/* * Copyright © 2017 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * @file iris_bufmgr.c * * The Iris buffer manager. * * XXX: write better comments * - BOs * - Explain BO cache * - main interface to GEM in the kernel */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "errno.h" #include "common/intel_aux_map.h" #include "common/intel_clflush.h" #include "dev/intel_debug.h" #include "common/intel_gem.h" #include "dev/intel_device_info.h" #include "isl/isl.h" #include "main/macros.h" #include "os/os_mman.h" #include "util/debug.h" #include "util/macros.h" #include "util/hash_table.h" #include "util/list.h" #include "util/os_file.h" #include "util/u_dynarray.h" #include "util/vma.h" #include "iris_bufmgr.h" #include "iris_context.h" #include "string.h" #include "drm-uapi/i915_drm.h" #ifdef HAVE_VALGRIND #include #include #define VG(x) x #else #define VG(x) #endif /* VALGRIND_FREELIKE_BLOCK unfortunately does not actually undo the earlier * VALGRIND_MALLOCLIKE_BLOCK but instead leaves vg convinced the memory is * leaked. All because it does not call VG(cli_free) from its * VG_USERREQ__FREELIKE_BLOCK handler. Instead of treating the memory like * and allocation, we mark it available for use upon mmapping and remove * it upon unmapping. */ #define VG_DEFINED(ptr, size) VG(VALGRIND_MAKE_MEM_DEFINED(ptr, size)) #define VG_NOACCESS(ptr, size) VG(VALGRIND_MAKE_MEM_NOACCESS(ptr, size)) /* On FreeBSD PAGE_SIZE is already defined in * /usr/include/machine/param.h that is indirectly * included here. */ #ifndef PAGE_SIZE #define PAGE_SIZE 4096 #endif #define WARN_ONCE(cond, fmt...) do { \ if (unlikely(cond)) { \ static bool _warned = false; \ if (!_warned) { \ fprintf(stderr, "WARNING: "); \ fprintf(stderr, fmt); \ _warned = true; \ } \ } \ } while (0) #define FILE_DEBUG_FLAG DEBUG_BUFMGR /** * For debugging purposes, this returns a time in seconds. */ static double get_time(void) { struct timespec tp; clock_gettime(CLOCK_MONOTONIC, &tp); return tp.tv_sec + tp.tv_nsec / 1000000000.0; } static inline int atomic_add_unless(int *v, int add, int unless) { int c, old; c = p_atomic_read(v); while (c != unless && (old = p_atomic_cmpxchg(v, c, c + add)) != c) c = old; return c == unless; } static const char * memzone_name(enum iris_memory_zone memzone) { const char *names[] = { [IRIS_MEMZONE_SHADER] = "shader", [IRIS_MEMZONE_BINDER] = "binder", [IRIS_MEMZONE_BINDLESS] = "scratchsurf", [IRIS_MEMZONE_SURFACE] = "surface", [IRIS_MEMZONE_DYNAMIC] = "dynamic", [IRIS_MEMZONE_OTHER] = "other", [IRIS_MEMZONE_BORDER_COLOR_POOL] = "bordercolor", }; assert(memzone < ARRAY_SIZE(names)); return names[memzone]; } struct bo_cache_bucket { /** List of cached BOs. */ struct list_head head; /** Size of this bucket, in bytes. */ uint64_t size; }; struct bo_export { /** File descriptor associated with a handle export. */ int drm_fd; /** GEM handle in drm_fd */ uint32_t gem_handle; struct list_head link; }; struct iris_memregion { struct drm_i915_gem_memory_class_instance region; uint64_t size; }; #define NUM_SLAB_ALLOCATORS 3 enum iris_heap { IRIS_HEAP_SYSTEM_MEMORY, IRIS_HEAP_DEVICE_LOCAL, IRIS_HEAP_MAX, }; struct iris_slab { struct pb_slab base; unsigned entry_size; /** The BO representing the entire slab */ struct iris_bo *bo; /** Array of iris_bo structs representing BOs allocated out of this slab */ struct iris_bo *entries; }; struct iris_bufmgr { /** * List into the list of bufmgr. */ struct list_head link; uint32_t refcount; int fd; simple_mtx_t lock; simple_mtx_t bo_deps_lock; /** Array of lists of cached gem objects of power-of-two sizes */ struct bo_cache_bucket cache_bucket[14 * 4]; int num_buckets; /** Same as cache_bucket, but for local memory gem objects */ struct bo_cache_bucket local_cache_bucket[14 * 4]; int num_local_buckets; time_t time; struct hash_table *name_table; struct hash_table *handle_table; /** * List of BOs which we've effectively freed, but are hanging on to * until they're idle before closing and returning the VMA. */ struct list_head zombie_list; struct util_vma_heap vma_allocator[IRIS_MEMZONE_COUNT]; uint64_t vma_min_align; struct iris_memregion vram, sys; int next_screen_id; bool has_llc:1; bool has_local_mem:1; bool has_mmap_offset:1; bool has_tiling_uapi:1; bool has_userptr_probe:1; bool bo_reuse:1; struct intel_aux_map_context *aux_map_ctx; struct pb_slabs bo_slabs[NUM_SLAB_ALLOCATORS]; }; static simple_mtx_t global_bufmgr_list_mutex = _SIMPLE_MTX_INITIALIZER_NP; static struct list_head global_bufmgr_list = { .next = &global_bufmgr_list, .prev = &global_bufmgr_list, }; static void bo_free(struct iris_bo *bo); static struct iris_bo * find_and_ref_external_bo(struct hash_table *ht, unsigned int key) { struct hash_entry *entry = _mesa_hash_table_search(ht, &key); struct iris_bo *bo = entry ? entry->data : NULL; if (bo) { assert(iris_bo_is_external(bo)); assert(iris_bo_is_real(bo)); assert(!bo->real.reusable); /* Being non-reusable, the BO cannot be in the cache lists, but it * may be in the zombie list if it had reached zero references, but * we hadn't yet closed it...and then reimported the same BO. If it * is, then remove it since it's now been resurrected. */ if (list_is_linked(&bo->head)) list_del(&bo->head); iris_bo_reference(bo); } return bo; } /** * This function finds the correct bucket fit for the input size. * The function works with O(1) complexity when the requested size * was queried instead of iterating the size through all the buckets. */ static struct bo_cache_bucket * bucket_for_size(struct iris_bufmgr *bufmgr, uint64_t size, bool local) { /* Calculating the pages and rounding up to the page size. */ const unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE; /* Row Bucket sizes clz((x-1) | 3) Row Column * in pages stride size * 0: 1 2 3 4 -> 30 30 30 30 4 1 * 1: 5 6 7 8 -> 29 29 29 29 4 1 * 2: 10 12 14 16 -> 28 28 28 28 8 2 * 3: 20 24 28 32 -> 27 27 27 27 16 4 */ const unsigned row = 30 - __builtin_clz((pages - 1) | 3); const unsigned row_max_pages = 4 << row; /* The '& ~2' is the special case for row 1. In row 1, max pages / * 2 is 2, but the previous row maximum is zero (because there is * no previous row). All row maximum sizes are power of 2, so that * is the only case where that bit will be set. */ const unsigned prev_row_max_pages = (row_max_pages / 2) & ~2; int col_size_log2 = row - 1; col_size_log2 += (col_size_log2 < 0); const unsigned col = (pages - prev_row_max_pages + ((1 << col_size_log2) - 1)) >> col_size_log2; /* Calculating the index based on the row and column. */ const unsigned index = (row * 4) + (col - 1); int num_buckets = local ? bufmgr->num_local_buckets : bufmgr->num_buckets; struct bo_cache_bucket *buckets = local ? bufmgr->local_cache_bucket : bufmgr->cache_bucket; return (index < num_buckets) ? &buckets[index] : NULL; } enum iris_memory_zone iris_memzone_for_address(uint64_t address) { STATIC_ASSERT(IRIS_MEMZONE_OTHER_START > IRIS_MEMZONE_DYNAMIC_START); STATIC_ASSERT(IRIS_MEMZONE_DYNAMIC_START > IRIS_MEMZONE_SURFACE_START); STATIC_ASSERT(IRIS_MEMZONE_SURFACE_START > IRIS_MEMZONE_BINDLESS_START); STATIC_ASSERT(IRIS_MEMZONE_BINDLESS_START > IRIS_MEMZONE_BINDER_START); STATIC_ASSERT(IRIS_MEMZONE_BINDER_START > IRIS_MEMZONE_SHADER_START); STATIC_ASSERT(IRIS_BORDER_COLOR_POOL_ADDRESS == IRIS_MEMZONE_DYNAMIC_START); if (address >= IRIS_MEMZONE_OTHER_START) return IRIS_MEMZONE_OTHER; if (address == IRIS_BORDER_COLOR_POOL_ADDRESS) return IRIS_MEMZONE_BORDER_COLOR_POOL; if (address > IRIS_MEMZONE_DYNAMIC_START) return