/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkBitmap.h" #include "include/core/SkColorSpace.h" #include "include/core/SkMath.h" #include "include/core/SkPoint3.h" #include "include/core/SkSize.h" #include "include/core/SkStream.h" #include "include/private/SkColorData.h" #include "include/private/SkMacros.h" #include "include/private/SkTemplates.h" #include "src/codec/SkCodecPriv.h" #include "src/codec/SkColorTable.h" #include "src/codec/SkPngCodec.h" #include "src/codec/SkPngPriv.h" #include "src/codec/SkSwizzler.h" #include "src/core/SkOpts.h" #include "png.h" #include #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK #include "include/android/SkAndroidFrameworkUtils.h" #endif // This warning triggers false postives way too often in here. #if defined(__GNUC__) && !defined(__clang__) #pragma GCC diagnostic ignored "-Wclobbered" #endif // FIXME (scroggo): We can use png_jumpbuf directly once Google3 is on 1.6 #define PNG_JMPBUF(x) png_jmpbuf((png_structp) x) /////////////////////////////////////////////////////////////////////////////// // Callback functions /////////////////////////////////////////////////////////////////////////////// // When setjmp is first called, it returns 0, meaning longjmp was not called. constexpr int kSetJmpOkay = 0; // An error internal to libpng. constexpr int kPngError = 1; // Passed to longjmp when we have decoded as many lines as we need. constexpr int kStopDecoding = 2; static void sk_error_fn(png_structp png_ptr, png_const_charp msg) { SkCodecPrintf("------ png error %s\n", msg); longjmp(PNG_JMPBUF(png_ptr), kPngError); } void sk_warning_fn(png_structp, png_const_charp msg) { SkCodecPrintf("----- png warning %s\n", msg); } #ifdef PNG_READ_UNKNOWN_CHUNKS_SUPPORTED static int sk_read_user_chunk(png_structp png_ptr, png_unknown_chunkp chunk) { SkPngChunkReader* chunkReader = (SkPngChunkReader*)png_get_user_chunk_ptr(png_ptr); // readChunk() returning true means continue decoding return chunkReader->readChunk((const char*)chunk->name, chunk->data, chunk->size) ? 1 : -1; } #endif /////////////////////////////////////////////////////////////////////////////// // Helpers /////////////////////////////////////////////////////////////////////////////// class AutoCleanPng : public SkNoncopyable { public: /* * This class does not take ownership of stream or reader, but if codecPtr * is non-NULL, and decodeBounds succeeds, it will have created a new * SkCodec (pointed to by *codecPtr) which will own/ref them, as well as * the png_ptr and info_ptr. */ AutoCleanPng(png_structp png_ptr, SkStream* stream, SkPngChunkReader* reader, SkCodec** codecPtr) : fPng_ptr(png_ptr) , fInfo_ptr(nullptr) , fStream(stream) , fChunkReader(reader) , fOutCodec(codecPtr) {} ~AutoCleanPng() { // fInfo_ptr will never be non-nullptr unless fPng_ptr is. if (fPng_ptr) { png_infopp info_pp = fInfo_ptr ? &fInfo_ptr : nullptr; png_destroy_read_struct(&fPng_ptr, info_pp, nullptr); } } void setInfoPtr(png_infop info_ptr) { SkASSERT(nullptr == fInfo_ptr); fInfo_ptr = info_ptr; } /** * Reads enough of the input stream to decode the bounds. * @return false if the stream is not a valid PNG (or too short). * true if it read enough of the stream to determine the bounds. * In the latter case, the stream may have been read beyond the * point to determine the bounds, and the png_ptr will have saved * any extra