# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore as ms import mindspore.nn as nn from mindspore import Tensor from mindspore import context from mindspore.common.api import _cell_graph_executor from mindspore.common.parameter import Parameter from mindspore.ops import composite as C from mindspore.ops import operations as P from tests.ut.python.ops.test_math_ops import VirtualLoss grad_all = C.GradOperation(get_all=True) class NetWithLoss(nn.Cell): def __init__(self, network): super(NetWithLoss, self).__init__() self.loss = VirtualLoss() self.network = network def construct(self, x): predict = self.network(x) return self.loss(predict) class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network def construct(self, x): return grad_all(self.network)(x) def test_reshape_unexpand(): class Net(nn.Cell): def __init__(self): super().__init__() self.reshape = P.Reshape() self.mul = P.Mul().shard(((1, 8), (1, 1, 8))) self.mul_weight = Parameter(Tensor(np.ones([96, 128]), dtype=ms.float32), name="weight") def construct(self, x): weight = self.reshape(self.mul_weight, (1, 128, 96)) out = self.mul(x, weight) return out size = 8 context.set_auto_parallel_context(device_num=size, global_rank=0) x = Tensor(np.ones([128, 96]), dtype=ms.float32) net = GradWrap(NetWithLoss(Net())) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") net.set_auto_parallel() net.set_train() _cell_graph_executor.compile(net, x) def test_reshape_unexpand_1(): class Net(nn.Cell): def __init__(self): super().__init__() self.reshape = P.Reshape() self.mul = P.Mul().shard(((1, 1, 8), (1, 8))) self.mul_weight = Parameter(Tensor(np.ones([128, 96]), dtype=ms.float32), name="weight") def construct(self, data): x = self.reshape(self.mul_weight, (1, 128, 96)) out = self.mul(x, self.mul_weight) return out size = 8 context.set_auto_parallel_context(device_num=size, global_rank=0) x = Tensor(np.ones([128, 96]), dtype=ms.float32) net = GradWrap(NetWithLoss(Net())) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") net.set_auto_parallel() net.set_train() _cell_graph_executor.compile(net, x) def test_reshape_unexpand_2(): class Net(nn.Cell): def __init__(self): super().__init__() self.reshape = P.Reshape() self.mul = P.Mul().shard(((1, 4, 2), (4, 2))) self.mul_weight = Parameter(Tensor(np.ones([128, 96]), dtype=ms.float32), name="weight") def construct(self, data): x = self.reshape(self.mul_weight, (1, 128, 96)) out = self.mul(x, self.mul_weight) return out size = 8 context.set_auto_parallel_context(device_num=size, global_rank=0) x = Tensor(np.ones([128, 96]), dtype=ms.float32) net = GradWrap(NetWithLoss(Net())) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") net.set_auto_parallel() net.set_train() _cell_graph_executor.compile(net, x) def test_reshape_unexpand_3(): class Net(nn.Cell): def __init__(self): super().__init__() self.reshape = P.Reshape() self.relu1 = P.ReLU().shard(((4, 1),)) self.relu2 = P.ReLU().shard(((1, 4),)) def construct(self, data): x = self.relu1(data) x = self.reshape(x, (3, 4)) x = self.relu2(x) return x size = 4 context.set_auto_parallel_context(device_num=size, global_rank=0) x = Tensor(np.ones([4, 3]), dtype=ms.float32) net = GradWrap(NetWithLoss(Net())) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") net.set_auto_parallel() net.set_train() _cell_graph_executor.compile(net, x) def test_reshape_unexpand_4(): class Net(nn.Cell): def __init__(self): super().__init__() self.reshape = P.Reshape() self.relu1 = P.ReLU().shard(((4, 1),)) self.relu2 = P.ReLU().shard(((1, 2, 2),)) def construct(self, data): x = self.relu1(data) x = self.reshape(x, (3, 2, 2)) x = self.relu2(x) return x size = 4 context.set_auto_parallel_context(device_num=size, global_rank=0) x = Tensor(np.ones([4, 3]), dtype=ms.float32) net = GradWrap(NetWithLoss(Net())) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") net.set_auto_parallel() net.set_train() _cell_graph_executor.compile(net, x) def test_reshape_unexpand_5(): class Net(nn.Cell): def __init__(self): super().__init__() self.reshape = P.Reshape() self.relu1 = P.ReLU().shard(((2, 2, 1),)) self.relu2 = P.ReLU().shard(((1, 4),)) def construct(self, data): x = self.relu1(data) x = self.reshape(x, (3, 4)) x = self.relu2(x) return x size = 4 context.set_auto_parallel_context(device_num=size, global_rank=0) x = Tensor(np.ones([2, 2, 3]), dtype=ms.float32) net = GradWrap(NetWithLoss(Net())) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") net.set_auto_parallel() net.set_train() _cell_graph_executor.compile(net, x) def test_reshape_unexpand_6(): class Net(nn.Cell): def __init__(self): super().__init__() self.reshape = P.Reshape() self.relu1 = P.ReLU().shard(((2, 1),)) self.relu2 = P.ReLU().shard(((1, 1, 4),)) def construct(self, data): x = self.relu1(data) x = self.reshape(x, (1, 3, 4)) x = self.relu2(x) return x size = 4 context.set_auto_parallel_context(device_num=size, global_rank=0) x = Tensor(np.ones([4, 3]), dtype=ms.float32) net = GradWrap(NetWithLoss(Net())) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") net.set_auto_parallel() net.set_train() _cell_graph_executor.compile(net, x) def test_reshape_unexpand_7(): class Net(nn.Cell): def __init__(self, in_channel=3, out_channel=8, axis=1, input_shape=(32, 4, 110, -1), mul_size=(32, 1, 220, 220)): super().__init__() mul_np = np.full(mul_size, 0.5, dtype=np.float32) self.mul_weight = Parameter(Tensor(mul_np), name="mul_weight") self.mul = P.Mul() self.conv = nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=5, has_bias=True, weight_init='ones', bias_init='ones', pad_mode='valid') self.conv.conv2d.shard(((8, 1, 1, 1), (1, 1, 1, 1))) self.softmax = nn.Softmax(axis=axis) self.relu = nn.ReLU() self.reshape = P.Reshape() self.input_shape = input_shape def construct(self, inputs): x = self.conv(inputs) x = self.softmax(x) x = self.relu(x) x = self.mul(x, self.mul_weight) x = self.reshape(x, self.input_shape) return x size = 8 context.set_auto_parallel_context(device_num=size, global_rank=0) context.set_auto_parallel_context(parallel_mode="auto_parallel") x = Tensor(np.ones([32, 3, 224, 224]), dtype=ms.float32) net = GradWrap(NetWithLoss(Net())) net.set_auto_parallel() net.set_train() _cell_graph_executor.compile(net, x) def test_reshape_unexpand_8(): class Net(nn.Cell): def __init__(self): super().__init__() self.reshape = P.Reshape() self.mul = P.Mul().shard(((1, 4, 2), (4, 2))) self.mul_weight = Parameter(Tensor(np.ones([128, 96]), dtype=ms.float32), name="weight") def construct(self, data): x = self.reshape(self.mul_weight, (1, 128, 96)) out = self.mul(x, self.mul_weight) return out size = 8 context.set_auto_parallel_context(device_num=size, global_rank=0) x = Tensor(np.ones([128, 96]), dtype=ms.float32) net = GradWrap(NetWithLoss(Net())) context.set_auto_parallel_context(parallel_mode="auto_parallel") net.set_auto_parallel() net.set_train() _cell_graph_executor.compile(net, x)