IRIS_MEMZONE_DYNAMIC; if (address >= IRIS_MEMZONE_SURFACE_START) return IRIS_MEMZONE_SURFACE; if (address >= IRIS_MEMZONE_BINDLESS_START) return IRIS_MEMZONE_BINDLESS; if (address >= IRIS_MEMZONE_BINDER_START) return IRIS_MEMZONE_BINDER; return IRIS_MEMZONE_SHADER; } /** * Allocate a section of virtual memory for a buffer, assigning an address. * * This uses either the bucket allocator for the given size, or the large * object allocator (util_vma). */ static uint64_t vma_alloc(struct iris_bufmgr *bufmgr, enum iris_memory_zone memzone, uint64_t size, uint64_t alignment) { /* Force minimum alignment based on device requirements */ assert((alignment & (alignment - 1)) == 0); alignment = MAX2(alignment, bufmgr->vma_min_align); if (memzone == IRIS_MEMZONE_BORDER_COLOR_POOL) return IRIS_BORDER_COLOR_POOL_ADDRESS; /* The binder handles its own allocations. Return non-zero here. */ if (memzone == IRIS_MEMZONE_BINDER) return IRIS_MEMZONE_BINDER_START; uint64_t addr = util_vma_heap_alloc(&bufmgr->vma_allocator[memzone], size, alignment); assert((addr >> 48ull) == 0); assert((addr % alignment) == 0); return intel_canonical_address(addr); } static void vma_free(struct iris_bufmgr *bufmgr, uint64_t address, uint64_t size) { if (address == IRIS_BORDER_COLOR_POOL_ADDRESS) return; /* Un-canonicalize the address. */ address = intel_48b_address(address); if (address == 0ull) return; enum iris_memory_zone memzone = iris_memzone_for_address(address); /* The binder handles its own allocations. */ if (memzone == IRIS_MEMZONE_BINDER) return; assert(memzone < ARRAY_SIZE(bufmgr->vma_allocator)); util_vma_heap_free(&bufmgr->vma_allocator[memzone], address, size); } static bool iris_bo_busy_gem(struct iris_bo *bo) { assert(iris_bo_is_real(bo)); struct iris_bufmgr *bufmgr = bo->bufmgr; struct drm_i915_gem_busy busy = { .handle = bo->gem_handle }; int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_BUSY, &busy); if (ret == 0) { return busy.busy; } return false; } /* A timeout of 0 just checks for busyness. */ static int iris_bo_wait_syncobj(struct iris_bo *bo, int64_t timeout_ns) { int ret = 0; struct iris_bufmgr *bufmgr = bo->bufmgr; /* If we know it's idle, don't bother with the kernel round trip */ if (bo->idle) return 0; simple_mtx_lock(&bufmgr->bo_deps_lock); uint32_t handles[bo->deps_size * IRIS_BATCH_COUNT * 2]; int handle_count = 0; for (int d = 0; d < bo->deps_size; d++) { for (int b = 0; b < IRIS_BATCH_COUNT; b++) { struct iris_syncobj *r = bo->deps[d].read_syncobjs[b]; struct iris_syncobj *w = bo->deps[d].write_syncobjs[b]; if (r) handles[handle_count++] = r->handle; if (w) handles[handle_count++] = w->handle; } } if (handle_count == 0) goto out; /* Unlike the gem wait, negative values are not infinite here. */ int64_t timeout_abs = os_time_get_absolute_timeout(timeout_ns); if (timeout_abs < 0) timeout_abs = INT64_MAX; struct drm_syncobj_wait args = { .handles = (uintptr_t) handles, .timeout_nsec = timeout_abs, .count_handles = handle_count, .flags = DRM_SYNCOBJ_WAIT_FLAGS_WAIT_ALL, }; ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_SYNCOBJ_WAIT, &args); if (ret != 0) { ret = -errno; goto out; } /* We just waited everything, so clean all the deps. */ for (int d = 0; d < bo->deps_size; d++) { for (int b = 0; b < IRIS_BATCH_COUNT; b++) { iris_syncobj_reference(bufmgr, &bo->deps[d].write_syncobjs[b], NULL); iris_syncobj_reference(bufmgr, &bo->deps[d].read_syncobjs[b], NULL); } } out: simple_mtx_unlock(&bufmgr->bo_deps_lock); return ret; } static bool iris_bo_busy_syncobj(struct iris_bo *bo) { return iris_bo_wait_syncobj(bo, 0) == -ETIME; } bool iris_bo_busy(struct iris_bo *bo) { bool busy; if (iris_bo_is_external(bo)) busy = iris_bo_busy_gem(bo); else busy = iris_bo_busy_syncobj(bo); bo->idle = !busy; return busy; } int iris_bo_madvise(struct iris_bo *bo, int state) { /* We can't madvise suballocated BOs. */ assert(iris_bo_is_real(bo)); struct drm_i915_gem_madvise madv = { .handle = bo->gem_handle, .madv = state, .retained = 1, }; intel_ioctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv); return madv.retained; } static struct iris_bo * bo_calloc(void) { struct iris_bo *bo = calloc(1, sizeof(*bo)); if (!bo) return NULL; list_inithead(&bo->real.exports); bo->hash = _mesa_hash_pointer(bo); return bo; } static void bo_unmap(struct iris_bo *bo) { assert(iris_bo_is_real(bo)); VG_NOACCESS(bo->real.map, bo->size); os_munmap(bo->real.map, bo->size); bo->real.map = NULL; } static struct pb_slabs * get_slabs(struct iris_bufmgr *bufmgr, uint64_t size) { for (unsigned i = 0; i < NUM_SLAB_ALLOCATORS; i++) { struct pb_slabs *slabs = &bufmgr->bo_slabs[i]; if (size <= 1ull << (slabs->min_order + slabs->num_orders - 1)) return slabs; } unreachable("should have found a valid slab for this size"); } /* Return the power of two size of a slab entry matching the input size. */ static unsigned get_slab_pot_entry_size(struct iris_bufmgr *bufmgr, unsigned size) { unsigned entry_size = util_next_power_of_two(size); unsigned min_entry_size = 1 << bufmgr->bo_slabs[0].min_order; return MAX2(entry_size, min_entry_size); } /* Return the slab entry alignment. */ static unsigned get_slab_entry_alignment(struct iris_bufmgr *bufmgr, unsigned size) { unsigned entry_size = get_slab_pot_entry_size(bufmgr, size); if (size <= entry_size * 3 / 4) return entry_size / 4; return entry_size; } static bool iris_can_reclaim_slab(void *priv, struct pb_slab_entry *entry) { struct iris_bo *bo = container_of(entry, struct iris_bo, slab.entry); return !iris_bo_busy(bo); } static void iris_slab_free(void *priv, struct pb_slab *pslab) { struct iris_bufmgr *bufmgr = priv; struct iris_slab *slab = (void *) pslab; struct intel_aux_map_context *aux_map_ctx = bufmgr->aux_map_ctx; assert(!slab->bo->aux_map_address); if (aux_map_ctx) { /* Since we're freeing the whole slab, all buffers allocated out of it * must be reclaimable. We require buffers to be idle to be reclaimed * (see iris_can_reclaim_slab()), so we know all entries must be idle. * Therefore, we can safely unmap their aux table entries. */ for (unsigned i = 0; i < pslab->num_entries; i++) { struct iris_bo *bo = &slab->entries[i]; if (bo->aux_map_address) { intel_aux_map_unmap_range(aux_map_ctx, bo->address, bo->size); bo->aux_map_address = 0; } } } iris_bo_unreference(slab->bo); free(slab->entries); free(slab); } static struct pb_slab * iris_slab_alloc(void *priv, unsigned heap, unsigned entry_size, unsigned group_index) { struct iris_bufmgr *bufmgr = priv; struct iris_slab *slab = calloc(1, sizeof(struct iris_slab)); unsigned flags = heap == IRIS_HEAP_SYSTEM_MEMORY ? BO_ALLOC_SMEM : 0; unsigned slab_size = 0; /* We only support slab allocation for IRIS_MEMZONE_OTHER */ enum iris_memory_zone memzone = IRIS_MEMZONE_OTHER; if (!slab) return NULL; struct pb_slabs *slabs = bufmgr->bo_slabs; /* Determine the slab buffer size. */ for (unsigned i = 0; i < NUM_SLAB_ALLOCATORS; i++) { unsigned max_entry_size = 1 << (slabs[i].min_order + slabs[i].num_orders - 1); if (entry_size <= max_entry_size) { /* The slab size is twice the size of the largest possible entry. */ slab_size = max_entry_size * 2; if (!util_is_power_of_two_nonzero(entry_size)) { assert(util_is_power_of_two_nonzero(entry_size * 4 / 3)); /* If the entry size is 3/4 of a power of two, we would waste * space and not gain anything if we allocated only twice the * power of two for the backing buffer: * * 2 * 3/4 = 1.5 usable with buffer size 2 * * Allocating 5 times the entry size leads us to the next power * of