# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import datetime import numpy as np import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.common import dtype as mstype from mindspore.communication.management import init, get_group_size from mindspore.nn import TrainOneStepCell, WithLossCell from mindspore.nn.optim import Momentum from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target="GPU") init() epoch = 5 total = 5000 batch_size = 32 mini_batch = total // batch_size class LeNet(nn.Cell): def __init__(self): super(LeNet, self).__init__() self.relu = P.ReLU() self.batch_size = 32 weight1 = Tensor(np.ones([6, 3, 5, 5]).astype(np.float32) * 0.01) weight2 = Tensor(np.ones([16, 6, 5, 5]).astype(np.float32) * 0.01) self.conv1 = nn.Conv2d(3, 6, (5, 5), weight_init=weight1, stride=1, padding=0, pad_mode='valid') self.conv2 = nn.Conv2d(6, 16, (5, 5), weight_init=weight2, pad_mode='valid', stride=1, padding=0) self.pool = nn.MaxPool2d(kernel_size=2, stride=2, pad_mode="valid") self.reshape = P.Reshape() weight1 = Tensor(np.ones([120, 400]).astype(np.float32) * 0.01) self.fc1 = nn.Dense(400, 120, weight_init=weight1) weight2 = Tensor(np.ones([84, 120]).astype(np.float32) * 0.01) self.fc2 = nn.Dense(120, 84, weight_init=weight2) weight3 = Tensor(np.ones([10, 84]).astype(np.float32) * 0.01) self.fc3 = nn.Dense(84, 10, weight_init=weight3) def construct(self, input_x): output = self.conv1(input_x) output = self.relu(output) output = self.pool(output) output = self.conv2(output) output = self.relu(output) output = self.pool(output) output = self.reshape(output, (self.batch_size, -1)) output = self.fc1(output) output = self.fc2(output) output = self.fc3(output) return output def multisteplr(total_steps, gap, base_lr=0.9, gamma=0.1, dtype=mstype.float32): lr = [] for step in range(total_steps): lr_ = base_lr * gamma ** (step // gap) lr.append(lr_) return Tensor(np.array(lr), dtype) def test_lenet_nccl(): context.set_auto_parallel_context(parallel_mode="data_parallel", gradients_mean=True, device_num=get_group_size()) net = LeNet() net.set_train() learning_rate = multisteplr(epoch, 2) momentum = 0.9 mom_optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum) criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') net_with_criterion = WithLossCell(net, criterion) train_network = TrainOneStepCell(net_with_criterion, mom_optimizer) train_network.set_train() losses = [] data = Tensor(np.ones([net.batch_size, 3, 32, 32]).astype(np.float32) * 0.01) label = Tensor(np.ones([net.batch_size]).astype(np.int32)) start = datetime.datetime.now() for _ in range(epoch): for _ in range(mini_batch): loss = train_network(data, label) losses.append(loss.asnumpy()) end = datetime.datetime.now() with open("ms_time.txt", "w") as fo1: fo1.write("time:") fo1.write(str(end - start)) with open("ms_loss.txt", "w") as fo2: fo2.write("loss:") fo2.write(str(losses[-5:])) assert losses[-1] < 0.01