# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import numpy as np import pytest import mindspore.dataset as ds from mindspore import log as logger from util import dataset_equal # test5trainimgs.json contains 5 images whose un-decoded shape is [83554, 54214, 65512, 54214, 64631] # the label of each image is [0,0,0,1,1] each image can be uniquely identified # via the following lookup table (dict){(83554, 0): 0, (54214, 0): 1, (54214, 1): 2, (65512, 0): 3, (64631, 1): 4} def test_sequential_sampler(print_res=False): manifest_file = "../data/dataset/testManifestData/test5trainimgs.json" map_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4} def test_config(num_samples, num_repeats=None): sampler = ds.SequentialSampler(num_samples=num_samples) data1 = ds.ManifestDataset(manifest_file, sampler=sampler) if num_repeats is not None: data1 = data1.repeat(num_repeats) res = [] for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True): logger.info("item[image].shape[0]: {}, item[label].item(): {}" .format(item["image"].shape[0], item["label"].item())) res.append(map_[(item["image"].shape[0], item["label"].item())]) if print_res: logger.info("image.shapes and labels: {}".format(res)) return res assert test_config(num_samples=3, num_repeats=None) == [0, 1, 2] assert test_config(num_samples=None, num_repeats=2) == [0, 1, 2, 3, 4] * 2 assert test_config(num_samples=4, num_repeats=2) == [0, 1, 2, 3] * 2 def test_random_sampler(print_res=False): manifest_file = "../data/dataset/testManifestData/test5trainimgs.json" map_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4} def test_config(replacement, num_samples, num_repeats): sampler = ds.RandomSampler(replacement=replacement, num_samples=num_samples) data1 = ds.ManifestDataset(manifest_file, sampler=sampler) data1 = data1.repeat(num_repeats) res = [] for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True): res.append(map_[(item["image"].shape[0], item["label"].item())]) if print_res: logger.info("image.shapes and labels: {}".format(res)) return res # this tests that each epoch COULD return different samples than the previous epoch assert len(set(test_config(replacement=False, num_samples=2, num_repeats=6))) > 2 # the following two tests test replacement works ordered_res = [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4] assert sorted(test_config(replacement=False, num_samples=None, num_repeats=4)) == ordered_res assert sorted(test_config(replacement=True, num_samples=None, num_repeats=4)) != ordered_res def test_random_sampler_multi_iter(print_res=False): manifest_file = "../data/dataset/testManifestData/test5trainimgs.json" map_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4} def test_config(replacement, num_samples, num_repeats, validate): sampler = ds.RandomSampler(replacement=replacement, num_samples=num_samples) data1 = ds.ManifestDataset(manifest_file, sampler=sampler) while num_repeats > 0: res = [] for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True): res.append(map_[(item["image"].shape[0], item["label"].item())]) if print_res: logger.info("image.shapes and labels: {}".format(res)) if validate != sorted(res): break num_repeats -= 1 assert num_repeats > 0 test_config(replacement=True, num_samples=5, num_repeats=5, validate=[0, 1, 2, 3, 4, 5]) def test_sampler_py_api(): sampler = ds.SequentialSampler().parse() sampler1 = ds.RandomSampler().parse() sampler1.add_child(sampler) def test_python_sampler(): manifest_file = "../data/dataset/testManifestData/test5trainimgs.json" map_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4} class Sp1(ds.Sampler): def __iter__(self): return iter([i for i in range(self.dataset_size)]) class Sp2(ds.Sampler): def __init__(self, num_samples=None): super(Sp2, self).