# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test scatter update """ import numpy as np import pytest import mindspore.nn as nn from mindspore import Tensor, Model, Parameter from mindspore.ops import operations as P from mindspore import context class Net(nn.Cell): """Net definition""" def __init__(self, strategy1=None, strategy2=None): super(Net, self).__init__() self.inputs = Parameter(Tensor(np.ones([32, 64, 128]).astype(np.float32)), "input") self.indices = Tensor(np.ones([4, 8]).astype(np.int32)) self.updates = Tensor(np.ones([4, 8, 64, 128]).astype(np.float32)) self.scatter_update = P.ScatterUpdate().shard(strategy1) self.add = P.TensorAdd().shard(strategy2) self.relu = P.ReLU() def construct(self, x): out = self.scatter_update(self.inputs, self.indices, self.updates) out = self.add(x, out) out = self.relu(out) return out def test_distribute_predict(): context.set_context(mode=context.GRAPH_MODE) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, full_batch=True) inputs = Tensor(np.ones([32, 64, 128]).astype(np.float32)) strategy1 = ((1, 2, 4), (1, 1), (1, 1, 2, 4)) strategy2 = ((1, 2, 4), (1, 2, 4)) net = Net(strategy1, strategy2) model = Model(net) predict_map = model.infer_predict_layout(inputs) output = model.predict(inputs) context.reset_auto_parallel_context() return predict_map, output def test_scatter_update_wrong_strategy(): context.set_context(mode=context.GRAPH_MODE) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, full_batch=True) inputs = Tensor(np.ones([32, 64, 128]).astype(np.float32)) strategy1 = ((1, 2, 4), (1, 1), (1, 1, 4, 2)) strategy2 = ((1, 2, 4), (1, 2, 4)) net = Net(strategy1, strategy2) model = Model(net) with pytest.raises(RuntimeError): model.predict(inputs) context.reset_auto_parallel_context() def test_distribute_predict_auto_parallel(): context.set_context(mode=context.GRAPH_MODE) context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, full_batch=True) inputs = Tensor(np.ones([32, 64, 128]).astype(np.float32)) net = Net() model = Model(net) predict_map = model.infer_predict_layout(inputs) output = model.predict(inputs) context.reset_auto_parallel_context() return predict_map, output