# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ Test nn.probability.distribution.Gamma. """ import numpy as np import pytest import mindspore.nn as nn import mindspore.nn.probability.distribution as msd from mindspore import dtype from mindspore import Tensor def test_gamma_shape_errpr(): """ Invalid shapes. """ with pytest.raises(ValueError): msd.Gamma([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32) def test_type(): with pytest.raises(TypeError): msd.Gamma([0.], [1.], dtype=dtype.int32) def test_name(): with pytest.raises(TypeError): msd.Gamma([0.], [1.], name=1.0) def test_seed(): with pytest.raises(TypeError): msd.Gamma([0.], [1.], seed='seed') def test_concentration1(): with pytest.raises(ValueError): msd.Gamma([0.], [1.]) with pytest.raises(ValueError): msd.Gamma([-1.], [1.]) def test_concentration0(): with pytest.raises(ValueError): msd.Gamma([1.], [0.]) with pytest.raises(ValueError): msd.Gamma([1.], [-1.]) def test_scalar(): with pytest.raises(TypeError): msd.Gamma(3., [4.]) with pytest.raises(TypeError): msd.Gamma([3.], -4.) def test_arguments(): """ args passing during initialization. """ g = msd.Gamma() assert isinstance(g, msd.Distribution) g = msd.Gamma([3.0], [4.0], dtype=dtype.float32) assert isinstance(g, msd.Distribution) class GammaProb(nn.Cell): """ Gamma distribution: initialize with concentration1/concentration0. """ def __init__(self): super(GammaProb, self).__init__() self.gamma = msd.Gamma([3.0, 4.0], [1.0, 1.0], dtype=dtype.float32) def construct(self, value): prob = self.gamma.prob(value) log_prob = self.gamma.log_prob(value) return prob + log_prob def test_gamma_prob(): """ Test probability functions: passing value through construct. """ net = GammaProb() value = Tensor([0.5, 1.0], dtype=dtype.float32) ans = net(value) assert isinstance(ans, Tensor) class GammaProb1(nn.Cell): """ Gamma distribution: initialize without concentration1/concentration0. """ def __init__(self): super(GammaProb1, self).__init__() self.gamma = msd.Gamma() def construct(self, value, concentration1, concentration0): prob = self.gamma.prob(value, concentration1, concentration0) log_prob = self.gamma.log_prob(value, concentration1, concentration0) return prob + log_prob def test_gamma_prob1(): """ Test probability functions: passing concentration1/concentration0, value through construct. """ net = GammaProb1() value = Tensor([0.5, 1.0], dtype=dtype.float32) concentration1 = Tensor([2.0, 3.0], dtype=dtype.float32) concentration0 = Tensor([1.0], dtype=dtype.float32) ans = net(value, concentration1, concentration0) assert isinstance(ans, Tensor) class GammaKl(nn.Cell): """ Test class: kl_loss of Gamma distribution. """ def __init__(self): super(GammaKl, self).__init__() self.g1 = msd.Gamma(np.array([3.0]), np.array([4.0]), dtype=dtype.float32) self.g2 = msd.Gamma(dtype=dtype.float32) def construct(self, concentration1_b, concentration0_b, concentration1_a, concentration0_a): kl1 = self.g1.kl_loss('Gamma', concentration1_b, concentration0_b) kl2 = self.g2.kl_loss('Gamma', concentration1_b, concentration0_b, concentration1_a, concentration0_a) return kl1 + kl2 def test_kl(): """ Test kl_loss. """ net = GammaKl() concentration1_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32) concentration0_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32) concentration1_a = Tensor(np.array([2.0]).astype(np.float32), dtype=dtype.float32) concentration0_a = Tensor(np.array([3.0]).astype(np.float32), dtype=dtype.float32) ans = net(concentration1_b, concentration0_b, concentration1_a, concentration0_a) assert isinstance(ans, Tensor) class GammaCrossEntropy(nn.Cell): """ Test class: cross_entropy of Gamma distribution. """ def __init__(self): super(GammaCrossEntropy, self).__init__() self.g1 = msd.Gamma(np.array([3.0]), np.array([4.0]), dtype=dtype.float32) self.g2 = msd.Gamma(dtype=dtype.float32) def construct(self, concentration1_b, concentration0_b, concentration1_a, concentration0_a): h1 = self.g1.cross_entropy('Gamma', concentration1_b, concentration0_b) h2 = self.g2.cross_entropy('Gamma', concentration1_b, concentration0_b, concentration1_a, concentration0_a) return h1 + h2 def test_cross_entropy(): """ Test cross entropy between Gamma distributions. """ net = GammaCrossEntropy() concentration1_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32) concentration0_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32) concentration1_a = Tensor(np.array([2.0]).astype(np.float32), dtype=dtype.float32) concentration0_a = Tensor(np.array([3.0]).astype(np.float32), dtype=dtype.float32) ans = net(concentration1_b, concentration0_b, concentration1_a, concentration0_a) assert isinstance(ans, Tensor) class GammaBasics(nn.Cell): """ Test class: basic mean/sd function. """ def __init__(self): super(GammaBasics, self).__init__() self.g = msd.Gamma(np.array([3.0, 4.0]), np.array([4.0, 6.0]), dtype=dtype.float32) def construct(self): mean = self.g.mean() sd = self.g.sd() mode = self.g.mode() return mean + sd + mode def test_bascis(): """ Test mean/sd/mode/entropy functionality of Gamma. """ net = GammaBasics() ans = net() assert isinstance(ans, Tensor) class GammaConstruct(nn.Cell): """ Gamma distribution: going through construct. """ def __init__(self): super(GammaConstruct, self).__init__() self.gamma = msd.Gamma([3.0], [4.0]) self.gamma1 = msd.Gamma() def construct(self, value, concentration1, concentration0): prob = self.gamma('prob', value) prob1 = self.gamma('prob', value, concentration1, concentration0) prob2 = self.gamma1('prob', value, concentration1, concentration0) return prob + prob1 + prob2 def test_gamma_construct(): """ Test probability function going through construct. """ net = GammaConstruct() value = Tensor([0.5, 1.0], dtype=dtype.float32) concentration1 = Tensor([0.0], dtype=dtype.float32) concentration0 = Tensor([1.0], dtype=dtype.float32) ans = net(value, concentration1, concentration0) assert isinstance(ans, Tensor)