two and results in a much better memory utilization: * * 5 * 3/4 = 3.75 usable with buffer size 4 */ if (entry_size * 5 > slab_size) slab_size = util_next_power_of_two(entry_size * 5); } /* The largest slab should have the same size as the PTE fragment * size to get faster address translation. * * TODO: move this to intel_device_info? */ const unsigned pte_size = 2 * 1024 * 1024; if (i == NUM_SLAB_ALLOCATORS - 1 && slab_size < pte_size) slab_size = pte_size; break; } } assert(slab_size != 0); slab->bo = iris_bo_alloc(bufmgr, "slab", slab_size, slab_size, memzone, flags); if (!slab->bo) goto fail; slab_size = slab->bo->size; slab->base.num_entries = slab_size / entry_size; slab->base.num_free = slab->base.num_entries; slab->entry_size = entry_size; slab->entries = calloc(slab->base.num_entries, sizeof(*slab->entries)); if (!slab->entries) goto fail_bo; list_inithead(&slab->base.free); for (unsigned i = 0; i < slab->base.num_entries; i++) { struct iris_bo *bo = &slab->entries[i]; bo->size = entry_size; bo->bufmgr = bufmgr; bo->hash = _mesa_hash_pointer(bo); bo->gem_handle = 0; bo->address = slab->bo->address + i * entry_size; bo->aux_map_address = 0; bo->index = -1; bo->refcount = 0; bo->idle = true; bo->slab.entry.slab = &slab->base; bo->slab.entry.group_index = group_index; bo->slab.entry.entry_size = entry_size; bo->slab.real = iris_get_backing_bo(slab->bo); list_addtail(&bo->slab.entry.head, &slab->base.free); } return &slab->base; fail_bo: iris_bo_unreference(slab->bo); fail: free(slab); return NULL; } static struct iris_bo * alloc_bo_from_slabs(struct iris_bufmgr *bufmgr, const char *name, uint64_t size, uint32_t alignment, unsigned flags, bool local) { if (flags & BO_ALLOC_NO_SUBALLOC) return NULL; struct pb_slabs *last_slab = &bufmgr->bo_slabs[NUM_SLAB_ALLOCATORS - 1]; unsigned max_slab_entry_size = 1 << (last_slab->min_order + last_slab->num_orders - 1); if (size > max_slab_entry_size) return NULL; struct pb_slab_entry *entry; enum iris_heap heap = local ? IRIS_HEAP_DEVICE_LOCAL : IRIS_HEAP_SYSTEM_MEMORY; unsigned alloc_size = size; /* Always use slabs for sizes less than 4 KB because the kernel aligns * everything to 4 KB. */ if (size < alignment && alignment <= 4 * 1024) alloc_size = alignment; if (alignment > get_slab_entry_alignment(bufmgr, alloc_size)) { /* 3/4 allocations can return too small alignment. * Try again with a power of two allocation size. */ unsigned pot_size = get_slab_pot_entry_size(bufmgr, alloc_size); if (alignment <= pot_size) { /* This size works but wastes some memory to fulfill the alignment. */ alloc_size = pot_size; } else { /* can't fulfill alignment requirements */ return NULL; } } struct pb_slabs *slabs = get_slabs(bufmgr, alloc_size); entry = pb_slab_alloc(slabs, alloc_size, heap); if (!entry) { /* Clean up and try again... */ pb_slabs_reclaim(slabs); entry = pb_slab_alloc(slabs, alloc_size, heap); } if (!entry) return NULL; struct iris_bo *bo = container_of(entry, struct iris_bo, slab.entry); if (bo->aux_map_address && bo->bufmgr->aux_map_ctx) { /* This buffer was associated with an aux-buffer range. We only allow * slab allocated buffers to be reclaimed when idle (not in use by an * executing batch). (See iris_can_reclaim_slab().) So we know that * our previous aux mapping is no longer in use, and we can safely * remove it. */ intel_aux_map_unmap_range(bo->bufmgr->aux_map_ctx, bo->address, bo->size); bo->aux_map_address = 0; } p_atomic_set(&bo->refcount, 1); bo->name = name; bo->size = size; /* Zero the contents if necessary. If this fails, fall back to * allocating a fresh BO, which will always be zeroed by the kernel. */ if (flags & BO_ALLOC_ZEROED) { void *map = iris_bo_map(NULL, bo, MAP_WRITE | MAP_RAW); if (map) { memset(map, 0, bo->size); } else { pb_slab_free(slabs, &bo->slab.entry); return NULL; } } return bo; } static struct iris_bo * alloc_bo_from_cache(struct iris_bufmgr *bufmgr, struct bo_cache_bucket *bucket, uint32_t alignment, enum iris_memory_zone memzone, enum iris_mmap_mode mmap_mode, unsigned flags, bool match_zone) { if (!bucket) return NULL; struct iris_bo *bo = NULL; list_for_each_entry_safe(struct iris_bo, cur, &bucket->head, head) { assert(iris_bo_is_real(cur)); /* Find one that's got the right mapping type. We used to swap maps * around but the kernel doesn't allow this on discrete GPUs. */ if (mmap_mode != cur->real.mmap_mode) continue; /* Try a little harder to find one that's already in the right memzone */ if (match_zone && memzone != iris_memzone_for_address(cur->address)) continue; /* If the last BO in the cache is busy, there are no idle BOs. Bail, * either falling back to a non-matching memzone, or if that fails, * allocating a fresh buffer. */ if (iris_bo_busy(cur)) return NULL; list_del(&cur->head); /* Tell the kernel we need this BO. If it still exists, we're done! */ if (iris_bo_madvise(cur, I915_MADV_WILLNEED)) { bo = cur; break; } /* This BO was purged, throw it out and keep looking. */ bo_free(cur); } if (!bo) return NULL; if (bo->aux_map_address) { /* This buffer was associated with an aux-buffer range. We make sure * that buffers are not reused from the cache while the buffer is (busy) * being used by an executing batch. Since we are here, the buffer is no * longer being used by a batch and the buffer was deleted (in order to * end up in the cache). Therefore its old aux-buffer range can be * removed from the aux-map. */ if (bo->bufmgr->aux_map_ctx) intel_aux_map_unmap_range(bo->bufmgr->aux_map_ctx, bo->address, bo->size); bo->aux_map_address = 0; } /* If the cached BO isn't in the right memory zone, or the alignment * isn't sufficient, free the old memory and assign it a new address. */ if (memzone != iris_memzone_for_address(bo->address) || bo->address % alignment != 0) { vma_free(bufmgr, bo->address, bo->size); bo->address = 0ull; } /* Zero the contents if necessary. If this fails, fall back to * allocating a fresh BO, which will always be zeroed by the kernel. */ if (flags & BO_ALLOC_ZEROED) { void *map = iris_bo_map(NULL, bo, MAP_WRITE | MAP_RAW); if (map) { memset(map, 0, bo->size); } else { bo_free(bo); return NULL; } } return bo; } static struct iris_bo * alloc_fresh_bo(struct iris_bufmgr *bufmgr, uint64_t bo_size, bool local) { struct iris_bo *bo = bo_calloc(); if (!bo) return NULL; /* If we have vram size, we have multiple memory regions and should choose * one of them. */ if (bufmgr->vram.size > 0) { /* All new BOs we get from the kernel are zeroed, so we don't need to * worry about that here. */ struct drm_i915_gem_memory_class_instance regions[2]; uint32_t nregions = 0; if (local) { /* For vram allocations, still use system memory as a fallback. */ regions[nregions++] = bufmgr->vram.region; regions[nregions++] = bufmgr->sys.region; } else { regions[nregions++] = bufmgr->sys.region; } struct drm_i915_gem_create_ext_memory_regions ext_regions = { .base = { .name = I915_GEM_CREATE_EXT_MEMORY_REGIONS }, .num_regions = nregions, .regions = (uintptr_t)regions, }; struct drm_i915_gem_create_ext create = { .size = bo_size, .extensions = (uintptr_t)&ext_regions, }; /* It should be safe to use GEM_CREATE_EXT without checking, since we are * in the side of the branch where discrete memory is available. So we * can assume GEM_CREATE_EXT is supported already. */ if (intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create) != 0) { free(bo); return NULL; } bo->gem_handle = create.handle; } else { struct drm_i915_gem_create create = { .size = bo_size }; /* All new BOs we get from the kernel are zeroed, so we don't need to * worry about that here. */ if (intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CREATE, &create) != 0) { free(bo); return NULL; } bo->gem_handle = create.handle; } bo->bufmgr = bufmgr; bo->size = bo_size; bo->idle = true; bo->real.local = local; if (bufmgr->vram.size == 0) { /* Calling set_domain() will allocate pages for the BO outside of the * struct mutex lock in the kernel, which is more efficient than waiting * to create them during the first execbuf that uses the BO. */ struct drm_i915_gem_set_domain sd = { .handle = bo->gem_handle, .read_domains = I915_GEM_DOMAIN_CPU, .write_domain = 0, }; intel_ioctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd); } return bo; } struct iris_bo * iris_bo_alloc(struct iris_bufmgr *bufmgr, const char *name, uint64_t size, uint32_t alignment, enum iris_memory_zone memzone, unsigned flags) { struct iris_bo *bo; unsigned int page_size = getpagesize(); bool local = bufmgr->vram.size > 0 && !