data. Further, if the codecPtr supplied to the * constructor was not NULL, it will now point to a new SkCodec, * which owns (or refs, in the case of the SkPngChunkReader) the * inputs. If codecPtr was NULL, the png_ptr and info_ptr are * unowned, and it is up to the caller to destroy them. */ bool decodeBounds(); private: png_structp fPng_ptr; png_infop fInfo_ptr; SkStream* fStream; SkPngChunkReader* fChunkReader; SkCodec** fOutCodec; void infoCallback(size_t idatLength); void releasePngPtrs() { fPng_ptr = nullptr; fInfo_ptr = nullptr; } }; static inline bool is_chunk(const png_byte* chunk, const char* tag) { return memcmp(chunk + 4, tag, 4) == 0; } static inline bool process_data(png_structp png_ptr, png_infop info_ptr, SkStream* stream, void* buffer, size_t bufferSize, size_t length) { while (length > 0) { const size_t bytesToProcess = std::min(bufferSize, length); const size_t bytesRead = stream->read(buffer, bytesToProcess); png_process_data(png_ptr, info_ptr, (png_bytep) buffer, bytesRead); if (bytesRead < bytesToProcess) { return false; } length -= bytesToProcess; } return true; } bool AutoCleanPng::decodeBounds() { if (setjmp(PNG_JMPBUF(fPng_ptr))) { return false; } png_set_progressive_read_fn(fPng_ptr, nullptr, nullptr, nullptr, nullptr); // Arbitrary buffer size, though note that it matches (below) // SkPngCodec::processData(). FIXME: Can we better suit this to the size of // the PNG header? constexpr size_t kBufferSize = 4096; char buffer[kBufferSize]; { // Parse the signature. if (fStream->read(buffer, 8) < 8) { return false; } png_process_data(fPng_ptr, fInfo_ptr, (png_bytep) buffer, 8); } while (true) { // Parse chunk length and type. if (fStream->read(buffer, 8) < 8) { // We have read to the end of the input without decoding bounds. break; } png_byte* chunk = reinterpret_cast(buffer); const size_t length = png_get_uint_32(chunk); if (is_chunk(chunk, "IDAT")) { this->infoCallback(length); return true; } png_process_data(fPng_ptr, fInfo_ptr, chunk, 8); // Process the full chunk + CRC. if (!process_data(fPng_ptr, fInfo_ptr, fStream, buffer, kBufferSize, length + 4)) { return false; } } return false; } bool SkPngCodec::processData() { switch (setjmp(PNG_JMPBUF(fPng_ptr))) { case kPngError: // There was an error. Stop processing data. // FIXME: Do we need to discard png_ptr? return false; case kStopDecoding: // We decoded all the lines we want. return true; case kSetJmpOkay: // Everything is okay. break; default: // No other values should be passed to longjmp. SkASSERT(false); } // Arbitrary buffer size constexpr size_t kBufferSize = 4096; char buffer[kBufferSize]; bool iend = false; while (true) { size_t length; if (fDecodedIdat) { // Parse chunk length and type. if (this->stream()->read(buffer, 8) < 8) { break; } png_byte* chunk = reinterpret_cast(buffer); png_process_data(fPng_ptr, fInfo_ptr, chunk, 8); if (is_chunk(chunk, "IEND")) { iend = true; } length = png_get_uint_32(chunk); } else { length = fIdatLength; png_byte idat[] = {0, 0, 0, 0, 'I', 'D', 'A', 'T'}; png_save_uint_32(idat, length); png_process_data(fPng_ptr, fInfo_ptr, idat, 8); fDecodedIdat = true; } // Process the full chunk + CRC. if (!process_data(fPng_ptr, fInfo_ptr, this->stream(), buffer, kBufferSize, length + 4) || iend) { break; } } return true; } static constexpr SkColorType kXformSrcColorType = kRGBA_8888_SkColorType; static inline