__init__(num_samples) # at this stage, self.dataset_size and self.num_samples are not yet known self.cnt = 0 def __iter__(self): # first epoch, all 0, second epoch all 1, third all 2 etc.. ... return iter([self.cnt for i in range(self.num_samples)]) def reset(self): self.cnt = (self.cnt + 1) % self.dataset_size def test_config(num_repeats, sampler): data1 = ds.ManifestDataset(manifest_file, sampler=sampler) if num_repeats is not None: data1 = data1.repeat(num_repeats) res = [] for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True): logger.info("item[image].shape[0]: {}, item[label].item(): {}" .format(item["image"].shape[0], item["label"].item())) res.append(map_[(item["image"].shape[0], item["label"].item())]) # print(res) return res def test_generator(): class MySampler(ds.Sampler): def __iter__(self): for i in range(99, -1, -1): yield i data1 = ds.GeneratorDataset([(np.array(i),) for i in range(100)], ["data"], sampler=MySampler()) i = 99 for data in data1: assert data[0].asnumpy() == (np.array(i),) i = i - 1 # This 2nd case is the one that exhibits the same behavior as the case above without inheritance def test_generator_iter_sampler(): class MySampler(): def __iter__(self): for i in range(99, -1, -1): yield i data1 = ds.GeneratorDataset([(np.array(i),) for i in range(100)], ["data"], sampler=MySampler()) i = 99 for data in data1: assert data[0].asnumpy() == (np.array(i),) i = i - 1 assert test_config(2, Sp1(5)) == [0, 1, 2, 3, 4, 0, 1, 2, 3, 4] assert test_config(6, Sp2(2)) == [0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 0, 0] test_generator() test_generator_iter_sampler() def test_sequential_sampler2(): manifest_file = "../data/dataset/testManifestData/test5trainimgs.json" map_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4} def test_config(start_index, num_samples): sampler = ds.SequentialSampler(start_index, num_samples) d = ds.ManifestDataset(manifest_file, sampler=sampler) res = [] for item in d.create_dict_iterator(num_epochs=1, output_numpy=True): res.append(map_[(item["image"].shape[0], item["label"].item())]) return res assert test_config(0, 1) == [0] assert test_config(0, 2) == [0, 1] assert test_config(0, 3) == [0, 1, 2] assert test_config(0, 4) == [0, 1, 2, 3] assert test_config(0, 5) == [0, 1, 2, 3, 4] assert test_config(1, 1) == [1] assert test_config(2, 3) == [2, 3, 4] assert test_config(3, 2) == [3, 4] assert test_config(4, 1) == [4] assert test_config(4, None) == [4] def test_subset_sampler(): def test_config(indices, num_samples=None, exception_msg=None): def pipeline(): sampler = ds.SubsetSampler(indices, num_samples) data = ds.NumpySlicesDataset(list(range(0, 10)), sampler=sampler) data2 = ds.NumpySlicesDataset(list(range(0, 10)), sampler=indices, num_samples=num_samples) dataset_size = data.get_dataset_size() dataset_size2 = data.get_dataset_size() res1 = [d[0] for d in data.create_tuple_iterator(num_epochs=1, output_numpy=True)], dataset_size res2 = [d[0] for d in data2.create_tuple_iterator(num_epochs=1, output_numpy=True)], dataset_size2 return res1, res2 if exception_msg is None: res, res2 = pipeline() res, size = res res2, size2 = res2 if not isinstance(indices, list): indices = list(indices) assert indices[:num_samples] == res assert len(indices[:num_samples]) == size assert indices[:num_samples] == res2 assert len(indices[:num_samples]) == size2 else: with pytest.raises(Exception) as error_info: pipeline() print(str(error_info.value)) assert exception_msg in str(error_info.value) test_config([1, 2, 3]) test_config(list(range(10))) test_config([0]) test_config([9]) test_config(list(range(0, 10, 2))) test_config(list(range(1, 10, 2))) test_config(list(range(9, 0, -1))) test_config(list(range(9, 0, -2))) test_config(list(range(8, 0, -2))) test_config([0, 9, 3, 2]) test_config([0, 0, 0, 0]) test_config([0]) test_config([0, 9, 3, 2], num_samples=2) test_config([0, 9, 3, 2], num_samples=5) test_config(np.array([1, 2, 3])) test_config([20], exception_msg="Sample ID (20) is out of bound, expected range [0, 9]") test_config([10], exception_msg="Sample ID (10) is out of bound, expected range [0, 9]") test_config([0, 9, 0, 500], exception_msg="Sample