#region Copyright notice and license
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#endregion
using Google.Protobuf.Compatibility;
using System;
using System.Reflection;
namespace Google.Protobuf.Reflection
{
///
/// The methods in this class are somewhat evil, and should not be tampered with lightly.
/// Basically they allow the creation of relatively weakly typed delegates from MethodInfos
/// which are more strongly typed. They do this by creating an appropriate strongly typed
/// delegate from the MethodInfo, and then calling that within an anonymous method.
/// Mind-bending stuff (at least to your humble narrator) but the resulting delegates are
/// very fast compared with calling Invoke later on.
///
internal static class ReflectionUtil
{
static ReflectionUtil()
{
ForceInitialize(); // Handles all reference types
ForceInitialize();
ForceInitialize();
ForceInitialize();
ForceInitialize();
ForceInitialize();
ForceInitialize();
ForceInitialize();
ForceInitialize();
ForceInitialize();
ForceInitialize();
ForceInitialize();
ForceInitialize();
ForceInitialize();
ForceInitialize();
ForceInitialize();
SampleEnumMethod();
}
internal static void ForceInitialize() => new ReflectionHelper();
///
/// Empty Type[] used when calling GetProperty to force property instead of indexer fetching.
///
internal static readonly Type[] EmptyTypes = new Type[0];
///
/// Creates a delegate which will cast the argument to the type that declares the method,
/// call the method on it, then convert the result to object.
///
/// The method to create a delegate for, which must be declared in an IMessage
/// implementation.
internal static Func CreateFuncIMessageObject(MethodInfo method) =>
GetReflectionHelper(method.DeclaringType, method.ReturnType).CreateFuncIMessageObject(method);
///
/// Creates a delegate which will cast the argument to the type that declares the method,
/// call the method on it, then convert the result to the specified type. The method is expected
/// to actually return an enum (because of where we're calling it - for oneof cases). Sometimes that
/// means we need some extra work to perform conversions.
///
/// The method to create a delegate for, which must be declared in an IMessage
/// implementation.
internal static Func CreateFuncIMessageInt32(MethodInfo method) =>
GetReflectionHelper(method.DeclaringType, method.ReturnType).CreateFuncIMessageInt32(method);
///
/// Creates a delegate which will execute the given method after casting the first argument to
/// the type that declares the method, and the second argument to the first parameter type of the method.
///
/// The method to create a delegate for, which must be declared in an IMessage
/// implementation.
internal static Action CreateActionIMessageObject(MethodInfo method) =>
GetReflectionHelper(method.DeclaringType, method.GetParameters()[0].ParameterType).CreateActionIMessageObject(method);
///
/// Creates a delegate which will execute the given method after casting the first argument to
/// type that declares the method.
///
/// The method to create a delegate for, which must be declared in an IMessage
/// implementation.
internal static Action CreateActionIMessage(MethodInfo method) =>
GetReflectionHelper(method.DeclaringType, typeof(object)).CreateActionIMessage(method);
internal static Func CreateFuncIMessageBool(MethodInfo method) =>
GetReflectionHelper(method.DeclaringType, method.ReturnType).CreateFuncIMessageBool(method);
internal static Func CreateIsInitializedCaller(Type msg) =>
((IExtensionSetReflector)Activator.CreateInstance(typeof(ExtensionSetReflector<>).MakeGenericType(msg))).CreateIsInitializedCaller();
///
/// Creates a delegate which will execute the given method after casting the first argument to
/// the type that declares the method, and the second argument to the first parameter type of the method.
///
internal static IExtensionReflectionHelper CreateExtensionHelper(Extension extension) =>
(IExtensionReflectionHelper)Activator.CreateInstance(typeof(ExtensionReflectionHelper<,>).MakeGenericType(extension.TargetType, extension.GetType().GenericTypeArguments[1]), extension);
///
/// Creates a reflection helper for the given type arguments. Currently these are created on demand
/// rather than cached; this will be "busy" when initially loading a message's descriptor, but after that
/// they can be garbage collected. We could cache them by type if that proves to be important, but creating
/// an object is pretty cheap.
///
private static IReflectionHelper GetReflectionHelper(Type t1, Type t2) =>
(IReflectionHelper) Activator.CreateInstance(typeof(ReflectionHelper<,>).MakeGenericType(t1, t2));
// Non-generic interface allowing us to use an instance of ReflectionHelper without statically
// knowing the types involved.
private interface IReflectionHelper
{
Func CreateFuncIMessageInt32(MethodInfo method);
Action CreateActionIMessage(MethodInfo method);
Func CreateFuncIMessageObject(MethodInfo method);
Action CreateActionIMessageObject(MethodInfo method);
Func CreateFuncIMessageBool(MethodInfo method);
}
internal interface IExtensionReflectionHelper
{
object GetExtension(IMessage message);
void SetExtension(IMessage message, object value);
bool HasExtension(IMessage message);
void ClearExtension(IMessage message);
}
private interface IExtensionSetReflector
{
Func CreateIsInitializedCaller();
}
private class ReflectionHelper : IReflectionHelper
{
public Func CreateFuncIMessageInt32(MethodInfo method)
{
// On pleasant runtimes, we can create a Func from a method returning
// an enum based on an int. That's the fast path.