bool needs_premul(SkAlphaType dstAT, SkEncodedInfo::Alpha encodedAlpha) { return kPremul_SkAlphaType == dstAT && SkEncodedInfo::kUnpremul_Alpha == encodedAlpha; } // Note: SkColorTable claims to store SkPMColors, which is not necessarily the case here. bool SkPngCodec::createColorTable(const SkImageInfo& dstInfo) { int numColors; png_color* palette; if (!png_get_PLTE(fPng_ptr, fInfo_ptr, &palette, &numColors)) { return false; } // Contents depend on tableColorType and our choice of if/when to premultiply: // { kPremul, kUnpremul, kOpaque } x { RGBA, BGRA } SkPMColor colorTable[256]; SkColorType tableColorType = this->colorXform() ? kXformSrcColorType : dstInfo.colorType(); png_bytep alphas; int numColorsWithAlpha = 0; if (png_get_tRNS(fPng_ptr, fInfo_ptr, &alphas, &numColorsWithAlpha, nullptr)) { bool premultiply = needs_premul(dstInfo.alphaType(), this->getEncodedInfo().alpha()); // Choose which function to use to create the color table. If the final destination's // colortype is unpremultiplied, the color table will store unpremultiplied colors. PackColorProc proc = choose_pack_color_proc(premultiply, tableColorType); for (int i = 0; i < numColorsWithAlpha; i++) { // We don't have a function in SkOpts that combines a set of alphas with a set // of RGBs. We could write one, but it's hardly worth it, given that this // is such a small fraction of the total decode time. colorTable[i] = proc(alphas[i], palette->red, palette->green, palette->blue); palette++; } } if (numColorsWithAlpha < numColors) { // The optimized code depends on a 3-byte png_color struct with the colors // in RGB order. These checks make sure it is safe to use. static_assert(3 == sizeof(png_color), "png_color struct has changed. Opts are broken."); #ifdef SK_DEBUG SkASSERT(&palette->red < &palette->green); SkASSERT(&palette->green < &palette->blue); #endif if (is_rgba(tableColorType)) { SkOpts::RGB_to_RGB1(colorTable + numColorsWithAlpha, (const uint8_t*)palette, numColors - numColorsWithAlpha); } else { SkOpts::RGB_to_BGR1(colorTable + numColorsWithAlpha, (const uint8_t*)palette, numColors - numColorsWithAlpha); } } if (this->colorXform() && !this->xformOnDecode()) { this->applyColorXform(colorTable, colorTable, numColors); } // Pad the color table with the last color in the table (or black) in the case that // invalid pixel indices exceed the number of colors in the table. const int maxColors = 1 << fBitDepth; if (numColors < maxColors) { SkPMColor lastColor = numColors > 0 ? colorTable[numColors - 1] : SK_ColorBLACK; sk_memset32(colorTable + numColors, lastColor, maxColors - numColors); } fColorTable.reset(new SkColorTable(colorTable, maxColors)); return true; } /////////////////////////////////////////////////////////////////////////////// // Creation /////////////////////////////////////////////////////////////////////////////// bool SkPngCodec::IsPng(const void* buf, size_t bytesRead) { return !png_sig_cmp((png_bytep) buf, (png_size_t)0, bytesRead); } #if (PNG_LIBPNG_VER_MAJOR > 1) || (PNG_LIBPNG_VER_MAJOR == 1 && PNG_LIBPNG_VER_MINOR >= 6) static float png_fixed_point_to_float(png_fixed_point x) { // We multiply by the same factor that libpng used to convert // fixed point -> double. Since we want floats, we choose to // do the conversion ourselves rather than convert // fixed point -> double -> float. return ((float) x) * 0.00001f; } static