# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.common.initializer import initializer from mindspore.common.parameter import Parameter from mindspore.communication.management import init, NCCL_WORLD_COMM_GROUP, get_rank, get_group_size from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target='GPU') init() rank = get_rank() size = get_group_size() x = np.ones([size, 1, 3, 3]).astype(np.float32) * 0.01 * (rank + 1) class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.x = Parameter(initializer(Tensor(x), x.shape), name='x') self.op0 = "sum" self.op1 = "max" self.op2 = "min" self.op3 = "prod" self.reduce_scatter1 = P.ReduceScatter(self.op0, group=NCCL_WORLD_COMM_GROUP) self.reduce_scatter2 = P.ReduceScatter(self.op1, group=NCCL_WORLD_COMM_GROUP) self.reduce_scatter3 = P.ReduceScatter(self.op2, group=NCCL_WORLD_COMM_GROUP) def construct(self): return (self.reduce_scatter1(self.x), self.reduce_scatter2(self.x), self.reduce_scatter3(self.x)) def test_ReduceScatter(): reduce_scatter = Net() output = reduce_scatter() sum_ones = np.ones([size, 1, 3, 3]).astype(np.float32) * 0 for i in range(size): sum_ones += np.ones([size, 1, 3, 3]).astype(np.float32) * 0.01 * (i + 1) expect0 = sum_ones[rank: rank + 1] diff0 = output[0].asnumpy() - expect0 error0 = np.ones(shape=expect0.shape) * 1.0e-5 assert np.all(diff0 < error0) assert output[0].shape == expect0.shape expect1 = np.ones([1, 1, 3, 3]).astype(np.float32) * 0.01 * size diff1 = output[1].asnumpy() - expect1 error1 = np.ones(shape=expect1.shape) * 1.0e-5 assert np.all(diff1 < error1) assert output[1].shape == expect1.shape expect2 = np.ones([1, 1, 3, 3]).astype(np.float32) * 0.01 * 1 diff2 = output[2].asnumpy() - expect2 error2 = np.ones(shape=expect2.shape) * 1.0e-5 assert np.all(diff2 < error2) assert output[2].shape == expect2.shape