radv_semaphore_kind; struct radv_deferred_queue_submission; struct radv_timeline_waiter { struct list_head list; struct radv_deferred_queue_submission *submission; uint64_t value; }; struct radv_timeline_point { struct list_head list; uint64_t value; uint32_t syncobj; /* Separate from the list to accomodate CPU wait being async, as well * as prevent point deletion during submission. */ unsigned wait_count; }; struct radv_timeline { mtx_t mutex; uint64_t highest_signaled; uint64_t highest_submitted; struct list_head points; /* Keep free points on hand so we do not have to recreate syncobjs all * the time. */ struct list_head free_points; /* Submissions that are deferred waiting for a specific value to be * submitted. */ struct list_head waiters; }; struct radv_timeline_syncobj { /* Keep syncobj first, so common-code can just handle this as * non-timeline syncobj. */ uint32_t syncobj; uint64_t max_point; /* max submitted point. */ }; struct radv_semaphore_part { radv_semaphore_kind kind; union { uint32_t syncobj; struct radv_timeline timeline; struct radv_timeline_syncobj timeline_syncobj; }; }; struct radv_semaphore { struct vk_object_base base; struct radv_semaphore_part permanent; struct radv_semaphore_part temporary; }; bool radv_queue_internal_submit(struct radv_queue *queue, struct radeon_cmdbuf *cs); void radv_set_descriptor_set(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point, struct radv_descriptor_set *set, unsigned idx); void radv_update_descriptor_sets(struct radv_device *device, struct radv_cmd_buffer *cmd_buffer, VkDescriptorSet overrideSet, uint32_t descriptorWriteCount, const VkWriteDescriptorSet *pDescriptorWrites, uint32_t descriptorCopyCount, const VkCopyDescriptorSet *pDescriptorCopies); void radv_update_descriptor_set_with_template(struct radv_device *device, struct radv_cmd_buffer *cmd_buffer, struct radv_descriptor_set *set, VkDescriptorUpdateTemplate descriptorUpdateTemplate, const void *pData); void radv_meta_push_descriptor_set(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint pipelineBindPoint, VkPipelineLayout _layout, uint32_t set, uint32_t descriptorWriteCount, const VkWriteDescriptorSet *pDescriptorWrites); uint32_t radv_init_dcc(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *range, uint32_t value); uint32_t radv_init_fmask(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *range); typedef enum { RADV_FENCE_NONE, RADV_FENCE_SYNCOBJ, } radv_fence_kind; struct radv_fence_part { radv_fence_kind kind; /* DRM syncobj handle for syncobj-based fences. */ uint32_t syncobj; }; struct radv_fence { struct vk_object_base base; struct radv_fence_part permanent; struct radv_fence_part temporary; }; /* radv_nir_to_llvm.c */ struct radv_shader_args; void llvm_compile_shader(struct radv_device *device, unsigned shader_count, struct nir_shader *const *shaders, struct radv_shader_binary **binary, struct radv_shader_args *args); /* radv_shader_info.h */ struct radv_shader_info; void radv_nir_shader_info_pass(struct radv_device *device, const struct nir_shader *nir, const struct radv_pipeline_layout *layout, const struct radv_pipeline_key *pipeline_key, struct radv_shader_info *info); void radv_nir_shader_info_init(struct radv_shader_info *info); bool radv_thread_trace_init(struct radv_device *device); void radv_thread_trace_finish(struct radv_device *device); bool radv_begin_thread_trace(struct radv_queue *queue); bool radv_end_thread_trace(struct