float png_inverted_fixed_point_to_float(png_fixed_point x) { // This is necessary because the gAMA chunk actually stores 1/gamma. return 1.0f / png_fixed_point_to_float(x); } #endif // LIBPNG >= 1.6 // If there is no color profile information, it will use sRGB. std::unique_ptr read_color_profile(png_structp png_ptr, png_infop info_ptr) { #if (PNG_LIBPNG_VER_MAJOR > 1) || (PNG_LIBPNG_VER_MAJOR == 1 && PNG_LIBPNG_VER_MINOR >= 6) // First check for an ICC profile png_bytep profile; png_uint_32 length; // The below variables are unused, however, we need to pass them in anyway or // png_get_iCCP() will return nothing. // Could knowing the |name| of the profile ever be interesting? Maybe for debugging? png_charp name; // The |compression| is uninteresting since: // (1) libpng has already decompressed the profile for us. // (2) "deflate" is the only mode of decompression that libpng supports. int compression; if (PNG_INFO_iCCP == png_get_iCCP(png_ptr, info_ptr, &name, &compression, &profile, &length)) { auto data = SkData::MakeWithCopy(profile, length); return SkEncodedInfo::ICCProfile::Make(std::move(data)); } // Second, check for sRGB. // Note that Blink does this first. This code checks ICC first, with the thinking that // an image has both truly wants the potentially more specific ICC chunk, with sRGB as a // backup in case the decoder does not support full color management. if (png_get_valid(png_ptr, info_ptr, PNG_INFO_sRGB)) { // sRGB chunks also store a rendering intent: Absolute, Relative, // Perceptual, and Saturation. // FIXME (scroggo): Extract this information from the sRGB chunk once // we are able to handle this information in // skcms_ICCProfile return nullptr; } // Default to SRGB gamut. skcms_Matrix3x3 toXYZD50 = skcms_sRGB_profile()->toXYZD50; // Next, check for chromaticities. png_fixed_point chrm[8]; png_fixed_point gamma; if (png_get_cHRM_fixed(png_ptr, info_ptr, &chrm[0], &chrm[1], &chrm[2], &chrm[3], &chrm[4], &chrm[5], &chrm[6], &chrm[7])) { float rx = png_fixed_point_to_float(chrm[2]); float ry = png_fixed_point_to_float(chrm[3]); float gx = png_fixed_point_to_float(chrm[4]); float gy = png_fixed_point_to_float(chrm[5]); float bx = png_fixed_point_to_float(chrm[6]); float by = png_fixed_point_to_float(chrm[7]); float wx = png_fixed_point_to_float(chrm[0]); float wy = png_fixed_point_to_float(chrm[1]); skcms_Matrix3x3 tmp; if (skcms_PrimariesToXYZD50(rx, ry, gx, gy, bx, by, wx, wy, &tmp)) { toXYZD50 = tmp; } else { // Note that Blink simply returns nullptr in this case. We'll fall // back to srgb. } } skcms_TransferFunction fn; if (PNG_INFO_gAMA == png_get_gAMA_fixed(png_ptr, info_ptr, &gamma)) { fn.a = 1.0f; fn.b = fn.c = fn.d = fn.e = fn.f = 0.0f; fn.g = png_inverted_fixed_point_to_float(gamma); } else { // Default to sRGB gamma if the image has color space information, // but does not specify gamma. // Note that Blink would again return nullptr in this case. fn = *skcms_sRGB_TransferFunction(); } skcms_ICCProfile skcmsProfile; skcms_Init(&skcmsProfile); skcms_SetTransferFunction(&skcmsProfile, &fn); skcms_SetXYZD50(&skcmsProfile, &toXYZD50); return SkEncodedInfo::ICCProfile::Make(skcmsProfile); #else // LIBPNG >= 1.6 return nullptr; #endif // LIBPNG >= 1.6 } void SkPngCodec::allocateStorage(const SkImageInfo& dstInfo) { switch (fXformMode) { case kSwizzleOnly_XformMode: break; case