if (CanConvertEnumFuncToInt32Func)
{
var del = (Func) method.CreateDelegate(typeof(Func));
return message => del((T1) message);
}
else
{
// On some runtimes (e.g. old Mono) the return type has to be exactly correct,
// so we go via boxing. Reflection is already fairly inefficient, and this is
// only used for one-of case checking, fortunately.
var del = (Func) method.CreateDelegate(typeof(Func));
return message => (int) (object) del((T1) message);
}
}
public Action CreateActionIMessage(MethodInfo method)
{
var del = (Action) method.CreateDelegate(typeof(Action));
return message => del((T1) message);
}
public Func CreateFuncIMessageObject(MethodInfo method)
{
var del = (Func) method.CreateDelegate(typeof(Func));
return message => del((T1) message);
}
public Action CreateActionIMessageObject(MethodInfo method)
{
var del = (Action) method.CreateDelegate(typeof(Action));
return (message, arg) => del((T1) message, (T2) arg);
}
public Func CreateFuncIMessageBool(MethodInfo method)
{
var del = (Func)method.CreateDelegate(typeof(Func));
return message => del((T1)message);
}
}
private class ExtensionReflectionHelper : IExtensionReflectionHelper
where T1 : IExtendableMessage
{
private readonly Extension extension;
public ExtensionReflectionHelper(Extension extension)
{
this.extension = extension;
}
public object GetExtension(IMessage message)
{
if (!(message is T1))
{
throw new InvalidCastException("Cannot access extension on message that isn't IExtensionMessage");
}
T1 extensionMessage = (T1)message;
if (extension is Extension)
{
return extensionMessage.GetExtension(extension as Extension);
}
else if (extension is RepeatedExtension)
{
return extensionMessage.GetOrInitializeExtension(extension as RepeatedExtension);
}
else
{
throw new InvalidCastException("The provided extension is not a valid extension identifier type");
}
}
public bool HasExtension(IMessage message)
{
if (!(message is T1))
{
throw new InvalidCastException("Cannot access extension on message that isn't IExtensionMessage");
}
T1 extensionMessage = (T1)message;
if (extension is Extension)
{
return extensionMessage.HasExtension(extension as Extension);
}
else if (extension is RepeatedExtension)
{
throw new InvalidOperationException("HasValue is not implemented for repeated extensions");
}
else
{
throw new InvalidCastException("The provided extension is not a valid extension identifier type");
}
}
public void SetExtension(IMessage message, object value)
{
if (!(message is T1))
{
throw new InvalidCastException("Cannot access extension on message that isn't IExtensionMessage");
}
T1 extensionMessage = (T1)message;
if (extension is Extension)
{
extensionMessage.SetExtension(extension as Extension, (T3)value);
}
else if (extension is RepeatedExtension)
{
throw new InvalidOperationException("SetValue is not implemented for repeated extensions");
}
else
{
throw new InvalidCastException("The provided extension is not a valid extension identifier type");
}
}
public void ClearExtension(IMessage message)
{
if (!(message is T1))
{
throw new InvalidCastException("Cannot access extension on message that isn't IExtensionMessage");
}
T1 extensionMessage = (T1)message;
if (extension is Extension)
{
extensionMessage.ClearExtension(extension as Extension);
}
else if (extension is RepeatedExtension)
{
extensionMessage.GetExtension(extension as RepeatedExtension).Clear();
}
else
{
throw new InvalidCastException("The provided extension is not a valid extension identifier type");
}
}
}
private class ExtensionSetReflector : IExtensionSetReflector where T1 : IExtendableMessage
{
public Func CreateIsInitializedCaller()
{
var prop = typeof(T1).GetTypeInfo().GetDeclaredProperty("_Extensions");
#if NET35
var getFunc = (Func>)prop.GetGetMethod(true).CreateDelegate(typeof(Func>));
#else
var getFunc = (Func>)prop.GetMethod.CreateDelegate(typeof(Func>));
#endif
var initializedFunc = (Func, bool>)
typeof(ExtensionSet)
.GetTypeInfo()
.GetDeclaredMethod("IsInitialized")
.CreateDelegate(typeof(Func, bool>));
return (m) => {
var set = getFunc((T1)m);
return set == null || initializedFunc(set);
};
}
}
// Runtime compatibility checking code - see ReflectionHelper.CreateFuncIMessageInt32 for
// details about why we're doing this.
// Deliberately not inside the generic type. We only want to check this once.
private static bool CanConvertEnumFuncToInt32Func { get; } = CheckCanConvertEnumFuncToInt32Func();
private static bool CheckCanConvertEnumFuncToInt32Func()
{
try
{
// Try to do the conversion using reflection, so we can see whether it's supported.
MethodInfo method = typeof(ReflectionUtil).GetMethod(nameof(SampleEnumMethod));
// If this passes, we're in a reasonable runtime.
method.CreateDelegate(typeof(Func));
return true;
}
catch (ArgumentException)
{
return false;
}
}
public enum SampleEnum
{
X
}
// Public to make the reflection simpler.
public static SampleEnum SampleEnumMethod() => SampleEnum.X;
}
}