# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Testing UniformAugment in DE """ import numpy as np import pytest import mindspore.dataset as ds import mindspore.dataset.transforms.py_transforms import mindspore.dataset.vision.c_transforms as C import mindspore.dataset.vision.py_transforms as F from mindspore import log as logger from util import visualize_list, diff_mse DATA_DIR = "../data/dataset/testImageNetData/train/" def test_uniform_augment_callable(num_ops=2): """ Test UniformAugment is callable """ logger.info("test_uniform_augment_callable") img = np.fromfile("../data/dataset/apple.jpg", dtype=np.uint8) logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape)) decode_op = C.Decode() img = decode_op(img) assert img.shape == (2268, 4032, 3) transforms_ua = [C.RandomCrop(size=[400, 400], padding=[32, 32, 32, 32]), C.RandomCrop(size=[400, 400], padding=[32, 32, 32, 32])] uni_aug = C.UniformAugment(transforms=transforms_ua, num_ops=num_ops) img = uni_aug(img) assert img.shape == (2268, 4032, 3) or img.shape == (400, 400, 3) def test_uniform_augment(plot=False, num_ops=2): """ Test UniformAugment """ logger.info("Test UniformAugment") # Original Images data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False) transforms_original = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(), F.Resize((224, 224)), F.ToTensor()]) ds_original = data_set.map(operations=transforms_original, input_columns="image") ds_original = ds_original.batch(512) for idx, (image, _) in enumerate(ds_original): if idx == 0: images_original = np.transpose(image.asnumpy(), (0, 2, 3, 1)) else: images_original = np.append(images_original, np.transpose(image.asnumpy(), (0, 2, 3, 1)), axis=0) # UniformAugment Images data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False) transform_list = [F.RandomRotation(45), F.RandomColor(), F.RandomSharpness(), F.Invert(), F.AutoContrast(), F.Equalize()] transforms_ua = \ mindspore.dataset.transforms.py_transforms.Compose([F.Decode(), F.Resize((224, 224)), F.UniformAugment(transforms=transform_list, num_ops=num_ops), F.ToTensor()]) ds_ua = data_set.map(operations=transforms_ua, input_columns="image") ds_ua = ds_ua.batch(512) for idx, (image, _) in enumerate(ds_ua): if idx == 0: images_ua = np.transpose(image.asnumpy(), (0, 2, 3, 1)) else: images_ua = np.append(images_ua, np.transpose(image.asnumpy(), (0, 2, 3, 1)), axis=0) num_samples = images_original.shape[0] mse = np.zeros(num_samples) for i in range(num_samples): mse[i] = diff_mse(images_ua[i], images_original[i]) logger.info("MSE= {}".format(str(np.mean(mse)))) if plot: visualize_list(images_original, images_ua) def test_cpp_uniform_augment(plot=False, num_ops=2): """ Test UniformAugment """ logger.info("Test CPP UniformAugment") # Original Images data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False) transforms_original = [C.Decode(), C.Resize(size=[224, 224]), F.ToTensor()] ds_original = data_set.map(operations=transforms_original, input_columns="image") ds_original = ds_original.batch(512) for idx, (image, _) in enumerate(ds_original): if idx == 0: images_original = np.transpose(image.asnumpy(), (0, 2, 3, 1)) else: images_original = np.append(images_original, np.transpose(image.asnumpy(), (0, 2, 3, 1)), axis=0) # UniformAugment Images data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False) transforms_ua = [C.RandomCrop(size=[224, 224], padding=[32, 32, 32, 32]), C.RandomHorizontalFlip(), C.RandomVerticalFlip(), C.RandomColorAdjust(), C.RandomRotation(degrees=45)] uni_aug = C.UniformAugment(transforms=transforms_ua, num_ops=num_ops) transforms_all = [C.Decode(), C.Resize(size=[224, 224]), uni_aug, F.ToTensor()] ds_ua = data_set.map(operations=transforms_all, input_columns="image", num_parallel_workers=1) ds_ua = ds_ua.batch(512) for idx, (image, _) in enumerate(ds_ua): if idx == 0: images_ua = np.transpose(image.asnumpy(), (0, 2, 3, 