kColorOnly_XformMode: // Intentional fall through. A swizzler hasn't been created yet, but one will // be created later if we are sampling. We'll go ahead and allocate // enough memory to swizzle if necessary. case kSwizzleColor_XformMode: { const int bitsPerPixel = this->getEncodedInfo().bitsPerPixel(); // If we have more than 8-bits (per component) of precision, we will keep that // extra precision. Otherwise, we will swizzle to RGBA_8888 before transforming. const size_t bytesPerPixel = (bitsPerPixel > 32) ? bitsPerPixel / 8 : 4; const size_t colorXformBytes = dstInfo.width() * bytesPerPixel; fStorage.reset(colorXformBytes); fColorXformSrcRow = fStorage.get(); break; } } } static skcms_PixelFormat png_select_xform_format(const SkEncodedInfo& info) { // We use kRGB and kRGBA formats because color PNGs are always RGB or RGBA. if (16 == info.bitsPerComponent()) { if (SkEncodedInfo::kRGBA_Color == info.color()) { return skcms_PixelFormat_RGBA_16161616BE; } else if (SkEncodedInfo::kRGB_Color == info.color()) { return skcms_PixelFormat_RGB_161616BE; } } else if (SkEncodedInfo::kGray_Color == info.color()) { return skcms_PixelFormat_G_8; } return skcms_PixelFormat_RGBA_8888; } void SkPngCodec::applyXformRow(void* dst, const void* src) { switch (fXformMode) { case kSwizzleOnly_XformMode: fSwizzler->swizzle(dst, (const uint8_t*) src); break; case kColorOnly_XformMode: this->applyColorXform(dst, src, fXformWidth); break; case kSwizzleColor_XformMode: fSwizzler->swizzle(fColorXformSrcRow, (const uint8_t*) src); this->applyColorXform(dst, fColorXformSrcRow, fXformWidth); break; } } static SkCodec::Result log_and_return_error(bool success) { if (success) return SkCodec::kIncompleteInput; #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK SkAndroidFrameworkUtils::SafetyNetLog("117838472"); #endif return SkCodec::kErrorInInput; } class SkPngNormalDecoder : public SkPngCodec { public: SkPngNormalDecoder(SkEncodedInfo&& info, std::unique_ptr stream, SkPngChunkReader* reader, png_structp png_ptr, png_infop info_ptr, int bitDepth) : INHERITED(std::move(info), std::move(stream), reader, png_ptr, info_ptr, bitDepth) , fRowsWrittenToOutput(0) , fDst(nullptr) , fRowBytes(0) , fFirstRow(0) , fLastRow(0) {} static void AllRowsCallback(png_structp png_ptr, png_bytep row, png_uint_32 rowNum, int /*pass*/) { GetDecoder(png_ptr)->allRowsCallback(row, rowNum); } static void RowCallback(png_structp png_ptr, png_bytep row, png_uint_32 rowNum, int /*pass*/) { GetDecoder(png_ptr)->rowCallback(row, rowNum); } private: int fRowsWrittenToOutput; void* fDst; size_t fRowBytes; // Variables for partial decode int fFirstRow; // FIXME: Move to baseclass? int fLastRow; int fRowsNeeded; using INHERITED = SkPngCodec; static SkPngNormalDecoder* GetDecoder(png_structp png_ptr) { return static_cast(png_get_progressive_ptr(png_ptr)); } Result decodeAllRows(void* dst, size_t rowBytes, int* rowsDecoded) override { const int height = this->dimensions().height(); png_set_progressive_read_fn(this->png_ptr(), this, nullptr, AllRowsCallback, nullptr); fDst = dst; fRowBytes = rowBytes; fRowsWrittenToOutput = 0; fFirstRow = 0; fLastRow = height - 1; const bool success = this->processData(); if (success && fRowsWrittenToOutput == height) { return kSuccess; } if (rowsDecoded) { *rowsDecoded = fRowsWrittenToOutput; } return log_and_return_error(success); } void