/* * Copyright © 2017 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * @file crocus_batch.c * * Batchbuffer and command submission module. * * Every API draw call results in a number of GPU commands, which we * collect into a "batch buffer". Typically, many draw calls are grouped * into a single batch to amortize command submission overhead. * * We submit batches to the kernel using the I915_GEM_EXECBUFFER2 ioctl. * One critical piece of data is the "validation list", which contains a * list of the buffer objects (BOs) which the commands in the GPU need. * The kernel will make sure these are resident and pinned at the correct * virtual memory address before executing our batch. If a BO is not in * the validation list, it effectively does not exist, so take care. */ #include "crocus_batch.h" #include "crocus_bufmgr.h" #include "crocus_context.h" #include "crocus_fence.h" #include "drm-uapi/i915_drm.h" #include "intel/common/intel_gem.h" #include "main/macros.h" #include "util/hash_table.h" #include "util/set.h" #include "util/u_upload_mgr.h" #include #include #if HAVE_VALGRIND #include #include #define VG(x) x #else #define VG(x) #endif #define FILE_DEBUG_FLAG DEBUG_BUFMGR /* Terminating the batch takes either 4 bytes for MI_BATCH_BUFFER_END * or 12 bytes for MI_BATCH_BUFFER_START (when chaining). Plus, we may * need an extra 4 bytes to pad out to the nearest QWord. So reserve 16. */ #define BATCH_RESERVED(devinfo) ((devinfo)->is_haswell ? 32 : 16) static void crocus_batch_reset(struct crocus_batch *batch); static unsigned num_fences(struct crocus_batch *batch) { return util_dynarray_num_elements(&batch->exec_fences, struct drm_i915_gem_exec_fence); } /** * Debugging code to dump the fence list, used by INTEL_DEBUG=submit. */ static void dump_fence_list(struct crocus_batch *batch) { fprintf(stderr, "Fence list (length %u): ", num_fences(batch)); util_dynarray_foreach(&batch->exec_fences, struct drm_i915_gem_exec_fence, f) { fprintf(stderr, "%s%u%s ", (f->flags & I915_EXEC_FENCE_WAIT) ? "..." : "", f->handle, (f->flags & I915_EXEC_FENCE_SIGNAL) ? "!" : ""); } fprintf(stderr, "\n"); } /** * Debugging code to dump the validation list, used by INTEL_DEBUG=submit. */ static void dump_validation_list(struct crocus_batch *batch) { fprintf(stderr, "Validation list (length %d):\n", batch->exec_count); for (int i = 0; i < batch->exec_count; i++) { uint64_t flags = batch->validation_list[i].flags; assert(batch->validation_list[i].handle == batch->exec_bos[i]->gem_handle); fprintf(stderr, "[%2d]: %2d %-14s @ 0x%"PRIx64" (%" PRIu64 "B)\t %2d refs %s\n", i, batch->validation_list[i].handle, batch->exec_bos[i]->name, (uint64_t)batch->validation_list[i].offset, batch->exec_bos[i]->size, batch->exec_bos[i]->refcount, (flags & EXEC_OBJECT_WRITE) ? " (write)" : ""); } } /** * Return BO information to the batch decoder (for debugging). */ static struct intel_batch_decode_bo decode_get_bo(void *v_batch, bool ppgtt, uint64_t address) { struct crocus_batch *batch = v_batch; for (int i = 0; i < batch->exec_count; i++) { struct crocus_bo *bo = batch->exec_bos[i]; /* The decoder zeroes out the top 16 bits, so we need to as well */ uint64_t bo_address = bo->gtt_offset & (~0ull >> 16); if (address >= bo_address && address < bo_address + bo->size) { return (struct intel_batch_decode_bo){ .addr = address, .size = bo->size, .map = crocus_bo_map(batch->dbg, bo, MAP_READ) + (address - bo_address), }; } } return (struct intel_batch_decode_bo) { }; } static unsigned decode_get_state_size(void *v_batch, uint64_t address, uint64_t base_address) { struct crocus_batch *batch = v_batch; /* The decoder gives us offsets from a base address, which is not great. * Binding tables are relative to surface state base address, and other * state is relative to dynamic state base address. These could alias, * but in practice it's unlikely because surface offsets are always in * the [0, 64K) range, and we assign dynamic state addresses starting at * the top of the 4GB range. We should fix this but it's likely good * enough for now. */ unsigned size = (uintptr_t) _mesa_hash_table_u64_search(batch->state_sizes, address - base_address); return size; } /** * Decode the current batch. */ static void decode_batch(struct crocus_batch *batch) { void *map = crocus_bo_map(batch->dbg, batch->exec_bos[0], MAP_READ); intel_print_batch(&batch->decoder, map, batch->primary_batch_size, batch->exec_bos[0]->gtt_offset, false); } static void init_reloc_list(struct crocus_reloc_list *rlist, int count) { rlist->reloc_count = 0; rlist->reloc_array_size = count; rlist->relocs = malloc(rlist->reloc_array_size * sizeof(struct drm_i915_gem_relocation_entry)); } void crocus_init_batch(struct crocus_context *ice, enum crocus_batch_name name, int priority) { struct crocus_batch *batch = &ice->batches[name]; struct crocus_screen *screen = (struct crocus_screen *)ice->ctx.screen; struct intel_device_info *devinfo = &screen->devinfo; batch->ice = ice; batch->screen = screen; batch->dbg = &ice->dbg; batch->reset = &ice->reset; batch->name = name; batch->contains_fence_signal = false; if (devinfo->ver >= 7) { batch->fine_fences.uploader = u_upload_create(&ice->ctx, 4096, PIPE_BIND_CUSTOM, PIPE_USAGE_STAGING, 0); } crocus_fine_fence_init(batch); batch->hw_ctx_id = crocus_create_hw_context(screen->bufmgr); assert(batch->hw_ctx_id); crocus_hw_context_set_priority(screen->bufmgr, batch->hw_ctx_id, priority); batch->valid_reloc_flags = EXEC_OBJECT_WRITE; if (devinfo->ver == 6) batch->valid_reloc_flags |= EXEC_OBJECT_NEEDS_GTT; if (INTEL_DEBUG(DEBUG_BATCH)) { /* The shadow doesn't get relocs written so state decode fails. */ batch->use_shadow_copy = false; } else batch->use_shadow_copy = !devinfo->has_llc; util_dynarray_init(&batch->exec_fences, ralloc_context(NULL)); util_dynarray_init(&batch->syncobjs, ralloc_context(NULL)); init_reloc_list(&batch->command.relocs, 250); init_reloc_list(&batch->state.relocs, 250); batch->exec_count = 0; batch->exec_array_size = 100; batch->exec_bos = malloc(batch->exec_array_size * sizeof(batch->exec_bos[0])); batch->validation_list = malloc(batch->exec_array_size * sizeof(batch->validation_list[0])); batch->cache.render = _mesa_hash_table_create(NULL, NULL, _mesa_key_pointer_equal); batch->cache.depth = _mesa_set_create(NULL, NULL, _mesa_key_pointer_equal); memset(batch->other_batches, 0, sizeof(batch->other_batches)); for (int i = 0, j = 0; i < ice->batch_count; i++) { if (i != name) batch->other_batches[j++] = &ice->batches[i]; } if (INTEL_DEBUG(DEBUG_BATCH)) { batch->state_sizes = _mesa_hash_table_u64_create(NULL); const unsigned decode_flags = INTEL_BATCH_DECODE_FULL | (INTEL_DEBUG(DEBUG_COLOR) ? INTEL_BATCH_DECODE_IN_COLOR : 0) | INTEL_BATCH_DECODE_OFFSETS | INTEL_BATCH_DECODE_FLOATS; intel_batch_decode_ctx_init(&batch->decoder, &screen->devinfo, stderr, decode_flags, NULL, decode_get_bo, decode_get_state_size, batch); batch->decoder.max_vbo_decoded_lines = 32; } crocus_batch_reset(batch); } static struct drm_i915_gem_exec_object2 * find_validation_entry(struct crocus_batch *batch, struct crocus_bo *bo) { unsigned index = READ_ONCE(bo->index); if (index < batch->exec_count && batch->exec_bos[index] == bo) return &batch->validation_list[index]; /* May have been shared between multiple active batches */ for (index = 0; index < batch->exec_count; index++) { if (batch->exec_bos[index] == bo) return &batch->validation_list[index]; } return NULL; } static void ensure_exec_obj_space(struct crocus_batch *batch, uint32_t count) { while (batch->exec_count + count > batch->exec_array_size) { batch->exec_array_size *= 2; batch->exec_bos = realloc( batch->exec_bos, batch->exec_array_size * sizeof(batch->exec_bos[0])); batch->validation_list = realloc(batch->validation_list, batch->exec_array_size * sizeof(batch->validation_list[0])); } } static struct drm_i915_gem_exec_object2 * crocus_use_bo(struct crocus_batch *batch, struct crocus_bo *bo, bool writable) { assert(bo->bufmgr == batch->command.bo->bufmgr); struct drm_i915_gem_exec_object2 *existing_entry = find_validation_entry(batch, bo); if (existing_entry) { /* The BO is already in the validation list; mark it writable */ if (writable) existing_entry->flags |= EXEC_OBJECT_WRITE; return existing_entry; } if (bo != batch->command.bo && bo != batch->state.bo) { /* This is the first time our batch has seen this BO. Before we use it, * we may need to flush and synchronize with other batches. */ for (int b = 0; b < ARRAY_SIZE(batch->other_batches); b++) { if (!batch->other_batches[b]) continue; struct drm_i915_gem_exec_object2 *other_entry = find_validation_entry(batch->other_batches[b], bo); /* If the buffer is referenced by another batch, and either batch * intends to write it, then flush the other batch and synchronize. * * Consider these cases: * * 1. They read, we read => No synchronization required. * 2. They read, we write => Synchronize (they need the old value) * 3. They write, we read => Synchronize (we need their new value) * 4. They write, we write => Synchronize (order writes) * * The read/read case is very common, as multiple batches usually * share a streaming state buffer or shader assembly buffer, and * we want to avoid synchronizing in this case. */ if (other_entry && ((other_entry->flags & EXEC_OBJECT_WRITE) || writable)) { crocus_batch_flush(batch->other_batches[b]); crocus_batch_add_syncobj(batch, batch->other_batches[b]->last_fence->syncobj, I915_EXEC_FENCE_WAIT); } } } /* Bump the ref count since the batch is now using this bo. */ crocus_bo_reference(bo); ensure_exec_obj_space(batch, 1); batch->validation_list[batch->exec_count] = (struct drm_i915_gem_exec_object2) { .handle = bo->gem_handle, .offset = bo->gtt_offset, .flags = bo->kflags | (writable ? EXEC_OBJECT_WRITE : 0), }; bo->index = batch->exec_count; batch->exec_bos[batch->exec_count] = bo; batch->aperture_space += bo->size; batch->exec_count++; return &batch->validation_list[batch->exec_count - 1]; } static uint64_t emit_reloc(struct crocus_batch *batch, struct crocus_reloc_list *rlist, uint32_t offset, struct crocus_bo *target, int32_t target_offset, unsigned int reloc_flags) { assert(target != NULL); if (target == batch->ice->workaround_bo) reloc_flags &= ~RELOC_WRITE; bool writable = reloc_flags & RELOC_WRITE; struct drm_i915_gem_exec_object2 *entry = crocus_use_bo(batch, target, writable); if (rlist->reloc_count == rlist->reloc_array_size) { rlist->reloc_array_size *= 2; rlist->relocs = realloc(rlist->relocs, rlist->reloc_array_size * sizeof(struct drm_i915_gem_relocation_entry)); } if (reloc_flags & RELOC_32BIT) { /* Restrict this buffer to the low 32 bits of the address space. * * Altering the validation list flags restricts it for this batch, * but we also alter the BO's kflags to restrict it permanently * (until the BO is destroyed and put back in the cache). Buffers * may stay bound across batches, and we want keep it constrained. */ target->kflags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS; entry->flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS; /* RELOC_32BIT is not an EXEC_OBJECT_* flag, so get rid of it. */ reloc_flags &= ~RELOC_32BIT; } if (reloc_flags) entry->flags |= reloc_flags & batch->valid_reloc_flags; rlist->relocs[rlist->reloc_count++] = (struct drm_i915_gem_relocation_entry) { .offset = offset, .delta = target_offset, .target_handle = target->index, .presumed_offset = entry->offset, }; /* Using the old buffer offset, write in what the right data would be, in * case the buffer doesn't move and we can short-circuit the relocation * processing in the kernel */ return entry->offset + target_offset; } uint64_t crocus_command_reloc(struct crocus_batch *batch, uint32_t batch_offset, struct crocus_bo *target, uint32_t target_offset, unsigned int reloc_flags) { assert(batch_offset <= batch->command.bo->size - sizeof(uint32_t)); return emit_reloc(batch, &batch->command.relocs, batch_offset, target, target_offset, reloc_flags); } uint64_t crocus_state_reloc(struct crocus_batch *batch, uint32_t state_offset, struct crocus_bo *target, uint32_t target_offset, unsigned int reloc_flags) { assert(state_offset <= batch->state.bo->size - sizeof(uint32_t)); return emit_reloc(batch, &batch->state.relocs, state_offset, target, target_offset, reloc_flags); } static void recreate_growing_buffer(struct crocus_batch *batch, struct crocus_growing_bo *grow, const char *name, unsigned size) { struct crocus_screen *screen = batch->screen; struct crocus_bufmgr *bufmgr = screen->bufmgr; grow->bo = crocus_bo_alloc(bufmgr, name, size); grow->bo->kflags |= EXEC_OBJECT_CAPTURE; grow->partial_bo = NULL; grow->partial_bo_map = NULL; grow->partial_bytes = 0; if (batch->use_shadow_copy) grow->map = realloc(grow->map, grow->bo->size); else grow->map = crocus_bo_map(NULL, grow->bo, MAP_READ | MAP_WRITE); grow->map_next = grow->map; } static void create_batch(struct crocus_batch *batch) { struct crocus_screen *screen = batch->screen; recreate_growing_buffer(batch, &batch->command, "command buffer", BATCH_SZ + BATCH_RESERVED(&screen->devinfo)); crocus_use_bo(batch, batch->command.bo, false); /* Always add workaround_bo which contains a driver identifier to be * recorded in error states. */ crocus_use_bo(batch, batch->ice->workaround_bo, false); recreate_growing_buffer(batch, &batch->state, "state buffer", STATE_SZ); batch->state.used = 1; crocus_use_bo(batch, batch->state.bo, false); } static void crocus_batch_maybe_noop(struct crocus_batch *batch) { /* We only insert the NOOP at the beginning of the batch. */ assert(crocus_batch_bytes_used(batch) == 0); if (batch->noop_enabled) { /* Emit MI_BATCH_BUFFER_END to prevent any further command to be * executed. */ uint32_t *map = batch->command.map_next; map[0] = (0xA << 23); batch->command.map_next += 4; } } static void crocus_batch_reset(struct crocus_batch *batch) { struct crocus_screen *screen = batch->screen; crocus_bo_unreference(batch->command.bo); crocus_bo_unreference(batch->state.bo); batch->primary_batch_size = 0; batch->contains_draw = false; batch->contains_fence_signal = false; batch->state_base_address_emitted = false; batch->screen->vtbl.batch_reset_dirty(batch); create_batch(batch); assert(batch->command.bo->index == 0); if (batch->state_sizes) _mesa_hash_table_u64_clear(batch->state_sizes); struct crocus_syncobj *syncobj = crocus_create_syncobj(screen); crocus_batch_add_syncobj(batch, syncobj, I915_EXEC_FENCE_SIGNAL); crocus_syncobj_reference(screen, &syncobj, NULL); crocus_cache_sets_clear(batch); } void crocus_batch_free(struct crocus_batch *batch) { struct crocus_screen *screen = batch->screen; struct crocus_bufmgr *bufmgr = screen->bufmgr; if (batch->use_shadow_copy) { free(batch->command.map); free(batch->state.map); } for (int i = 0; i < batch->exec_count; i++) { crocus_bo_unreference(batch->exec_bos[i]); } pipe_resource_reference(&batch->fine_fences.ref.res, NULL); free(batch->command.relocs.relocs); free(batch->state.relocs.relocs); free(batch->exec_bos); free(batch->validation_list); ralloc_free(batch->exec_fences.mem_ctx); util_dynarray_foreach(&batch->syncobjs, struct crocus_syncobj *, s) crocus_syncobj_reference(screen, s, NULL); ralloc_free(batch->syncobjs.mem_ctx); crocus_fine_fence_reference(batch->screen, &batch->last_fence, NULL); if (batch_has_fine_fence(batch)) u_upload_destroy(batch->fine_fences.uploader); crocus_bo_unreference(batch->command.bo); crocus_bo_unreference(batch->state.bo); batch->command.bo = NULL; batch->command.map = NULL; batch->command.map_next = NULL; crocus_destroy_hw_context(bufmgr, batch->hw_ctx_id); _mesa_hash_table_destroy(batch->cache.render, NULL); _mesa_set_destroy(batch->cache.depth, NULL); if (batch->state_sizes) { _mesa_hash_table_u64_destroy(batch->state_sizes); intel_batch_decode_ctx_finish(&batch->decoder); } } /** * If we've chained to a secondary batch, or are getting near to the end, * then flush. This should only be called between draws. */ void crocus_batch_maybe_flush(struct crocus_batch *batch, unsigned estimate) { if (batch->command.bo != batch->exec_bos[0] || crocus_batch_bytes_used(batch) + estimate >= BATCH_SZ) { crocus_batch_flush(batch); } } /** * Finish copying the old batch/state buffer's contents to the new one * after we tried to "grow" the buffer in an earlier operation. */ static void finish_growing_bos(struct crocus_growing_bo *grow) { struct crocus_bo *old_bo = grow->partial_bo; if (!old_bo) return; memcpy(grow->map, grow->partial_bo_map, grow->partial_bytes); grow->partial_bo = NULL; grow->partial_bo_map = NULL; grow->partial_bytes = 0; crocus_bo_unreference(old_bo); } void crocus_grow_buffer(struct crocus_batch *batch, bool grow_state, unsigned used, unsigned new_size) { struct crocus_screen *screen = batch->screen; struct crocus_bufmgr *bufmgr = screen->bufmgr; struct crocus_growing_bo *grow = grow_state ? &batch->state : &batch->command; struct crocus_bo *bo = grow->bo; if (grow->partial_bo) { /* We've already grown once, and now we need to do it again. * Finish our last grow operation so we can start a new one. * This should basically never happen. */ finish_growing_bos(grow); } struct crocus_bo *new_bo = crocus_bo_alloc(bufmgr, bo->name, new_size); /* Copy existing data to the new larger buffer */ grow->partial_bo_map = grow->map; if (batch->use_shadow_copy) { /* We can't safely use realloc, as it may move the existing buffer, * breaking existing pointers the caller may still be using. Just * malloc a new copy and memcpy it like the normal BO path. * * Use bo->size rather than new_size because the bufmgr may have * rounded up the size, and we want the shadow size to match. */ grow->map = malloc(new_bo->size); } else { grow->map = crocus_bo_map(NULL, new_bo, MAP_READ | MAP_WRITE); } /* Try to put the new BO at the same GTT offset as the old BO (which * we're throwing away, so it doesn't need to be there). * * This guarantees that our relocations continue to work: values we've * already written into the buffer, values we're going to write into the * buffer, and the validation/relocation lists all will match. * * Also preserve kflags for EXEC_OBJECT_CAPTURE. */ new_bo->gtt_offset = bo->gtt_offset; new_bo->index = bo->index; new_bo->kflags = bo->kflags; /* Batch/state buffers are per-context, and if we've run out of space, * we must have actually used them before, so...they will be in the list. */ assert(bo->index < batch->exec_count); assert(batch->exec_bos[bo->index] == bo); /* Update the validation list to use the new BO. */ batch->validation_list[bo->index].handle = new_bo->gem_handle; /* Exchange the two BOs...without breaking pointers to the old BO. * * Consider this scenario: * * 1. Somebody calls brw_state_batch() to get a region of memory, and * and then creates a brw_address pointing to brw->batch.state.bo. * 2. They then call brw_state_batch() a second time, which happens to * grow and replace the state buffer. They then try to emit a * relocation to their first section of memory. * * If we replace the brw->batch.state.bo pointer at step 2, we would * break the address created in step 1. They'd have a pointer to the * old destroyed BO. Emitting a relocation would add this dead BO to * the validation list...causing /both/ statebuffers to be in the list, * and all kinds of disasters. * * This is not a contrived case - BLORP vertex data upload hits this. * * There are worse scenarios too. Fences for GL sync objects reference * brw->batch.batch.bo. If we replaced the batch pointer when growing, * we'd need to chase down every fence and update it to point to the * new BO. Otherwise, it would refer to a "batch" that never actually * gets submitted, and would fail to trigger. * * To work around both of these issues, we transmutate the buffers in * place, making the existing struct brw_bo represent the new buffer, * and "new_bo" represent the old BO. This is highly unusual, but it * seems like a necessary evil. * * We also defer the memcpy of the existing batch's contents. Callers * may make multiple brw_state_batch calls, and retain pointers to the * old BO's map. We'll perform the memcpy in finish_growing_bo() when * we finally submit the batch, at which point we've finished uploading * state, and nobody should have any old references anymore. * * To do that, we keep a reference to the old BO in grow->partial_bo, * and store the number of bytes to copy in grow->partial_bytes. We * can monkey with the refcounts directly without atomics because these * are per-context BOs and they can only be touched by this thread. */ assert(new_bo->refcount == 1); new_bo->refcount = bo->refcount; bo->refcount = 1; struct crocus_bo tmp; memcpy(&tmp, bo, sizeof(struct crocus_bo)); memcpy(bo, new_bo, sizeof(struct crocus_bo)); memcpy(new_bo, &tmp, sizeof(struct crocus_bo)); grow->partial_bo = new_bo; /* the one reference of the OLD bo */ grow->partial_bytes = used; } static void finish_seqno(struct crocus_batch *batch) { struct crocus_fine_fence *sq = crocus_fine_fence_new(batch, CROCUS_FENCE_END); if (!sq) return; crocus_fine_fence_reference(batch->screen, &batch->last_fence, sq); crocus_fine_fence_reference(batch->screen, &sq, NULL); } /** * Terminate a batch with MI_BATCH_BUFFER_END. */ static void crocus_finish_batch(struct crocus_batch *batch) { batch->no_wrap = true; if (batch->screen->vtbl.finish_batch) batch->screen->vtbl.finish_batch(batch); finish_seqno(batch); /* Emit MI_BATCH_BUFFER_END to finish our batch. */ uint32_t *map = batch->command.map_next; map[0] = (0xA << 23); batch->command.map_next += 4; VG(VALGRIND_CHECK_MEM_IS_DEFINED(batch->command.map, crocus_batch_bytes_used(batch))); if (batch->command.bo == batch->exec_bos[0]) batch->primary_batch_size = crocus_batch_bytes_used(batch); batch->no_wrap = false; } /** * Replace our current GEM context with a new one (in case it got banned). */ static bool replace_hw_ctx(struct crocus_batch *batch) { struct crocus_screen *screen = batch->screen; struct crocus_bufmgr *bufmgr = screen->bufmgr; uint32_t new_ctx = crocus_clone_hw_context(bufmgr, batch->hw_ctx_id); if (!new_ctx) return false; crocus_destroy_hw_context(bufmgr, batch->hw_ctx_id); batch->hw_ctx_id = new_ctx; /* Notify the context that state must be re-initialized. */ crocus_lost_context_state(batch); return true; } enum pipe_reset_status crocus_batch_check_for_reset(struct crocus_batch *batch) { struct crocus_screen *screen = batch->screen; enum pipe_reset_status status = PIPE_NO_RESET; struct drm_i915_reset_stats stats = { .ctx_id = batch->hw_ctx_id }; if (drmIoctl(screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats)) DBG("DRM_IOCTL_I915_GET_RESET_STATS failed: %s\n", strerror(errno)); if (stats.batch_active != 0) { /* A reset was observed while a batch from this hardware context was * executing. Assume that this context was at fault. */ status = PIPE_GUILTY_CONTEXT_RESET; } else if (stats.batch_pending != 0) { /* A reset was observed while a batch from this context was in progress, * but the batch was not executing. In this case, assume that the * context was not at fault. */ status = PIPE_INNOCENT_CONTEXT_RESET; } if (status != PIPE_NO_RESET) { /* Our context is likely banned, or at least in an unknown state. * Throw it away and start with a fresh context. Ideally this may * catch the problem before our next execbuf fails with -EIO. */ replace_hw_ctx(batch); } return status; } /** * Submit the batch to the GPU via execbuffer2. */ static int submit_batch(struct crocus_batch *batch) { if (batch->use_shadow_copy) { void *bo_map = crocus_bo_map(batch->dbg, batch->command.bo, MAP_WRITE); memcpy(bo_map, batch->command.map, crocus_batch_bytes_used(batch)); bo_map = crocus_bo_map(batch->dbg, batch->state.bo, MAP_WRITE); memcpy(bo_map, batch->state.map, batch->state.used); } crocus_bo_unmap(batch->command.bo); crocus_bo_unmap(batch->state.bo); /* The requirement for using I915_EXEC_NO_RELOC are: * * The addresses written in the objects must match the corresponding * reloc.gtt_offset which in turn must match the corresponding * execobject.offset. * * Any render targets written to in the batch must be flagged with * EXEC_OBJECT_WRITE. * * To avoid stalling, execobject.offset should match the current * address of that object within the active context. */ /* Set statebuffer relocations */ const unsigned state_index = batch->state.bo->index; if (state_index < batch->exec_count && batch->exec_bos[state_index] == batch->state.bo) { struct drm_i915_gem_exec_object2 *entry = &batch->validation_list[state_index]; assert(entry->handle == batch->state.bo->gem_handle); entry->relocation_count = batch->state.relocs.reloc_count; entry->relocs_ptr = (uintptr_t)batch->state.relocs.relocs; } /* Set batchbuffer relocations */ struct drm_i915_gem_exec_object2 *entry = &batch->validation_list[0]; assert(entry->handle == batch->command.bo->gem_handle); entry->relocation_count = batch->command.relocs.reloc_count; entry->relocs_ptr = (uintptr_t)batch->command.relocs.relocs; struct drm_i915_gem_execbuffer2 execbuf = { .buffers_ptr = (uintptr_t)batch->validation_list, .buffer_count = batch->exec_count, .batch_start_offset = 0, /* This must be QWord aligned. */ .batch_len = ALIGN(batch->primary_batch_size, 8), .flags = I915_EXEC_RENDER | I915_EXEC_NO_RELOC | I915_EXEC_BATCH_FIRST | I915_EXEC_HANDLE_LUT, .rsvd1 = batch->hw_ctx_id, /* rsvd1 is actually the context ID */ }; if (num_fences(batch)) { execbuf.flags |= I915_EXEC_FENCE_ARRAY; execbuf.num_cliprects = num_fences(batch); execbuf.cliprects_ptr = (uintptr_t)util_dynarray_begin(&batch->exec_fences); } int ret = 0; if (!batch->screen->devinfo.no_hw && intel_ioctl(batch->screen->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf)) ret = -errno; for (int i = 0; i < batch->exec_count; i++) { struct crocus_bo *bo = batch->exec_bos[i]; bo->idle = false; bo->index = -1; /* Update brw_bo::gtt_offset */ if (batch->validation_list[i].offset != bo->gtt_offset) { DBG("BO %d migrated: 0x%" PRIx64 " -> 0x%" PRIx64 "\n", bo->gem_handle, bo->gtt_offset, (uint64_t)batch->validation_list[i].offset); assert(!