# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ from functools import reduce import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn import mindspore.ops.operations as P from mindspore import Tensor class Net_Pool(nn.Cell): def __init__(self): super(Net_Pool, self).__init__() self.maxpool_fun = nn.MaxPool2d(kernel_size=2, stride=2, pad_mode="VALID") def construct(self, x): return self.maxpool_fun(x) class Net_Pool2(nn.Cell): def __init__(self): super(Net_Pool2, self).__init__() self.maxpool_fun = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="SAME") def construct(self, x): return self.maxpool_fun(x) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_maxpool2d(): x = Tensor(np.array([[[ [0, 1, 2, 3, -4, -5], [6, 7, 8, 9, -10, -11], [12, 13, 14, -15, -16, -17], [18, 19, 20, 21, 22, 23], [24, 25, 26, 27, 28, 29], [30, 31, 32, 33, 34, 35] ]]]).astype(np.float32)) expect_result = (np.array([[[ [7, 9, -4], [19, 21, 23], [31, 33, 35] ]]])) expect_result2 = (np.array([[[ [14, 14, -4], [26, 28, 29], [32, 34, 35] ]]])) context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") maxpool2d = Net_Pool() maxpool2d2 = Net_Pool2() output2 = maxpool2d2(x) output = maxpool2d(x) assert (output.asnumpy() == expect_result).all() assert (output2.asnumpy() == expect_result2).all() context.set_context(mode=context.GRAPH_MODE, device_target="GPU") maxpool2d = Net_Pool() maxpool2d2 = Net_Pool2() output2 = maxpool2d2(x) output = maxpool2d(x) assert (output.asnumpy() == expect_result).all() assert (output2.asnumpy() == expect_result2).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_max_pool3d_1(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") x_shape = (2, 3, 2, 3, 4) kernel_size = (2, 2, 3) strides = 1 pad_mode = 'VALID' x_val = np.arange(reduce(lambda x, y: x * y, x_shape)) x_ms = Tensor(x_val).reshape(x_shape).astype(np.float32) output_ms = P.MaxPool3D(kernel_size=kernel_size, strides=strides, pad_mode=pad_mode)(x_ms) expert_result = (np.array([[[[[18, 19], [22, 23]]], [[[42, 43], [46, 47]]], [[[66, 67], [70, 71]]]], [[[[90, 91], [94, 95]]], [[[114, 115], [118, 119]]], [[[138, 139], [142, 143]]]]])) assert (output_ms.asnumpy() == expert_result).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_max_pool3d_2(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") x_shape = (2, 3, 2, 3, 4) kernel_size = 2 strides = 1 pad_mode = 'VALID' x_val = np.arange(reduce(lambda x, y: x * y, x_shape)) x_ms = Tensor(x_val).reshape(x_shape).astype(np.float32) output_ms = P.MaxPool3D(kernel_size=kernel_size, strides=strides, pad_mode=pad_mode)(x_ms) expert_result = (np.array([[[[[17, 18, 19], [21, 22, 23]]], [[[41, 42, 43], [45, 46, 47]]], [[[65, 66, 67], [69, 70, 71]]]], [[[[89, 90, 91], [93, 94, 95]]], [[[113, 114, 115], [117, 118, 119]]], [[[137, 138, 139], [141, 142, 143]]]]])) assert (output_ms.asnumpy() == expert_result).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_max_pool3d_3(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") x_shape = (2, 3, 2, 3, 4) kernel_size = 2 strides = 3 pad_mode = 'VALID' x_val = np.arange(reduce(lambda x, y: x * y, x_shape)) x_ms = Tensor(x_val).reshape(x_shape).astype(np.float32) output_ms = P.MaxPool3D(kernel_size=kernel_size, strides=strides, pad_mode=pad_mode)(x_ms) expert_result = (np.array([[[[[17]]], [[[41]]], [[[65]]]], [[[[89]]], [[[113]]], [[[137]]]]])) assert (output_ms.asnumpy() == expert_result).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_max_pool3d_4(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") x_shape = (2, 3, 2, 3, 4) kernel_size = (2, 2, 3) strides = 1 pad_mode = 'SAME' x_val = np.arange(reduce(lambda x, y: x * y, x_shape)) x_ms = Tensor(x_val).reshape(x_shape).astype(np.float32) output_ms = P.MaxPool3D(kernel_size=kernel_size, strides=strides, pad_mode=pad_mode)(x_ms) expert_result = (np.array([[[[[17, 18, 19, 19], [21, 22, 23, 23], [21, 22, 23, 23]], [[17, 18, 19, 19], [21, 22, 23, 23], [21, 22, 23, 23]]], [[[41, 42, 43, 43], [45, 46, 47, 47], [45, 46, 47, 47]], [[41, 42, 43, 43], [45, 46, 47, 47], [45, 46, 47, 47]]], [[[65, 66, 67, 67], [69, 70, 71, 71], [69, 70, 71, 71]], [[65, 66, 67, 67], [69, 70, 71, 71], [69, 70, 71, 71]]]], [[[[89, 90, 91, 91], [93, 94, 95, 95], [93, 94, 95, 95]], [[89, 90, 91, 91], [93, 94, 95, 95], [93, 94, 95, 95]]], [[[113, 114, 115, 115], [117, 118, 119, 119], [117, 118, 119, 119]], [[113, 114, 115, 115], [117, 118, 119, 119], [117, 118, 119, 119]]], [[[137, 138, 139, 139], [141, 142, 143, 143], [141, 142, 143, 143]], [[137, 138, 139, 139], [141, 142, 143, 143], [141, 142, 143, 143]]]]])) assert (output_ms.asnumpy() == expert_result).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_max_pool3d_5(): context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") x_shape = (2, 3, 2, 3, 4) kernel_size = (2, 2, 3) strides = 1 pad_mode = 'SAME' x_val = np.arange(reduce(lambda x, y: x * y, x_shape)) x_ms = Tensor(x_val).reshape(x_shape).astype(np.float32) output_ms = P.MaxPool3D(kernel_size=kernel_size, strides=strides, pad_mode=pad_mode)(x_ms) expert_result = (np.array([[[[[17, 18, 19, 19], [21, 22, 23, 23], [21, 22, 23, 23]], [[17, 18, 19, 19], [21, 22, 23, 23], [21, 22, 23, 23]]], [[[41, 42, 43, 43], [45, 46, 47, 47], [45, 46, 47, 47]], [[41, 42, 43, 43], [45, 46, 47, 47], [45, 46, 47, 47]]], [[[65, 66, 67, 67], [69, 70, 71, 71], [69, 70, 71, 71]], [[65, 66, 67, 67], [69, 70, 71, 71], [69, 70, 71, 71]]]], [[[[89, 90, 91, 91], [93, 94, 95, 95], [93, 94, 95, 95]], [[89, 90, 91, 91], [93, 94, 95, 95], [93, 94, 95, 95]]], [[[113, 114, 115, 115], [117, 118, 119, 119], [117, 118, 119, 119]], [[113, 114, 115, 115], [117, 118, 119, 119], [117, 118, 119, 119]]], [[[137, 138, 139, 139], [141, 142, 143, 143], [141, 142, 143, 143]], [[137, 138, 139, 139], [141, 142, 143, 143], [141, 142, 143, 143]]]]])) assert (output_ms.asnumpy() == expert_result).all()