radv_queue *queue); bool radv_get_thread_trace(struct radv_queue *queue, struct ac_thread_trace *thread_trace); void radv_emit_thread_trace_userdata(const struct radv_device *device, struct radeon_cmdbuf *cs, const void *data, uint32_t num_dwords); bool radv_is_instruction_timing_enabled(void); /* radv_sqtt_layer_.c */ struct radv_barrier_data { union { struct { uint16_t depth_stencil_expand : 1; uint16_t htile_hiz_range_expand : 1; uint16_t depth_stencil_resummarize : 1; uint16_t dcc_decompress : 1; uint16_t fmask_decompress : 1; uint16_t fast_clear_eliminate : 1; uint16_t fmask_color_expand : 1; uint16_t init_mask_ram : 1; uint16_t reserved : 8; }; uint16_t all; } layout_transitions; }; /** * Value for the reason field of an RGP barrier start marker originating from * the Vulkan client (does not include PAL-defined values). (Table 15) */ enum rgp_barrier_reason { RGP_BARRIER_UNKNOWN_REASON = 0xFFFFFFFF, /* External app-generated barrier reasons, i.e. API synchronization * commands Range of valid values: [0x00000001 ... 0x7FFFFFFF]. */ RGP_BARRIER_EXTERNAL_CMD_PIPELINE_BARRIER = 0x00000001, RGP_BARRIER_EXTERNAL_RENDER_PASS_SYNC = 0x00000002, RGP_BARRIER_EXTERNAL_CMD_WAIT_EVENTS = 0x00000003, /* Internal barrier reasons, i.e. implicit synchronization inserted by * the Vulkan driver Range of valid values: [0xC0000000 ... 0xFFFFFFFE]. */ RGP_BARRIER_INTERNAL_BASE = 0xC0000000, RGP_BARRIER_INTERNAL_PRE_RESET_QUERY_POOL_SYNC = RGP_BARRIER_INTERNAL_BASE + 0, RGP_BARRIER_INTERNAL_POST_RESET_QUERY_POOL_SYNC = RGP_BARRIER_INTERNAL_BASE + 1, RGP_BARRIER_INTERNAL_GPU_EVENT_RECYCLE_STALL = RGP_BARRIER_INTERNAL_BASE + 2, RGP_BARRIER_INTERNAL_PRE_COPY_QUERY_POOL_RESULTS_SYNC = RGP_BARRIER_INTERNAL_BASE + 3 }; void radv_describe_begin_cmd_buffer(struct radv_cmd_buffer *cmd_buffer); void radv_describe_end_cmd_buffer(struct radv_cmd_buffer *cmd_buffer); void radv_describe_draw(struct radv_cmd_buffer *cmd_buffer); void radv_describe_dispatch(struct radv_cmd_buffer *cmd_buffer, int x, int y, int z); void radv_describe_begin_render_pass_clear(struct radv_cmd_buffer *cmd_buffer, VkImageAspectFlagBits aspects); void radv_describe_end_render_pass_clear(struct radv_cmd_buffer *cmd_buffer); void radv_describe_begin_render_pass_resolve(struct radv_cmd_buffer *cmd_buffer); void radv_describe_end_render_pass_resolve(struct radv_cmd_buffer *cmd_buffer); void radv_describe_barrier_start(struct radv_cmd_buffer *cmd_buffer, enum rgp_barrier_reason reason); void radv_describe_barrier_end(struct radv_cmd_buffer *cmd_buffer); void radv_describe_barrier_end_delayed(struct radv_cmd_buffer *cmd_buffer); void radv_describe_layout_transition(struct radv_cmd_buffer *cmd_buffer, const struct radv_barrier_data *barrier); uint64_t radv_get_current_time(void); static inline uint32_t si_conv_gl_prim_to_vertices(unsigned gl_prim) { switch (gl_prim) { case 0: /* GL_POINTS */ return 1; case 1: /* GL_LINES */ case 3: /* GL_LINE_STRIP */ return 2; case 4: /* GL_TRIANGLES */ case 5: /* GL_TRIANGLE_STRIP */ return 3; case 0xA: /* GL_LINE_STRIP_ADJACENCY_ARB */ return 4; case 0xc: /* GL_TRIANGLES_ADJACENCY_ARB */ return 6; case 7: /* GL_QUADS */ return V_028A6C_TRISTRIP; default: assert(0); return 0; } } static inline uint32_t si_conv_prim_to_gs_out(enum VkPrimitiveTopology topology) { switch (topology) { case VK_PRIMITIVE_TOPOLOGY_POINT_LIST: case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST: return V_028A6C_POINTLIST; case