(flags & BO_ALLOC_COHERENT || flags & BO_ALLOC_SMEM); struct bo_cache_bucket *bucket = bucket_for_size(bufmgr, size, local); if (memzone != IRIS_MEMZONE_OTHER || (flags & BO_ALLOC_COHERENT)) flags |= BO_ALLOC_NO_SUBALLOC; bo = alloc_bo_from_slabs(bufmgr, name, size, alignment, flags, local); if (bo) return bo; /* Round the size up to the bucket size, or if we don't have caching * at this size, a multiple of the page size. */ uint64_t bo_size = bucket ? bucket->size : MAX2(ALIGN(size, page_size), page_size); bool is_coherent = bufmgr->has_llc || (bufmgr->vram.size > 0 && !local) || (flags & BO_ALLOC_COHERENT); bool is_scanout = (flags & BO_ALLOC_SCANOUT) != 0; enum iris_mmap_mode mmap_mode = !local && is_coherent && !is_scanout ? IRIS_MMAP_WB : IRIS_MMAP_WC; simple_mtx_lock(&bufmgr->lock); /* Get a buffer out of the cache if available. First, we try to find * one with a matching memory zone so we can avoid reallocating VMA. */ bo = alloc_bo_from_cache(bufmgr, bucket, alignment, memzone, mmap_mode, flags, true); /* If that fails, we try for any cached BO, without matching memzone. */ if (!bo) { bo = alloc_bo_from_cache(bufmgr, bucket, alignment, memzone, mmap_mode, flags, false); } simple_mtx_unlock(&bufmgr->lock); if (!bo) { bo = alloc_fresh_bo(bufmgr, bo_size, local); if (!bo) return NULL; } if (bo->address == 0ull) { simple_mtx_lock(&bufmgr->lock); bo->address = vma_alloc(bufmgr, memzone, bo->size, alignment); simple_mtx_unlock(&bufmgr->lock); if (bo->address == 0ull) goto err_free; } bo->name = name; p_atomic_set(&bo->refcount, 1); bo->real.reusable = bucket && bufmgr->bo_reuse; bo->index = -1; bo->real.kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED; /* By default, capture all driver-internal buffers like shader kernels, * surface states, dynamic states, border colors, and so on. */ if (memzone < IRIS_MEMZONE_OTHER) bo->real.kflags |= EXEC_OBJECT_CAPTURE; assert(bo->real.map == NULL || bo->real.mmap_mode == mmap_mode); bo->real.mmap_mode = mmap_mode; /* On integrated GPUs, enable snooping to ensure coherency if needed. * For discrete, we instead use SMEM and avoid WB maps for coherency. */ if ((flags & BO_ALLOC_COHERENT) && !bufmgr->has_llc && bufmgr->vram.size == 0) { struct drm_i915_gem_caching arg = { .handle = bo->gem_handle, .caching = 1, }; if (intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_CACHING, &arg) != 0) goto err_free; bo->real.reusable = false; } DBG("bo_create: buf %d (%s) (%s memzone) (%s) %llub\n", bo->gem_handle, bo->name, memzone_name(memzone), bo->real.local ? "local" : "system", (unsigned long long) size); return bo; err_free: bo_free(bo); return NULL; } struct iris_bo * iris_bo_create_userptr(struct iris_bufmgr *bufmgr, const char *name, void *ptr, size_t size, enum iris_memory_zone memzone) { struct drm_gem_close close = { 0, }; struct iris_bo *bo; bo = bo_calloc(); if (!bo) return NULL; struct drm_i915_gem_userptr arg = { .user_ptr = (uintptr_t)ptr, .user_size = size, .flags = bufmgr->has_userptr_probe ? I915_USERPTR_PROBE : 0, }; if (intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_USERPTR, &arg)) goto err_free; bo->gem_handle = arg.handle; if (!bufmgr->has_userptr_probe) { /* Check the buffer for validity before we try and use it in a batch */ struct drm_i915_gem_set_domain sd = { .handle = bo->gem_handle, .read_domains = I915_GEM_DOMAIN_CPU, }; if (intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd)) goto err_close; } bo->name = name; bo->size = size; bo->real.map = ptr; bo->bufmgr = bufmgr; bo->real.kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED; simple_mtx_lock(&bufmgr->lock); bo->address = vma_alloc(bufmgr, memzone, size, 1); simple_mtx_unlock(&bufmgr->lock); if (bo->address == 0ull) goto err_close; p_atomic_set(&bo->refcount, 1); bo->real.userptr = true; bo->index = -1; bo->idle = true; bo->real.mmap_mode = IRIS_MMAP_WB; return bo; err_close: close.handle = bo->gem_handle; intel_ioctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &close); err_free: free(bo); return NULL; } /** * Returns a iris_bo wrapping the given buffer object handle. * * This can be used when one application needs to pass a buffer object * to another. */ struct iris_bo * iris_bo_gem_create_from_name(struct iris_bufmgr *bufmgr, const char *name, unsigned int handle) { struct iris_bo *bo; /* At the moment most applications only have a few named bo. * For instance, in a DRI client only the render buffers passed * between X and the client are named. And since X returns the * alternating names for the front/back buffer a linear search * provides a sufficiently fast match. */ simple_mtx_lock(&bufmgr->lock); bo = find_and_ref_external_bo(bufmgr->name_table, handle); if (bo) goto out; struct drm_gem_open open_arg = { .name = handle }; int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_GEM_OPEN, &open_arg); if (ret != 0) { DBG("Couldn't reference %s handle 0x%08x: %s\n", name, handle, strerror(errno)); bo = NULL; goto out; } /* Now see if someone has used a prime handle to get this * object from the kernel before by looking through the list * again for a matching gem_handle */ bo = find_and_ref_external_bo(bufmgr->handle_table, open_arg.handle); if (bo) goto out; bo = bo_calloc(); if (!bo) goto out; p_atomic_set(&bo->refcount, 1); bo->size = open_arg.size; bo->bufmgr = bufmgr; bo->gem_handle = open_arg.handle; bo->name = name; bo->real.global_name = handle; bo->real.reusable = false; bo->real.imported = true; bo->real.mmap_mode = IRIS_MMAP_NONE; bo->real.kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED; bo->address = vma_alloc(bufmgr, IRIS_MEMZONE_OTHER, bo->size, 1); _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo); _mesa_hash_table_insert(bufmgr->name_table, &bo->real.global_name, bo); DBG("bo_create_from_handle: %d (%s)\n", handle, bo->name); out: simple_mtx_unlock(&bufmgr->lock); return bo; } static void bo_close(struct iris_bo *bo) { struct iris_bufmgr *bufmgr = bo->bufmgr; assert(iris_bo_is_real(bo)); if (iris_bo_is_external(bo)) { struct hash_entry *entry; if (bo->real.global_name) { entry = _mesa_hash_table_search(bufmgr->name_table, &bo->real.global_name); _mesa_hash_table_remove(bufmgr->name_table, entry); } entry = _mesa_hash_table_search(bufmgr->handle_table, &bo->gem_handle); _mesa_hash_table_remove(bufmgr->handle_table, entry); list_for_each_entry_safe(struct bo_export, export, &bo->real.exports, link) { struct drm_gem_close close = { .handle = export->gem_handle }; intel_ioctl(export->drm_fd, DRM_IOCTL_GEM_CLOSE, &close); list_del(&export->link); free(export); } } else { assert(list_is_empty(&bo->real.exports)); } /* Close this object */ struct drm_gem_close close = { .handle = bo->gem_handle }; int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &close); if (ret != 0) { DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n", bo->gem_handle, bo->name, strerror(errno)); } if (bo->aux_map_address && bo->bufmgr->aux_map_ctx) { intel_aux_map_unmap_range(bo->bufmgr->aux_map_ctx, bo->address, bo->size); } /* Return the VMA for reuse */ vma_free(bo->bufmgr, bo->address, bo->size); for (int d = 0; d < bo->deps_size; d++) { for (int b = 0; b < IRIS_BATCH_COUNT; b++) { iris_syncobj_reference(bufmgr, &bo->deps[d].write_syncobjs[b], NULL); iris_syncobj_reference(bufmgr, &bo->deps[d].read_syncobjs[b], NULL); } } free(bo->deps); free(bo); } static void bo_free(struct iris_bo *bo) { struct iris_bufmgr *bufmgr = bo->bufmgr; assert(iris_bo_is_real(bo)); if (!bo->real.userptr && bo->real.map) bo_unmap(bo); if (bo->idle) { bo_close(bo); } else { /* Defer closing the GEM BO and returning the VMA for reuse until the * BO is idle. Just move it to the dead list for now. */ list_addtail(&bo->head, &bufmgr->zombie_list); } } /** Frees all cached buffers significantly older than @time. */ static void cleanup_bo_cache(struct iris_bufmgr *bufmgr, time_t time) { int i; if (bufmgr->time == time) return; for (i = 0; i < bufmgr->num_buckets; i++) { struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i]; list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) { if (time - bo->real.free_time <= 1) break; list_del(&bo->head); bo_free(bo); } } for (i = 0; i < bufmgr->num_local_buckets; i++) { struct bo_cache_bucket *bucket = &bufmgr->local_cache_bucket[i]; list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) { if (time - bo->real.free_time <= 1) break; list_del(&bo->head); bo_free(bo); } } list_for_each_entry_safe(struct iris_bo, bo, &bufmgr->zombie_list, head) { /* Stop once we reach a busy BO - all others past this point were * freed more recently so are likely also busy. */ if (!bo->idle && iris_bo_busy(bo)) break; list_del(&bo->head); bo_close(bo); } bufmgr->time = time; } static void bo_unreference_final(struct iris_bo *bo, time_t time) { struct iris_bufmgr *bufmgr = bo->bufmgr; struct bo_cache_bucket *bucket; DBG("bo_unreference final: %d (%s)\n", bo->gem_handle, bo->name); assert(iris_bo_is_real(bo)); bucket = NULL; if (bo->real.reusable) bucket = bucket_for_size(bufmgr, bo->size, bo->real.local); /* Put the buffer into our internal cache for reuse if we can. */ if (bucket && iris_bo_madvise(bo, I915_MADV_DONTNEED)) { bo->real.free_time = time; bo->name = NULL; list_addtail(&bo->head, &bucket->head); } else { bo_free(bo); } } void iris_bo_unreference(struct iris_bo *bo) { if (bo == NULL) return; assert(p_atomic_read(&bo->refcount) > 0); if (atomic_add_unless(&bo->refcount, -1, 1)) { struct iris_bufmgr *bufmgr = bo->bufmgr; struct timespec time; clock_gettime(CLOCK_MONOTONIC, &time); if (bo->gem_handle == 0) { pb_slab_free(get_slabs(bufmgr, bo->size), &bo->slab.entry); } else { simple_mtx_lock(&bufmgr->lock); if (p_atomic_dec_zero(&bo->refcount)) { bo_unreference_final(bo, time.tv_sec); cleanup_bo_cache(bufmgr, time.tv_sec); } simple_mtx_unlock(&bufmgr->lock); } } } static void bo_wait_with_stall_warning(struct pipe_debug_callback *dbg, struct iris_bo *bo, const char *action) { bool busy = dbg && !bo->idle; double elapsed = unlikely(busy) ? -get_time() : 0.0; iris_bo_wait_rendering(bo); if (unlikely(busy)) { elapsed += get_time(); if (elapsed > 1e-5) /* 0.01ms */ { perf_debug(dbg, "%s a busy \"%s\" BO stalled and took %.03f ms.\n", action, bo->name, elapsed * 1000); } } } static void print_flags(unsigned flags) { if (flags & MAP_READ) DBG("READ "); if (flags & MAP_WRITE) DBG("WRITE "); if (flags & MAP_ASYNC) DBG("ASYNC "); if (flags & MAP_PERSISTENT) DBG("PERSISTENT "); if (flags & MAP_COHERENT) DBG("COHERENT "); if (flags & MAP_RAW) DBG("RAW "); DBG("\n"); } static void * iris_bo_gem_mmap_legacy(struct pipe_debug_callback *dbg, struct iris_bo *bo) { struct iris_bufmgr *bufmgr = bo->bufmgr; assert(bufmgr->vram.size == 0); assert(iris_bo_is_real(bo)); assert(bo->real.mmap_mode == IRIS_MMAP_WB || bo->real.mmap_mode == IRIS_MMAP_WC); struct drm_i915_gem_mmap mmap_arg = { .handle = bo->gem_handle, .size = bo->size, .flags = bo->real.mmap_mode == IRIS_MMAP_WC ? I915_MMAP_WC : 0, }; int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg); if (ret != 0) { DBG("%s:%d: Error mapping buffer %d (%s): %s .\n", __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno)); return NULL; } void *map = (void *) (uintptr_t) mmap_arg.addr_ptr; return map; } static void * iris_bo_gem_mmap_offset(struct pipe_debug_callback *dbg, struct iris_bo *bo) { struct iris_bufmgr *bufmgr = bo->bufmgr; assert(iris_bo_is_real(bo)); struct drm_i915_gem_mmap_offset mmap_arg = { .handle = bo->gem_handle, }; if (bufmgr->has_local_mem) { /* On discrete memory platforms, we cannot control the mmap caching mode * at mmap time. Instead, it's fixed when the object is created (this * is a limitation of TTM). * * On DG1, our only currently enabled discrete platform, there is no * control over what mode we get. For SMEM, we always get WB because * it's fast (probably what we want) and when the device views SMEM * across PCIe, it's always snooped. The only caching mode allowed by * DG1 hardware for LMEM is WC. */ if (bo->real.local) assert(bo->real.mmap_mode == IRIS_MMAP_WC); else assert(bo->real.mmap_mode == IRIS_MMAP_WB); mmap_arg.flags = I915_MMAP_OFFSET_FIXED; } else { /* Only integrated platforms get to select a mmap caching mode here */ static const uint32_t mmap_offset_for_mode[] = { [IRIS_MMAP_UC] = I915_MMAP_OFFSET_UC, [IRIS_MMAP_WC] = I915_MMAP_OFFSET_WC, [IRIS_MMAP_WB] = I915_MMAP_OFFSET_WB, }; assert(bo->real.mmap_mode != IRIS_MMAP_NONE); assert(bo->real.mmap_mode < ARRAY_SIZE(mmap_offset_for_mode)); mmap_arg.flags = mmap_offset_for_mode[bo->real.mmap_mode]; } /* Get the fake offset back */ int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP_OFFSET, &mmap_arg); if (ret != 0) { DBG("%s:%d: Error preparing buffer %d (%s): %s .\n", __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno)); return NULL; } /* And map it */ void *map = mmap(0, bo->size, PROT_READ | PROT_WRITE, MAP_SHARED, bufmgr->fd, mmap_arg.offset); if (map == MAP_FAILED) { DBG("%s:%d: Error mapping buffer %d (%s): %s .\n", __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno)); return NULL; } return map; } void * iris_bo_map(struct pipe_debug_callback *dbg, struct iris_bo *bo, unsigned flags) { struct iris_bufmgr *bufmgr = bo->bufmgr; void *map = NULL; if (bo->gem_handle == 0) { struct iris_bo *real = iris_get_backing_bo(bo); uint64_t offset = bo->address - real->address; map = iris_bo_map(dbg, real, flags | MAP_ASYNC) + offset; } else { assert(bo->real.mmap_mode != IRIS_MMAP_NONE); if (bo->real.mmap_mode == IRIS_MMAP_NONE) return NULL; if (!bo->real.map) { DBG("iris_bo_map: %d (%s)\n", bo->gem_handle, bo->name); map = bufmgr->has_mmap_offset ? iris_bo_gem_mmap_offset(dbg, bo) : iris_bo_gem_mmap_legacy(dbg, bo); if (!map) { return NULL; } VG_DEFINED(map, bo->size); if (p_atomic_cmpxchg(&bo->real.map, NULL, map)) { VG_NOACCESS(map, bo->size); os_munmap(map, bo->size); } } assert(bo->real.map); map = bo->real.map; } DBG("iris_bo_map: %d (%s) -> %p\n", bo->gem_handle, bo->name, bo->real.map); print_flags(flags); if (!