allRowsCallback(png_bytep row, int rowNum) { SkASSERT(rowNum == fRowsWrittenToOutput); fRowsWrittenToOutput++; this->applyXformRow(fDst, row); fDst = SkTAddOffset(fDst, fRowBytes); } void setRange(int firstRow, int lastRow, void* dst, size_t rowBytes) override { png_set_progressive_read_fn(this->png_ptr(), this, nullptr, RowCallback, nullptr); fFirstRow = firstRow; fLastRow = lastRow; fDst = dst; fRowBytes = rowBytes; fRowsWrittenToOutput = 0; fRowsNeeded = fLastRow - fFirstRow + 1; } Result decode(int* rowsDecoded) override { if (this->swizzler()) { const int sampleY = this->swizzler()->sampleY(); fRowsNeeded = get_scaled_dimension(fLastRow - fFirstRow + 1, sampleY); } const bool success = this->processData(); if (success && fRowsWrittenToOutput == fRowsNeeded) { return kSuccess; } if (rowsDecoded) { *rowsDecoded = fRowsWrittenToOutput; } return log_and_return_error(success); } void rowCallback(png_bytep row, int rowNum) { if (rowNum < fFirstRow) { // Ignore this row. return; } SkASSERT(rowNum <= fLastRow); SkASSERT(fRowsWrittenToOutput < fRowsNeeded); // If there is no swizzler, all rows are needed. if (!this->swizzler() || this->swizzler()->rowNeeded(rowNum - fFirstRow)) { this->applyXformRow(fDst, row); fDst = SkTAddOffset(fDst, fRowBytes); fRowsWrittenToOutput++; } if (fRowsWrittenToOutput == fRowsNeeded) { // Fake error to stop decoding scanlines. longjmp(PNG_JMPBUF(this->png_ptr()), kStopDecoding); } } }; class SkPngInterlacedDecoder : public SkPngCodec { public: SkPngInterlacedDecoder(SkEncodedInfo&& info, std::unique_ptr stream, SkPngChunkReader* reader, png_structp png_ptr, png_infop info_ptr, int bitDepth, int numberPasses) : INHERITED(std::move(info), std::move(stream), reader, png_ptr, info_ptr, bitDepth) , fNumberPasses(numberPasses) , fFirstRow(0) , fLastRow(0) , fLinesDecoded(0) , fInterlacedComplete(false) , fPng_rowbytes(0) {} static void InterlacedRowCallback(png_structp png_ptr, png_bytep row, png_uint_32 rowNum, int pass) { auto decoder = static_cast(png_get_progressive_ptr(png_ptr)); decoder->interlacedRowCallback(row, rowNum, pass); } private: const int fNumberPasses; int fFirstRow; int fLastRow; void* fDst; size_t fRowBytes; int fLinesDecoded; bool fInterlacedComplete; size_t fPng_rowbytes; SkAutoTMalloc fInterlaceBuffer; using INHERITED = SkPngCodec; // FIXME: Currently sharing interlaced callback for all rows and subset. It's not // as expensive as the subset version of non-interlaced, but it still does extra // work. void interlacedRowCallback(png_bytep row, int rowNum, int pass) { if (rowNum < fFirstRow || rowNum > fLastRow || fInterlacedComplete) { // Ignore this row return; } png_bytep oldRow = fInterlaceBuffer.get() + (rowNum - fFirstRow) * fPng_rowbytes; png_progressive_combine_row(this->png_ptr(), oldRow, row); if (0 == pass) { // The first pass initializes all rows. SkASSERT(row); SkASSERT(fLinesDecoded == rowNum - fFirstRow); fLinesDecoded++; } else { SkASSERT(fLinesDecoded == fLastRow - fFirstRow + 1); if (fNumberPasses - 1 == pass && rowNum == fLastRow) { // Last pass, and we have read all of the rows we care about. fInterlacedComplete = true; if (fLastRow != this->dimensions().height() - 1 || (this->swizzler() && this->swizzler()->sampleY() != 1)) { // Fake error to stop decoding scanlines. Only stop if we're not decoding the // whole image, in which case processing the rest of the