/** * Copyright 2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include "common/common_test.h" #include "ops/where.h" #include "ir/dtype/type.h" #include "ir/value.h" #include "abstract/dshape.h" #include "utils/tensor_construct_utils.h" namespace mindspore { namespace ops { class TestWhere : public UT::Common { public: TestWhere() {} void SetUp() {} void TearDown() {} }; TEST_F(TestWhere, test_ops_where1) { // auto where = std::make_shared(); // where->Init(); // auto inputs0 = TensorConstructUtils::CreateOnesTensor(kNumberTypeInt64, std::vector{2, 3}); // auto inputs1 = TensorConstructUtils::CreateOnesTensor(kNumberTypeInt64, std::vector{2, 3}); // MS_EXCEPTION_IF_NULL(inputs0); // MS_EXCEPTION_IF_NULL(inputs1); // auto abstract = where->Infer({inputs0->ToAbstract(), inputs1->ToAbstract()}); // MS_EXCEPTION_IF_NULL(abstract); // EXPECT_EQ(abstract->isa(), true); // auto shape_ptr = abstract->BuildShape(); // MS_EXCEPTION_IF_NULL(shape_ptr); // EXPECT_EQ(shape_ptr->isa(), true); // auto shape = shape_ptr->cast(); // MS_EXCEPTION_IF_NULL(shape); // auto shape_vec = shape->shape(); // EXPECT_EQ(shape_vec.size(), 2); // EXPECT_EQ(shape_vec[0], 2); // EXPECT_EQ(shape_vec[1], 3); // auto type = abstract->BuildType(); // MS_EXCEPTION_IF_NULL(type); // EXPECT_EQ(type->isa(), true); // auto tensor_type = type->cast(); // MS_EXCEPTION_IF_NULL(tensor_type); // auto data_type = tensor_type->element(); // MS_EXCEPTION_IF_NULL(data_type); // EXPECT_EQ(data_type->type_id(), kNumberTypeInt64); } TEST_F(TestWhere, test_ops_where2) { auto where = std::make_shared(); where->Init(); auto inputs0 = TensorConstructUtils::CreateOnesTensor(kNumberTypeInt64, std::vector{1}); auto inputs1 = TensorConstructUtils::CreateOnesTensor(kNumberTypeInt64, std::vector{4}); auto inputs2 = TensorConstructUtils::CreateOnesTensor(kNumberTypeInt64, std::vector{1}); MS_EXCEPTION_IF_NULL(inputs0); MS_EXCEPTION_IF_NULL(inputs1); MS_EXCEPTION_IF_NULL(inputs2); auto abstract = where->Infer({inputs0->ToAbstract(), inputs1->ToAbstract(), inputs2->ToAbstract()}); MS_EXCEPTION_IF_NULL(abstract); EXPECT_EQ(abstract->isa(), true); auto shape_ptr = abstract->BuildShape(); MS_EXCEPTION_IF_NULL(shape_ptr); EXPECT_EQ(shape_ptr->isa(), true); auto shape = shape_ptr->cast(); MS_EXCEPTION_IF_NULL(shape); auto shape_vec = shape->shape(); EXPECT_EQ(shape_vec.size(), 1); EXPECT_EQ(shape_vec[0], 4); auto type = abstract->BuildType(); MS_EXCEPTION_IF_NULL(type); EXPECT_EQ(type->isa(), true); auto tensor_type = type->cast(); MS_EXCEPTION_IF_NULL(tensor_type); auto data_type = tensor_type->element(); MS_EXCEPTION_IF_NULL(data_type); EXPECT_EQ(data_type->type_id(), kNumberTypeInt64); } } // namespace ops } // namespace mindspore