ID (500) is out of bound, expected range [0, 9]") test_config([0, 9, -6, 2], exception_msg="Sample ID (-6) is out of bound, expected range [0, 9]") # test_config([], exception_msg="Indices list is empty") # temporary until we check with MindDataset test_config([0, 9, 3, 2], num_samples=-1, exception_msg="num_samples exceeds the boundary between 0 and 9223372036854775807(INT64_MAX)") test_config(np.array([[1], [5]]), num_samples=10, exception_msg="SubsetSampler: Type of indices element must be int, but got list[0]: [1]," " type: .") def test_sampler_chain(): manifest_file = "../data/dataset/testManifestData/test5trainimgs.json" map_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4} def test_config(num_shards, shard_id): sampler = ds.DistributedSampler(num_shards, shard_id, shuffle=False, num_samples=5) child_sampler = ds.SequentialSampler() sampler.add_child(child_sampler) data1 = ds.ManifestDataset(manifest_file, sampler=sampler) res = [] for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True): logger.info("item[image].shape[0]: {}, item[label].item(): {}" .format(item["image"].shape[0], item["label"].item())) res.append(map_[(item["image"].shape[0], item["label"].item())]) return res assert test_config(2, 0) == [0, 2, 4] assert test_config(2, 1) == [1, 3, 0] assert test_config(5, 0) == [0] assert test_config(5, 1) == [1] assert test_config(5, 2) == [2] assert test_config(5, 3) == [3] assert test_config(5, 4) == [4] def test_add_sampler_invalid_input(): manifest_file = "../data/dataset/testManifestData/test5trainimgs.json" _ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4} data1 = ds.ManifestDataset(manifest_file) with pytest.raises(TypeError) as info: data1.use_sampler(1) assert "not an instance of a sampler" in str(info.value) with pytest.raises(TypeError) as info: data1.use_sampler("sampler") assert "not an instance of a sampler" in str(info.value) sampler = ds.SequentialSampler() with pytest.raises(RuntimeError) as info: data2 = ds.ManifestDataset(manifest_file, sampler=sampler, num_samples=20) assert "sampler and num_samples cannot be specified at the same time" in str(info.value) def test_distributed_sampler_invalid_offset(): with pytest.raises(RuntimeError) as info: sampler = ds.DistributedSampler(num_shards=4, shard_id=0, shuffle=False, num_samples=None, offset=5).parse() assert "DistributedSampler: offset must be no more than num_shards(4)" in str(info.value) def test_sampler_list(): data1 = ds.ImageFolderDataset("../data/dataset/testPK/data", sampler=[1, 3, 5]) data21 = ds.ImageFolderDataset("../data/dataset/testPK/data", shuffle=False).take(2).skip(1) data22 = ds.ImageFolderDataset("../data/dataset/testPK/data", shuffle=False).take(4).skip(3) data23 = ds.ImageFolderDataset("../data/dataset/testPK/data", shuffle=False).take(6).skip(5) dataset_equal(data1, data21 + data22 + data23, 0) data3 = ds.ImageFolderDataset("../data/dataset/testPK/data", sampler=1) dataset_equal(data3, data21, 0) def bad_pipeline(sampler, msg): with pytest.raises(Exception) as info: data1 = ds.ImageFolderDataset("../data/dataset/testPK/data", sampler=sampler) for _ in data1: pass assert msg in str(info.value) bad_pipeline(sampler=[1.5, 7], msg="Type of indices element must be int, but got list[0]: 1.5, type: ") bad_pipeline(sampler=["a", "b"], msg="Type of indices element must be int, but got list[0]: a, type: .") bad_pipeline(sampler="a", msg="Unsupported sampler object of type ()") bad_pipeline(sampler="", msg="Unsupported sampler object of type ()") bad_pipeline(sampler=np.array([[1, 2]]), msg="Type of indices element must be int, but got list[0]: [1 2], type: .") if __name__ == '__main__': test_sequential_sampler(True) test_random_sampler(True) test_random_sampler_multi_iter(True) test_sampler_py_api() test_python_sampler() test_sequential_sampler2() test_subset_sampler() test_sampler_chain() test_add_sampler_invalid_input() test_distributed_sampler_invalid_offset() test_sampler_list()