(flags & MAP_ASYNC)) { bo_wait_with_stall_warning(dbg, bo, "memory mapping"); } return map; } /** Waits for all GPU rendering with the object to have completed. */ void iris_bo_wait_rendering(struct iris_bo *bo) { /* We require a kernel recent enough for WAIT_IOCTL support. * See intel_init_bufmgr() */ iris_bo_wait(bo, -1); } static int iris_bo_wait_gem(struct iris_bo *bo, int64_t timeout_ns) { assert(iris_bo_is_real(bo)); struct iris_bufmgr *bufmgr = bo->bufmgr; struct drm_i915_gem_wait wait = { .bo_handle = bo->gem_handle, .timeout_ns = timeout_ns, }; int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_WAIT, &wait); if (ret != 0) return -errno; return 0; } /** * Waits on a BO for the given amount of time. * * @bo: buffer object to wait for * @timeout_ns: amount of time to wait in nanoseconds. * If value is less than 0, an infinite wait will occur. * * Returns 0 if the wait was successful ie. the last batch referencing the * object has completed within the allotted time. Otherwise some negative return * value describes the error. Of particular interest is -ETIME when the wait has * failed to yield the desired result. * * Similar to iris_bo_wait_rendering except a timeout parameter allows * the operation to give up after a certain amount of time. Another subtle * difference is the internal locking semantics are different (this variant does * not hold the lock for the duration of the wait). This makes the wait subject * to a larger userspace race window. * * The implementation shall wait until the object is no longer actively * referenced within a batch buffer at the time of the call. The wait will * not guarantee that the buffer is re-issued via another thread, or an flinked * handle. Userspace must make sure this race does not occur if such precision * is important. * * Note that some kernels have broken the infinite wait for negative values * promise, upgrade to latest stable kernels if this is the case. */ int iris_bo_wait(struct iris_bo *bo, int64_t timeout_ns) { int ret; if (iris_bo_is_external(bo)) ret = iris_bo_wait_gem(bo, timeout_ns); else ret = iris_bo_wait_syncobj(bo, timeout_ns); if (ret != 0) return -errno; bo->idle = true; return ret; } static void iris_bufmgr_destroy(struct iris_bufmgr *bufmgr) { /* Free aux-map buffers */ intel_aux_map_finish(bufmgr->aux_map_ctx); /* bufmgr will no longer try to free VMA entries in the aux-map */ bufmgr->aux_map_ctx = NULL; for (int i = 0; i < NUM_SLAB_ALLOCATORS; i++) { if (bufmgr->bo_slabs[i].groups) pb_slabs_deinit(&bufmgr->bo_slabs[i]); } simple_mtx_destroy(&bufmgr->lock); simple_mtx_destroy(&bufmgr->bo_deps_lock); /* Free any cached buffer objects we were going to reuse */ for (int i = 0; i < bufmgr->num_buckets; i++) { struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i]; list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) { list_del(&bo->head); bo_free(bo); } } for (int i = 0; i < bufmgr->num_local_buckets; i++) { struct bo_cache_bucket *bucket = &bufmgr->local_cache_bucket[i]; list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) { list_del(&bo->head); bo_free(bo); } } /* Close any buffer objects on the dead list. */ list_for_each_entry_safe(struct iris_bo, bo, &bufmgr->zombie_list, head) { list_del(&bo->head); bo_close(bo); } _mesa_hash_table_destroy(bufmgr->name_table, NULL); _mesa_hash_table_destroy(bufmgr->handle_table, NULL); for (int z = 0; z < IRIS_MEMZONE_COUNT; z++) { if (z != IRIS_MEMZONE_BINDER) util_vma_heap_finish(&bufmgr->vma_allocator[z]); } close(bufmgr->fd); free(bufmgr); } int iris_gem_get_tiling(struct iris_bo *bo, uint32_t *tiling) { struct iris_bufmgr *bufmgr = bo->bufmgr; if (!bufmgr->has_tiling_uapi) { *tiling = I915_TILING_NONE; return 0; } struct drm_i915_gem_get_tiling ti = { .handle = bo->gem_handle }; int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &ti); if (ret) { DBG("gem_get_tiling failed for BO %u: %s\n", bo->gem_handle, strerror(errno)); } *tiling = ti.tiling_mode; return ret; } int iris_gem_set_tiling(struct iris_bo *bo, const struct isl_surf *surf) { struct iris_bufmgr *bufmgr = bo->bufmgr; uint32_t tiling_mode = isl_tiling_to_i915_tiling(surf->tiling); int ret; /* If we can't do map_gtt, the set/get_tiling API isn't useful. And it's * actually not supported by the kernel in those cases. */ if (!bufmgr->has_tiling_uapi) return 0; /* GEM_SET_TILING is slightly broken and overwrites the input on the * error path, so we have to open code intel_ioctl(). */ do { struct drm_i915_gem_set_tiling set_tiling = { .handle = bo->gem_handle, .tiling_mode = tiling_mode, .stride = surf->row_pitch_B, }; ret = ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_TILING, &set_tiling); } while (ret == -1 && (errno == EINTR || errno == EAGAIN)); if (ret) { DBG("gem_set_tiling failed for BO %u: %s\n", bo->gem_handle, strerror(errno)); } return ret; } struct iris_bo * iris_bo_import_dmabuf(struct iris_bufmgr *bufmgr, int prime_fd) { uint32_t handle; struct iris_bo *bo; simple_mtx_lock(&bufmgr->lock); int ret = drmPrimeFDToHandle(bufmgr->fd, prime_fd, &handle); if (ret) { DBG("import_dmabuf: failed to obtain handle from fd: %s\n", strerror(errno)); simple_mtx_unlock(&bufmgr->lock); return NULL; } /* * See if the kernel has already returned this buffer to us. Just as * for named buffers, we must not create two bo's pointing at the same * kernel object */ bo = find_and_ref_external_bo(bufmgr->handle_table, handle); if (bo) goto out; bo = bo_calloc(); if (!bo) goto out; p_atomic_set(&bo->refcount, 1); /* Determine size of bo. The fd-to-handle ioctl really should * return the size, but it doesn't. If we have kernel 3.12 or * later, we can lseek on the prime fd to get the size. Older * kernels will just fail, in which case we fall back to the * provided (estimated or guess size). */ ret = lseek(prime_fd, 0, SEEK_END); if (ret != -1) bo->size = ret; bo->bufmgr = bufmgr; bo->name = "prime"; bo->real.reusable = false; bo->real.imported = true; bo->real.mmap_mode = IRIS_MMAP_NONE; bo->real.kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED; /* From the Bspec, Memory Compression - Gfx12: * * The base address for the surface has to be 64K page aligned and the * surface is expected to be padded in the virtual domain to be 4 4K * pages. * * The dmabuf may contain a compressed surface. Align the BO to 64KB just * in case. We always align to 64KB even on platforms where we don't need * to, because it's a fairly reasonable thing to do anyway. */ bo->address = vma_alloc(bufmgr, IRIS_MEMZONE_OTHER, bo->size, 64 * 1024); bo->gem_handle = handle; _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo); out: simple_mtx_unlock(&bufmgr->lock); return bo; } static void iris_bo_mark_exported_locked(struct iris_bo *bo) { /* We cannot export suballocated BOs. */ assert(iris_bo_is_real(bo)); if (!iris_bo_is_external(bo)) _mesa_hash_table_insert(bo->bufmgr->handle_table, &bo->gem_handle, bo); if (!bo->real.exported) { /* If a BO is going to be used externally, it could be sent to the * display HW. So make sure our CPU mappings don't assume cache * coherency since display is outside that cache. */ bo->real.exported = true; bo->real.reusable = false; } } void iris_bo_mark_exported(struct iris_bo *bo) { struct iris_bufmgr *bufmgr = bo->bufmgr; /* We cannot export suballocated BOs. */ assert(iris_bo_is_real(bo)); if (bo->real.exported) { assert(!bo->real.reusable); return; } simple_mtx_lock(&bufmgr->lock); iris_bo_mark_exported_locked(bo); simple_mtx_unlock(&bufmgr->lock); } int iris_bo_export_dmabuf(struct