1)) else: images_ua = np.append(images_ua, np.transpose(image.asnumpy(), (0, 2, 3, 1)), axis=0) if plot: visualize_list(images_original, images_ua) num_samples = images_original.shape[0] mse = np.zeros(num_samples) for i in range(num_samples): mse[i] = diff_mse(images_ua[i], images_original[i]) logger.info("MSE= {}".format(str(np.mean(mse)))) def test_cpp_uniform_augment_exception_pyops(num_ops=2): """ Test UniformAugment invalid op in operations """ logger.info("Test CPP UniformAugment invalid OP exception") transforms_ua = [C.RandomCrop(size=[224, 224], padding=[32, 32, 32, 32]), C.RandomHorizontalFlip(), C.RandomVerticalFlip(), C.RandomColorAdjust(), C.RandomRotation(degrees=45), F.Invert()] with pytest.raises(TypeError) as e: C.UniformAugment(transforms=transforms_ua, num_ops=num_ops) logger.info("Got an exception in DE: {}".format(str(e))) assert "Type of Transforms[5] must be c_transform" in str(e.value) def test_cpp_uniform_augment_exception_large_numops(num_ops=6): """ Test UniformAugment invalid large number of ops """ logger.info("Test CPP UniformAugment invalid large num_ops exception") transforms_ua = [C.RandomCrop(size=[224, 224], padding=[32, 32, 32, 32]), C.RandomHorizontalFlip(), C.RandomVerticalFlip(), C.RandomColorAdjust(), C.RandomRotation(degrees=45)] try: _ = C.UniformAugment(transforms=transforms_ua, num_ops=num_ops) except Exception as e: logger.info("Got an exception in DE: {}".format(str(e))) assert "num_ops" in str(e) def test_cpp_uniform_augment_exception_nonpositive_numops(num_ops=0): """ Test UniformAugment invalid non-positive number of ops """ logger.info("Test CPP UniformAugment invalid non-positive num_ops exception") transforms_ua = [C.RandomCrop(size=[224, 224], padding=[32, 32, 32, 32]), C.RandomHorizontalFlip(), C.RandomVerticalFlip(), C.RandomColorAdjust(), C.RandomRotation(degrees=45)] try: _ = C.UniformAugment(transforms=transforms_ua, num_ops=num_ops) except Exception as e: logger.info("Got an exception in DE: {}".format(str(e))) assert "Input num_ops must be greater than 0" in str(e) def test_cpp_uniform_augment_exception_float_numops(num_ops=2.5): """ Test UniformAugment invalid float number of ops """ logger.info("Test CPP UniformAugment invalid float num_ops exception") transforms_ua = [C.RandomCrop(size=[224, 224], padding=[32, 32, 32, 32]), C.RandomHorizontalFlip(), C.RandomVerticalFlip(), C.RandomColorAdjust(), C.RandomRotation(degrees=45)] try: _ = C.UniformAugment(transforms=transforms_ua, num_ops=num_ops) except Exception as e: logger.info("Got an exception in DE: {}".format(str(e))) assert "Argument num_ops with value 2.5 is not of type []" in str(e) def test_cpp_uniform_augment_random_crop_badinput(num_ops=1): """ Test UniformAugment with greater crop size """ logger.info("Test CPP UniformAugment with random_crop bad input") batch_size = 2 cifar10_dir = "../data/dataset/testCifar10Data" ds1 = ds.Cifar10Dataset(cifar10_dir, shuffle=False) # shape = [32,32,3] transforms_ua = [ # Note: crop size [224, 224] > image size [32, 32] C.RandomCrop(size=[224, 224]), C.RandomHorizontalFlip() ] uni_aug = C.UniformAugment(transforms=transforms_ua, num_ops=num_ops) ds1 = ds1.map(operations=uni_aug, input_columns="image") # apply DatasetOps ds1 = ds1.batch(batch_size, drop_remainder=True, num_parallel_workers=1) num_batches = 0 try: for _ in ds1.create_dict_iterator(num_epochs=1, output_numpy=True): num_batches += 1 except Exception as e: assert "crop size" in str(e) if __name__ == "__main__": test_uniform_augment_callable(num_ops=2) test_uniform_augment(num_ops=1, plot=True) test_cpp_uniform_augment(num_ops=1, plot=True) test_cpp_uniform_augment_exception_pyops(num_ops=1) test_cpp_uniform_augment_exception_large_numops(num_ops=6) test_cpp_uniform_augment_exception_nonpositive_numops(num_ops=0) test_cpp_uniform_augment_exception_float_numops(num_ops=2.5) test_cpp_uniform_augment_random_crop_badinput(num_ops=1)