image might be // expensive. When decoding the whole image, read through the IEND chunk to // preserve Android behavior of leaving the input stream in the right place. longjmp(PNG_JMPBUF(this->png_ptr()), kStopDecoding); } } } } Result decodeAllRows(void* dst, size_t rowBytes, int* rowsDecoded) override { const int height = this->dimensions().height(); this->setUpInterlaceBuffer(height); png_set_progressive_read_fn(this->png_ptr(), this, nullptr, InterlacedRowCallback, nullptr); fFirstRow = 0; fLastRow = height - 1; fLinesDecoded = 0; const bool success = this->processData(); png_bytep srcRow = fInterlaceBuffer.get(); // FIXME: When resuming, this may rewrite rows that did not change. for (int rowNum = 0; rowNum < fLinesDecoded; rowNum++) { this->applyXformRow(dst, srcRow); dst = SkTAddOffset(dst, rowBytes); srcRow = SkTAddOffset(srcRow, fPng_rowbytes); } if (success && fInterlacedComplete) { return kSuccess; } if (rowsDecoded) { *rowsDecoded = fLinesDecoded; } return log_and_return_error(success); } void setRange(int firstRow, int lastRow, void* dst, size_t rowBytes) override { // FIXME: We could skip rows in the interlace buffer that we won't put in the output. this->setUpInterlaceBuffer(lastRow - firstRow + 1); png_set_progressive_read_fn(this->png_ptr(), this, nullptr, InterlacedRowCallback, nullptr); fFirstRow = firstRow; fLastRow = lastRow; fDst = dst; fRowBytes = rowBytes; fLinesDecoded = 0; } Result decode(int* rowsDecoded) override { const bool success = this->processData(); // Now apply Xforms on all the rows that were decoded. if (!fLinesDecoded) { if (rowsDecoded) { *rowsDecoded = 0; } return log_and_return_error(success); } const int sampleY = this->swizzler() ? this->swizzler()->sampleY() : 1; const int rowsNeeded = get_scaled_dimension(fLastRow - fFirstRow + 1, sampleY); // FIXME: For resuming interlace, we may swizzle a row that hasn't changed. But it // may be too tricky/expensive to handle that correctly. // Offset srcRow by get_start_coord rows. We do not need to account for fFirstRow, // since the first row in fInterlaceBuffer corresponds to fFirstRow. int srcRow = get_start_coord(sampleY); void* dst = fDst; int rowsWrittenToOutput = 0; while (rowsWrittenToOutput < rowsNeeded && srcRow < fLinesDecoded) { png_bytep src = SkTAddOffset(fInterlaceBuffer.get(), fPng_rowbytes * srcRow); this->applyXformRow(dst, src); dst = SkTAddOffset(dst, fRowBytes); rowsWrittenToOutput++; srcRow += sampleY; } if (success && fInterlacedComplete) { return kSuccess; } if (rowsDecoded) { *rowsDecoded = rowsWrittenToOutput; } return log_and_return_error(success); } void setUpInterlaceBuffer(int height) { fPng_rowbytes = png_get_rowbytes(this->png_ptr(), this->info_ptr()); fInterlaceBuffer.reset(fPng_rowbytes * height); fInterlacedComplete = false; } }; // Reads the header and initializes the output fields, if not NULL. // // @param stream Input data. Will be read to get enough information to properly // setup the codec. // @param chunkReader SkPngChunkReader, for reading unknown chunks. May be NULL. // If not NULL, png_ptr will hold an *unowned* pointer to it. The caller is // expected to continue to own it for the lifetime of the png_ptr. // @param outCodec Optional output variable. If non-NULL, will be set to a new // SkPngCodec on success. // @param png_ptrp Optional output variable. If non-NULL, will be set to a