VK_PRIMITIVE_TOPOLOGY_LINE_LIST: case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP: case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY: case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY: return V_028A6C_LINESTRIP; case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY: return V_028A6C_TRISTRIP; default: assert(0); return 0; } } struct radv_extra_render_pass_begin_info { bool disable_dcc; }; void radv_cmd_buffer_begin_render_pass(struct radv_cmd_buffer *cmd_buffer, const VkRenderPassBeginInfo *pRenderPassBegin, const struct radv_extra_render_pass_begin_info *extra_info); void radv_cmd_buffer_end_render_pass(struct radv_cmd_buffer *cmd_buffer); static inline uint32_t si_translate_prim(unsigned topology) { switch (topology) { case VK_PRIMITIVE_TOPOLOGY_POINT_LIST: return V_008958_DI_PT_POINTLIST; case VK_PRIMITIVE_TOPOLOGY_LINE_LIST: return V_008958_DI_PT_LINELIST; case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP: return V_008958_DI_PT_LINESTRIP; case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST: return V_008958_DI_PT_TRILIST; case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP: return V_008958_DI_PT_TRISTRIP; case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN: return V_008958_DI_PT_TRIFAN; case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY: return V_008958_DI_PT_LINELIST_ADJ; case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY: return V_008958_DI_PT_LINESTRIP_ADJ; case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY: return V_008958_DI_PT_TRILIST_ADJ; case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY: return V_008958_DI_PT_TRISTRIP_ADJ; case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST: return V_008958_DI_PT_PATCH; default: assert(0); return 0; } } static inline uint32_t si_translate_stencil_op(enum VkStencilOp op) { switch (op) { case VK_STENCIL_OP_KEEP: return V_02842C_STENCIL_KEEP; case VK_STENCIL_OP_ZERO: return V_02842C_STENCIL_ZERO; case VK_STENCIL_OP_REPLACE: return V_02842C_STENCIL_REPLACE_TEST; case VK_STENCIL_OP_INCREMENT_AND_CLAMP: return V_02842C_STENCIL_ADD_CLAMP; case VK_STENCIL_OP_DECREMENT_AND_CLAMP: return V_02842C_STENCIL_SUB_CLAMP; case VK_STENCIL_OP_INVERT: return V_02842C_STENCIL_INVERT; case VK_STENCIL_OP_INCREMENT_AND_WRAP: return V_02842C_STENCIL_ADD_WRAP; case VK_STENCIL_OP_DECREMENT_AND_WRAP: return V_02842C_STENCIL_SUB_WRAP; default: return 0; } } static inline uint32_t si_translate_blend_logic_op(VkLogicOp op) { switch (op) { case VK_LOGIC_OP_CLEAR: return V_028808_ROP3_CLEAR; case VK_LOGIC_OP_AND: return V_028808_ROP3_AND; case VK_LOGIC_OP_AND_REVERSE: return V_028808_ROP3_AND_REVERSE; case VK_LOGIC_OP_COPY: return V_028808_ROP3_COPY; case VK_LOGIC_OP_AND_INVERTED: return V_028808_ROP3_AND_INVERTED; case VK_LOGIC_OP_NO_OP: return V_028808_ROP3_NO_OP; case VK_LOGIC_OP_XOR: return V_028808_ROP3_XOR; case VK_LOGIC_OP_OR: return V_028808_ROP3_OR; case VK_LOGIC_OP_NOR: return V_028808_ROP3_NOR; case VK_LOGIC_OP_EQUIVALENT: return V_028808_ROP3_EQUIVALENT; case VK_LOGIC_OP_INVERT: return V_028808_ROP3_INVERT; case VK_LOGIC_OP_OR_REVERSE: return V_028808_ROP3_OR_REVERSE; case VK_LOGIC_OP_COPY_INVERTED: return V_028808_ROP3_COPY_INVERTED; case VK_LOGIC_OP_OR_INVERTED: return V_028808_ROP3_OR_INVERTED; case VK_LOGIC_OP_NAND: return V_028808_ROP3_NAND; case VK_LOGIC_OP_SET: return V_028808_ROP3_SET; default: unreachable("Unhandled logic op"); } } /** * Helper