(bo->kflags & EXEC_OBJECT_PINNED)); bo->gtt_offset = batch->validation_list[i].offset; } } return ret; } static const char * batch_name_to_string(enum crocus_batch_name name) { const char *names[CROCUS_BATCH_COUNT] = { [CROCUS_BATCH_RENDER] = "render", [CROCUS_BATCH_COMPUTE] = "compute", }; return names[name]; } /** * Flush the batch buffer, submitting it to the GPU and resetting it so * we're ready to emit the next batch. * * \param in_fence_fd is ignored if -1. Otherwise, this function takes * ownership of the fd. * * \param out_fence_fd is ignored if NULL. Otherwise, the caller must * take ownership of the returned fd. */ void _crocus_batch_flush(struct crocus_batch *batch, const char *file, int line) { struct crocus_screen *screen = batch->screen; /* If a fence signals we need to flush it. */ if (crocus_batch_bytes_used(batch) == 0 && !batch->contains_fence_signal) return; assert(!batch->no_wrap); crocus_finish_batch(batch); finish_growing_bos(&batch->command); finish_growing_bos(&batch->state); int ret = submit_batch(batch); if (INTEL_DEBUG(DEBUG_BATCH | DEBUG_SUBMIT | DEBUG_PIPE_CONTROL)) { int bytes_for_commands = crocus_batch_bytes_used(batch); int second_bytes = 0; if (batch->command.bo != batch->exec_bos[0]) { second_bytes = bytes_for_commands; bytes_for_commands += batch->primary_batch_size; } fprintf(stderr, "%19s:%-3d: %s batch [%u] flush with %5d+%5db (%0.1f%%) " "(cmds), %4d BOs (%0.1fMb aperture)," " %4d command relocs, %4d state relocs\n", file, line, batch_name_to_string(batch->name), batch->hw_ctx_id, batch->primary_batch_size, second_bytes, 100.0f * bytes_for_commands / BATCH_SZ, batch->exec_count, (float) batch->aperture_space / (1024 * 1024), batch->command.relocs.reloc_count, batch->state.relocs.reloc_count); if (INTEL_DEBUG(DEBUG_BATCH | DEBUG_SUBMIT)) { dump_fence_list(batch); dump_validation_list(batch); } if (INTEL_DEBUG(DEBUG_BATCH)) { decode_batch(batch); } } for (int i = 0; i < batch->exec_count; i++) { struct crocus_bo *bo = batch->exec_bos[i]; crocus_bo_unreference(bo); } batch->command.relocs.reloc_count = 0; batch->state.relocs.reloc_count = 0; batch->exec_count = 0; batch->aperture_space = 0; util_dynarray_foreach(&batch->syncobjs, struct crocus_syncobj *, s) crocus_syncobj_reference(screen, s, NULL); util_dynarray_clear(&batch->syncobjs); util_dynarray_clear(&batch->exec_fences); if (INTEL_DEBUG(DEBUG_SYNC)) { dbg_printf("waiting for idle\n"); crocus_bo_wait_rendering(batch->command.bo); /* if execbuf failed; this is a nop */ } /* Start a new batch buffer. */ crocus_batch_reset(batch); /* EIO means our context is banned. In this case, try and replace it * with a new logical context, and inform crocus_context that all state * has been lost and needs to be re-initialized. If this succeeds, * dubiously claim success... */ if (ret == -EIO && replace_hw_ctx(batch)) { if (batch->reset->reset) { /* Tell the state tracker the device is lost and it was our fault. */ batch->reset->reset(batch->reset->data, PIPE_GUILTY_CONTEXT_RESET); } ret = 0; } if (ret < 0) { #ifdef DEBUG const bool color = INTEL_DEBUG(DEBUG_COLOR); fprintf(stderr, "%scrocus: Failed to submit batchbuffer: %-80s%s\n", color ? "\e[1;41m" : "", strerror(-ret), color ? "\e[0m" : ""); #endif abort(); } } /** * Does the current batch refer to the given BO? * * (In other words, is the BO in the current batch's validation list?) */ bool crocus_batch_references(struct crocus_batch *batch, struct crocus_bo *bo) { return find_validation_entry(batch, bo) != NULL; } /** * Updates the state of the noop feature. Returns true if there was a noop * transition that led to state invalidation. */ bool crocus_batch_prepare_noop(struct crocus_batch *batch, bool noop_enable) { if (batch->noop_enabled == noop_enable) return 0; batch->noop_enabled = noop_enable; crocus_batch_flush(batch); /* If the batch was empty, flush had no effect, so insert our noop. */ if (crocus_batch_bytes_used(batch) == 0) crocus_batch_maybe_noop(batch); /* We only need to update the entire state if we transition from noop -> * not-noop. */ return !batch->noop_enabled; }