new // png_structp on success. // @param info_ptrp Optional output variable. If non-NULL, will be set to a new // png_infop on success; // @return if kSuccess, the caller is responsible for calling // png_destroy_read_struct(png_ptrp, info_ptrp). // Otherwise, the passed in fields (except stream) are unchanged. static SkCodec::Result read_header(SkStream* stream, SkPngChunkReader* chunkReader, SkCodec** outCodec, png_structp* png_ptrp, png_infop* info_ptrp) { // The image is known to be a PNG. Decode enough to know the SkImageInfo. png_structp png_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, nullptr, sk_error_fn, sk_warning_fn); if (!png_ptr) { return SkCodec::kInternalError; } #ifdef PNG_SET_OPTION_SUPPORTED // This setting ensures that we display images with incorrect CMF bytes. // See crbug.com/807324. png_set_option(png_ptr, PNG_MAXIMUM_INFLATE_WINDOW, PNG_OPTION_ON); #endif AutoCleanPng autoClean(png_ptr, stream, chunkReader, outCodec); png_infop info_ptr = png_create_info_struct(png_ptr); if (info_ptr == nullptr) { return SkCodec::kInternalError; } autoClean.setInfoPtr(info_ptr); if (setjmp(PNG_JMPBUF(png_ptr))) { return SkCodec::kInvalidInput; } #ifdef PNG_READ_UNKNOWN_CHUNKS_SUPPORTED // Hookup our chunkReader so we can see any user-chunks the caller may be interested in. // This needs to be installed before we read the png header. Android may store ninepatch // chunks in the header. if (chunkReader) { png_set_keep_unknown_chunks(png_ptr, PNG_HANDLE_CHUNK_ALWAYS, (png_byte*)"", 0); png_set_read_user_chunk_fn(png_ptr, (png_voidp) chunkReader, sk_read_user_chunk); } #endif const bool decodedBounds = autoClean.decodeBounds(); if (!decodedBounds) { return SkCodec::kIncompleteInput; } // On success, decodeBounds releases ownership of png_ptr and info_ptr. if (png_ptrp) { *png_ptrp = png_ptr; } if (info_ptrp) { *info_ptrp = info_ptr; } // decodeBounds takes care of setting outCodec if (outCodec) { SkASSERT(*outCodec); } return SkCodec::kSuccess; } void AutoCleanPng::infoCallback(size_t idatLength) { png_uint_32 origWidth, origHeight; int bitDepth, encodedColorType; png_get_IHDR(fPng_ptr, fInfo_ptr, &origWidth, &origHeight, &bitDepth, &encodedColorType, nullptr, nullptr, nullptr); // TODO: Should we support 16-bits of precision for gray images? if (bitDepth == 16 && (PNG_COLOR_TYPE_GRAY == encodedColorType || PNG_COLOR_TYPE_GRAY_ALPHA == encodedColorType)) { bitDepth = 8; png_set_strip_16(fPng_ptr); } // Now determine the default colorType and alphaType and set the required transforms. // Often, we depend on SkSwizzler to perform any transforms that we need. However, we // still depend on libpng for many of the rare and PNG-specific cases. SkEncodedInfo::Color color; SkEncodedInfo::Alpha alpha; switch (encodedColorType) { case PNG_COLOR_TYPE_PALETTE: // Extract multiple pixels with bit depths of 1, 2, and 4 from a single // byte into separate bytes (useful for paletted and grayscale images). if (bitDepth < 8) { // TODO: Should we use SkSwizzler here? bitDepth = 8; png_set_packing(fPng_ptr); } color = SkEncodedInfo::kPalette_Color; // Set the alpha depending on if a transparency chunk exists. alpha = png_get_valid(fPng_ptr, fInfo_ptr, PNG_INFO_tRNS) ? SkEncodedInfo::kUnpremul_Alpha : SkEncodedInfo::kOpaque_Alpha; break; case PNG_COLOR_TYPE_RGB: if (png_get_valid(fPng_ptr, fInfo_ptr, PNG_INFO_tRNS)) { // