/** * Copyright 2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include "common/common_test.h" #include "ops/addn.h" #include "ir/dtype/type.h" #include "ir/value.h" #include "abstract/dshape.h" #include "utils/tensor_construct_utils.h" namespace mindspore { namespace ops { class TestAddN : public UT::Common { public: TestAddN() {} void SetUp() {} void TearDown() {} }; TEST_F(TestAddN, test_ops_addn1) { auto addn = std::make_shared(); auto tensor_x1 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector{3, 2, 7, 7}); auto tensor_x2 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector{3, 2, 7, 7}); MS_EXCEPTION_IF_NULL(tensor_x1); MS_EXCEPTION_IF_NULL(tensor_x2); auto input_tuple = std::make_shared(std::vector{tensor_x1, tensor_x2}); auto abstract = addn->Infer({input_tuple->ToAbstract()}); MS_EXCEPTION_IF_NULL(abstract); EXPECT_EQ(abstract->isa(), true); auto shape_ptr = abstract->BuildShape(); MS_EXCEPTION_IF_NULL(shape_ptr); EXPECT_EQ(shape_ptr->isa(), true); auto shape = shape_ptr->cast(); MS_EXCEPTION_IF_NULL(shape); auto shape_vec = shape->shape(); auto type = abstract->BuildType(); MS_EXCEPTION_IF_NULL(type); EXPECT_EQ(type->isa(), true); auto tensor_type = type->cast(); MS_EXCEPTION_IF_NULL(tensor_type); auto data_type = tensor_type->element(); MS_EXCEPTION_IF_NULL(data_type); EXPECT_EQ(data_type->type_id(), kNumberTypeFloat32); EXPECT_EQ(shape_vec.size(), 4); EXPECT_EQ(shape_vec[0], 3); EXPECT_EQ(shape_vec[1], 2); EXPECT_EQ(shape_vec[2], 7); EXPECT_EQ(shape_vec[3], 7); } TEST_F(TestAddN, test_ops_addn2) { auto addn = std::make_shared(); auto tensor_x1 = TensorConstructUtils::CreateOnesTensor(kNumberTypeBool, std::vector{3, 4, 5}); auto tensor_x2 = TensorConstructUtils::CreateOnesTensor(kNumberTypeBool, std::vector{3, 4, 5}); auto tensor_x3 = TensorConstructUtils::CreateOnesTensor(kNumberTypeBool, std::vector{3, 4, 5}); MS_EXCEPTION_IF_NULL(tensor_x1); MS_EXCEPTION_IF_NULL(tensor_x2); MS_EXCEPTION_IF_NULL(tensor_x3); auto input_tuple = std::make_shared(std::vector{tensor_x1, tensor_x2, tensor_x3}); auto abstract = addn->Infer({input_tuple->ToAbstract()}); MS_EXCEPTION_IF_NULL(abstract); EXPECT_EQ(abstract->isa(), true); auto shape_ptr = abstract->BuildShape(); MS_EXCEPTION_IF_NULL(shape_ptr); EXPECT_EQ(shape_ptr->isa(), true); auto shape = shape_ptr->cast(); MS_EXCEPTION_IF_NULL(shape); auto shape_vec = shape->shape(); auto type = abstract->BuildType(); MS_EXCEPTION_IF_NULL(type); EXPECT_EQ(type->isa(), true); auto tensor_type = type->cast(); MS_EXCEPTION_IF_NULL(tensor_type); auto data_type = tensor_type->element(); MS_EXCEPTION_IF_NULL(data_type); EXPECT_EQ(data_type->type_id(), kNumberTypeBool); EXPECT_EQ(shape_vec.size(), 3); EXPECT_EQ(shape_vec[0], 3); EXPECT_EQ(shape_vec[1], 4); EXPECT_EQ(shape_vec[2], 5); } } // namespace ops } // namespace mindspore