used for debugging compiler issues by enabling/disabling LLVM for a * specific shader stage (developers only). */ static inline bool radv_use_llvm_for_stage(struct radv_device *device, UNUSED gl_shader_stage stage) { return device->physical_device->use_llvm; } struct radv_acceleration_structure { struct vk_object_base base; struct radeon_winsys_bo *bo; uint64_t mem_offset; uint64_t size; }; static inline uint64_t radv_accel_struct_get_va(const struct radv_acceleration_structure *accel) { return radv_buffer_get_va(accel->bo) + accel->mem_offset; } #define RADV_FROM_HANDLE(__radv_type, __name, __handle) \ VK_FROM_HANDLE(__radv_type, __name, __handle) VK_DEFINE_HANDLE_CASTS(radv_cmd_buffer, vk.base, VkCommandBuffer, VK_OBJECT_TYPE_COMMAND_BUFFER) VK_DEFINE_HANDLE_CASTS(radv_device, vk.base, VkDevice, VK_OBJECT_TYPE_DEVICE) VK_DEFINE_HANDLE_CASTS(radv_instance, vk.base, VkInstance, VK_OBJECT_TYPE_INSTANCE) VK_DEFINE_HANDLE_CASTS(radv_physical_device, vk.base, VkPhysicalDevice, VK_OBJECT_TYPE_PHYSICAL_DEVICE) VK_DEFINE_HANDLE_CASTS(radv_queue, vk.base, VkQueue, VK_OBJECT_TYPE_QUEUE) VK_DEFINE_NONDISP_HANDLE_CASTS(radv_acceleration_structure, base, VkAccelerationStructureKHR, VK_OBJECT_TYPE_ACCELERATION_STRUCTURE_KHR) VK_DEFINE_NONDISP_HANDLE_CASTS(radv_cmd_pool, base, VkCommandPool, VK_OBJECT_TYPE_COMMAND_POOL) VK_DEFINE_NONDISP_HANDLE_CASTS(radv_buffer, base, VkBuffer, VK_OBJECT_TYPE_BUFFER) VK_DEFINE_NONDISP_HANDLE_CASTS(radv_buffer_view, base, VkBufferView, VK_OBJECT_TYPE_BUFFER_VIEW) VK_DEFINE_NONDISP_HANDLE_CASTS(radv_descriptor_pool, base, VkDescriptorPool, VK_OBJECT_TYPE_DESCRIPTOR_POOL) VK_DEFINE_NONDISP_HANDLE_CASTS(radv_descriptor_set, header.base, VkDescriptorSet, VK_OBJECT_TYPE_DESCRIPTOR_SET) VK_DEFINE_NONDISP_HANDLE_CASTS(radv_descriptor_set_layout, base, VkDescriptorSetLayout, VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT) VK_DEFINE_NONDISP_HANDLE_CASTS(radv_descriptor_update_template, base, VkDescriptorUpdateTemplate, VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE) VK_DEFINE_NONDISP_HANDLE_CASTS(radv_device_memory, base, VkDeviceMemory, VK_OBJECT_TYPE_DEVICE_MEMORY) VK_DEFINE_NONDISP_HANDLE_CASTS(radv_fence, base, VkFence, VK_OBJECT_TYPE_FENCE) VK_DEFINE_NONDISP_HANDLE_CASTS(radv_event, base, VkEvent, VK_OBJECT_TYPE_EVENT) VK_DEFINE_NONDISP_HANDLE_CASTS(radv_framebuffer, base, VkFramebuffer, VK_OBJECT_TYPE_FRAMEBUFFER) VK_DEFINE_NONDISP_HANDLE_CASTS(radv_image, base, VkImage, VK_OBJECT_TYPE_IMAGE) VK_DEFINE_NONDISP_HANDLE_CASTS(radv_image_view, base, VkImageView, VK_OBJECT_TYPE_IMAGE_VIEW); VK_DEFINE_NONDISP_HANDLE_CASTS(radv_pipeline_cache, base, VkPipelineCache, VK_OBJECT_TYPE_PIPELINE_CACHE) VK_DEFINE_NONDISP_HANDLE_CASTS(radv_pipeline, base, VkPipeline, VK_OBJECT_TYPE_PIPELINE) VK_DEFINE_NONDISP_HANDLE_CASTS(radv_pipeline_layout, base, VkPipelineLayout, VK_OBJECT_TYPE_PIPELINE_LAYOUT) VK_DEFINE_NONDISP_HANDLE_CASTS(radv_query_pool, base, VkQueryPool, VK_OBJECT_TYPE_QUERY_POOL) VK_DEFINE_NONDISP_HANDLE_CASTS(radv_render_pass, base, VkRenderPass, VK_OBJECT_TYPE_RENDER_PASS) VK_DEFINE_NONDISP_HANDLE_CASTS(radv_sampler, base, VkSampler, VK_OBJECT_TYPE_SAMPLER) VK_DEFINE_NONDISP_HANDLE_CASTS(radv_sampler_ycbcr_conversion, base, VkSamplerYcbcrConversion, VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION) VK_DEFINE_NONDISP_HANDLE_CASTS(radv_semaphore, base, VkSemaphore, VK_OBJECT_TYPE_SEMAPHORE) #ifdef __cplusplus } #endif #endif /* RADV_PRIVATE_H */