iris_bo *bo, int *prime_fd) { struct iris_bufmgr *bufmgr = bo->bufmgr; /* We cannot export suballocated BOs. */ assert(iris_bo_is_real(bo)); iris_bo_mark_exported(bo); if (drmPrimeHandleToFD(bufmgr->fd, bo->gem_handle, DRM_CLOEXEC | DRM_RDWR, prime_fd) != 0) return -errno; return 0; } uint32_t iris_bo_export_gem_handle(struct iris_bo *bo) { /* We cannot export suballocated BOs. */ assert(iris_bo_is_real(bo)); iris_bo_mark_exported(bo); return bo->gem_handle; } int iris_bo_flink(struct iris_bo *bo, uint32_t *name) { struct iris_bufmgr *bufmgr = bo->bufmgr; /* We cannot export suballocated BOs. */ assert(iris_bo_is_real(bo)); if (!bo->real.global_name) { struct drm_gem_flink flink = { .handle = bo->gem_handle }; if (intel_ioctl(bufmgr->fd, DRM_IOCTL_GEM_FLINK, &flink)) return -errno; simple_mtx_lock(&bufmgr->lock); if (!bo->real.global_name) { iris_bo_mark_exported_locked(bo); bo->real.global_name = flink.name; _mesa_hash_table_insert(bufmgr->name_table, &bo->real.global_name, bo); } simple_mtx_unlock(&bufmgr->lock); } *name = bo->real.global_name; return 0; } int iris_bo_export_gem_handle_for_device(struct iris_bo *bo, int drm_fd, uint32_t *out_handle) { /* We cannot export suballocated BOs. */ assert(iris_bo_is_real(bo)); /* Only add the new GEM handle to the list of export if it belongs to a * different GEM device. Otherwise we might close the same buffer multiple * times. */ struct iris_bufmgr *bufmgr = bo->bufmgr; int ret = os_same_file_description(drm_fd, bufmgr->fd); WARN_ONCE(ret < 0, "Kernel has no file descriptor comparison support: %s\n", strerror(errno)); if (ret == 0) { *out_handle = iris_bo_export_gem_handle(bo); return 0; } struct bo_export *export = calloc(1, sizeof(*export)); if (!export) return -ENOMEM; export->drm_fd = drm_fd; int dmabuf_fd = -1; int err = iris_bo_export_dmabuf(bo, &dmabuf_fd); if (err) { free(export); return err; } simple_mtx_lock(&bufmgr->lock); err = drmPrimeFDToHandle(drm_fd, dmabuf_fd, &export->gem_handle); close(dmabuf_fd); if (err) { simple_mtx_unlock(&bufmgr->lock); free(export); return err; } bool found = false; list_for_each_entry(struct bo_export, iter, &bo->real.exports, link) { if (iter->drm_fd != drm_fd) continue; /* Here we assume that for a given DRM fd, we'll always get back the * same GEM handle for a given buffer. */ assert(iter->gem_handle == export->gem_handle); free(export); export = iter; found = true; break; } if (!found) list_addtail(&export->link, &bo->real.exports); simple_mtx_unlock(&bufmgr->lock); *out_handle = export->gem_handle; return 0; } static void add_bucket(struct iris_bufmgr *bufmgr, int size, bool local) { unsigned int i = local ? bufmgr->num_local_buckets : bufmgr->num_buckets; struct bo_cache_bucket *buckets = local ? bufmgr->local_cache_bucket : bufmgr->cache_bucket; assert(i < ARRAY_SIZE(bufmgr->cache_bucket)); list_inithead(&buckets[i].head); buckets[i].size = size; if (local) bufmgr->num_local_buckets++; else bufmgr->num_buckets++; assert(bucket_for_size(bufmgr, size, local) == &buckets[i]); assert(bucket_for_size(bufmgr, size - 2048, local) == &buckets[i]); assert(bucket_for_size(bufmgr, size + 1, local) != &buckets[i]); } static void init_cache_buckets(struct iris_bufmgr *bufmgr, bool local) { uint64_t size, cache_max_size = 64 * 1024 * 1024; /* OK, so power of two buckets was too wasteful of memory. * Give 3 other sizes between each power of two, to hopefully * cover things accurately enough. (The alternative is * probably to just go for exact matching of sizes, and assume * that for things like composited window resize the tiled * width/height alignment and rounding of sizes to pages will * get us useful cache hit rates anyway) */ add_bucket(bufmgr, PAGE_SIZE, local); add_bucket(bufmgr, PAGE_SIZE * 2, local); add_bucket(bufmgr, PAGE_SIZE * 3, local); /* Initialize the linked lists for BO reuse cache. */ for (size = 4 * PAGE_SIZE; size <= cache_max_size; size *= 2) { add_bucket(bufmgr, size, local); add_bucket(bufmgr, size + size * 1 / 4, local); add_bucket(bufmgr, size + size * 2 / 4, local); add_bucket(bufmgr, size + size * 3 / 4, local); } } uint32_t iris_create_hw_context(struct iris_bufmgr *bufmgr) { struct drm_i915_gem_context_create create = { }; int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create); if (ret != 0) { DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n", strerror(errno)); return 0; } /* Upon declaring a GPU hang, the kernel will zap the guilty context * back to the default logical HW state and attempt to continue on to * our next submitted batchbuffer. However, our render batches assume * the previous GPU state is preserved, and only emit commands needed * to incrementally change that state. In particular, we inherit the * STATE_BASE_ADDRESS and PIPELINE_SELECT settings, which are critical. * With default base addresses, our next batches will almost certainly * cause more GPU hangs, leading to repeated hangs until we're banned * or the machine is dead. * * Here we tell the kernel not to attempt to recover our context but * immediately (on the next batchbuffer submission) report that the * context is lost, and we will do the recovery ourselves. Ideally, * we'll have two lost batches instead of a continual stream of hangs. */ struct drm_i915_gem_context_param p = { .ctx_id = create.ctx_id, .param = I915_CONTEXT_PARAM_RECOVERABLE, .value = false, }; intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM, &p); return create.ctx_id; } static int iris_hw_context_get_priority(struct iris_bufmgr *bufmgr, uint32_t ctx_id) { struct drm_i915_gem_context_param p = { .ctx_id = ctx_id, .param = I915_CONTEXT_PARAM_PRIORITY, }; intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM, &p); return p.value; /* on error, return 0 i.e. default priority */ } int iris_hw_context_set_priority(struct iris_bufmgr *bufmgr, uint32_t ctx_id, int priority) { struct drm_i915_gem_context_param p = { .ctx_id = ctx_id, .param = I915_CONTEXT_PARAM_PRIORITY, .value = priority, }; int err; err = 0; if (intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM, &p)) err = -errno; return err; } uint32_t iris_clone_hw_context(struct iris_bufmgr *bufmgr, uint32_t ctx_id) { uint32_t new_ctx = iris_create_hw_context(bufmgr); if (new_ctx) { int priority = iris_hw_context_get_priority(bufmgr, ctx_id); iris_hw_context_set_priority(bufmgr, new_ctx, priority); } return new_ctx; } void iris_destroy_hw_context(struct iris_bufmgr *bufmgr, uint32_t ctx_id) { struct drm_i915_gem_context_destroy d = { .ctx_id = ctx_id }; if (ctx_id != 0 && intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY, &d) != 0) { fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n", strerror(errno)); } } int iris_reg_read(struct iris_bufmgr *bufmgr, uint32_t offset, uint64_t *result) { struct drm_i915_reg_read reg_read = { .offset = offset }; int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_REG_READ, ®_read); *result = reg_read.val; return ret; } static uint64_t iris_gtt_size(int fd) { /* We use the default (already allocated) context to determine * the default configuration of the virtual address space. */ struct drm_i915_gem_context_param p = { .param = I915_CONTEXT_PARAM_GTT_SIZE, }; if (!intel_ioctl(fd, DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM, &p)) return p.value; return 0; } static struct intel_buffer * intel_aux_map_buffer_alloc(void *driver_ctx, uint32_t size) { struct intel_buffer *buf = malloc(sizeof(struct intel_buffer)); if (!buf) return NULL; struct iris_bufmgr *bufmgr = (struct iris_bufmgr *)driver_ctx; bool local = bufmgr->vram.size > 0; unsigned int page_size = getpagesize(); size = MAX2(ALIGN(size, page_size), page_size); struct iris_bo *bo = alloc_fresh_bo(bufmgr, size, local); simple_mtx_lock(&bufmgr->lock); bo->address = vma_alloc(bufmgr, IRIS_MEMZONE_OTHER, bo->size, 64 * 1024); assert(bo->address != 0ull); simple_mtx_unlock(&bufmgr->lock); bo->name = "aux-map"; p_atomic_set(&bo->refcount, 1); bo->index = -1; bo->real.kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED | EXEC_OBJECT_CAPTURE; bo->real.mmap_mode = local ? IRIS_MMAP_WC : IRIS_MMAP_WB; buf->driver_bo = bo; buf->gpu = bo->address; buf->gpu_end = buf->gpu + bo->size; buf->map = iris_bo_map(NULL, bo, MAP_WRITE | MAP_RAW); return buf; } static void intel_aux_map_buffer_free(void *driver_ctx, struct intel_buffer *buffer) { iris_bo_unreference((struct iris_bo*)buffer->driver_bo); free(buffer); } static struct intel_mapped_pinned_buffer_alloc aux_map_allocator = { .alloc = intel_aux_map_buffer_alloc, .free = intel_aux_map_buffer_free, }; static int gem_param(int fd, int name) { int v = -1; /* No param uses (yet) the sign bit, reserve it for errors */ struct drm_i915_getparam gp = { .param = name, .value = &v }; if (intel_ioctl(fd, DRM_IOCTL_I915_GETPARAM, &gp)) return -1; return v; } static bool iris_bufmgr_query_meminfo(struct iris_bufmgr *bufmgr) { struct drm_i915_query_memory_regions *meminfo = intel_i915_query_alloc(bufmgr->fd, DRM_I915_QUERY_MEMORY_REGIONS); if (meminfo == NULL) return false; for (int i = 0; i < meminfo->num_regions; i++) { const struct drm_i915_memory_region_info *mem = &meminfo->regions[i]; switch (mem->region.memory_class) { case I915_MEMORY_CLASS_SYSTEM: bufmgr->sys.region = mem->region; bufmgr->sys.size = mem->probed_size; break; case I915_MEMORY_CLASS_DEVICE: bufmgr->vram.region = mem->region; bufmgr->vram.size = mem->probed_size; break; default: break; } } free(meminfo); return true; } /** * Initializes the GEM buffer manager, which uses the kernel to allocate, map, * and manage map buffer objections. * * \param fd File descriptor of the opened DRM device. */ static struct iris_bufmgr * iris_bufmgr_create(struct intel_device_info *devinfo, int fd, bool bo_reuse) { uint64_t gtt_size = iris_gtt_size(fd); if (gtt_size <= IRIS_MEMZONE_OTHER_START) return NULL; struct iris_bufmgr *bufmgr = calloc(1, sizeof(*bufmgr)); if (bufmgr == NULL) return NULL; /* Handles to buffer objects belong to the device fd and are not * reference counted by the kernel. If the same fd is used by * multiple parties (threads sharing the same screen bufmgr, or * even worse the same device fd passed to multiple libraries) * ownership of those handles is shared by those independent parties. * * Don't do this! Ensure that each library/bufmgr has its own device * fd so that its namespace does not clash with another. */ bufmgr->fd = os_dupfd_cloexec(fd); p_atomic_set(&bufmgr->refcount, 1); simple_mtx_init(&bufmgr->lock, mtx_plain); simple_mtx_init(&bufmgr->bo_deps_lock, mtx_plain); list_inithead(&bufmgr->zombie_list); bufmgr->has_llc = devinfo->has_llc; bufmgr->has_local_mem = devinfo->has_local_mem; bufmgr->has_tiling_uapi = devinfo->has_tiling_uapi; bufmgr->bo_reuse = bo_reuse; bufmgr->has_mmap_offset = gem_param(fd, I915_PARAM_MMAP_GTT_VERSION) >= 4; bufmgr->has_userptr_probe = gem_param(fd, I915_PARAM_HAS_USERPTR_PROBE) >= 1; iris_bufmgr_query_meminfo(bufmgr); STATIC_ASSERT(IRIS_MEMZONE_SHADER_START == 0ull); const uint64_t _4GB = 1ull << 32; const uint64_t _2GB = 1ul << 31; /* The STATE_BASE_ADDRESS size field can only hold 1 page shy of 4GB */ const uint64_t _4GB_minus_1 = _4GB - PAGE_SIZE; util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_SHADER], PAGE_SIZE, _4GB_minus_1 - PAGE_SIZE); util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_BINDLESS], IRIS_MEMZONE_BINDLESS_START, IRIS_BINDLESS_SIZE); util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_SURFACE], IRIS_MEMZONE_SURFACE_START, _4GB_minus_1 - IRIS_MAX_BINDERS * IRIS_BINDER_SIZE - IRIS_BINDLESS_SIZE); /* TODO: Why does limiting to 2GB help some state items on gfx12? * - CC Viewport Pointer * - Blend State Pointer * - Color Calc State Pointer */ const uint64_t dynamic_pool_size = (devinfo->ver >= 12 ? _2GB : _4GB_minus_1) - IRIS_BORDER_COLOR_POOL_SIZE; util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_DYNAMIC], IRIS_MEMZONE_DYNAMIC_START + IRIS_BORDER_COLOR_POOL_SIZE, dynamic_pool_size); /* Leave the last 4GB out of the high vma range, so that no state * base address + size can overflow 48 bits. */ util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_OTHER], IRIS_MEMZONE_OTHER_START, (gtt_size - _4GB) - IRIS_MEMZONE_OTHER_START); init_cache_buckets(bufmgr, false); init_cache_buckets(bufmgr, true); unsigned min_slab_order = 8; /* 256 bytes */ unsigned max_slab_order = 20; /* 1 MB (slab size = 2 MB) */ unsigned num_slab_orders_per_allocator = (max_slab_order - min_slab_order) / NUM_SLAB_ALLOCATORS; /* Divide the size order range among slab managers. */ for (unsigned i = 0; i < NUM_SLAB_ALLOCATORS; i++) { unsigned min_order = min_slab_order; unsigned max_order = MIN2(min_order + num_slab_orders_per_allocator, max_slab_order); if (!pb_slabs_init(&bufmgr->bo_slabs[i], min_order, max_order, IRIS_HEAP_MAX, true, bufmgr, iris_can_reclaim_slab, iris_slab_alloc, (void *) iris_slab_free)) { free(bufmgr); return NULL; } min_slab_order = max_order + 1; } bufmgr->name_table = _mesa_hash_table_create(NULL, _mesa_hash_uint, _mesa_key_uint_equal); bufmgr->handle_table = _mesa_hash_table_create(NULL, _mesa_hash_uint, _mesa_key_uint_equal); bufmgr->vma_min_align = devinfo->has_local_mem ? 64 * 1024 : PAGE_SIZE; if (devinfo->has_aux_map) { bufmgr->aux_map_ctx = intel_aux_map_init(bufmgr, &aux_map_allocator, devinfo); assert(bufmgr->aux_map_ctx); } return bufmgr; } static struct iris_bufmgr * iris_bufmgr_ref(struct iris_bufmgr *bufmgr) { p_atomic_inc(&bufmgr->refcount); return bufmgr; } void iris_bufmgr_unref(struct iris_bufmgr *bufmgr) { simple_mtx_lock(&global_bufmgr_list_mutex); if (p_atomic_dec_zero(&bufmgr->refcount)) { list_del(&bufmgr->link); iris_bufmgr_destroy(bufmgr); } simple_mtx_unlock(&global_bufmgr_list_mutex); } /** Returns a new unique id, to be used by screens. */ int iris_bufmgr_create_screen_id(struct iris_bufmgr *bufmgr) { return p_atomic_inc_return(&bufmgr->next_screen_id) - 1; } /** * Gets an already existing GEM buffer manager or create a new one. * * \param fd File descriptor of the opened DRM device. */ struct iris_bufmgr * iris_bufmgr_get_for_fd(struct intel_device_info *devinfo, int fd, bool bo_reuse) { struct stat st; if (fstat(fd, &st)) return NULL; struct iris_bufmgr *bufmgr = NULL; simple_mtx_lock(&global_bufmgr_list_mutex); list_for_each_entry(struct iris_bufmgr, iter_bufmgr, &global_bufmgr_list, link) { struct stat iter_st; if (fstat(iter_bufmgr->fd, &iter_st)) continue; if (st.st_rdev == iter_st.st_rdev) { assert(iter_bufmgr->bo_reuse == bo_reuse); bufmgr = iris_bufmgr_ref(iter_bufmgr); goto unlock; } } bufmgr = iris_bufmgr_create(devinfo, fd, bo_reuse); if (bufmgr) list_addtail(&bufmgr->link, &global_bufmgr_list); unlock: simple_mtx_unlock(&global_bufmgr_list_mutex); return bufmgr; } int iris_bufmgr_get_fd(struct iris_bufmgr *bufmgr) { return bufmgr->fd; } void* iris_bufmgr_get_aux_map_context(struct iris_bufmgr *bufmgr) { return bufmgr->aux_map_ctx; } simple_mtx_t * iris_bufmgr_get_bo_deps_lock(struct iris_bufmgr *bufmgr) { return &bufmgr->bo_deps_lock; }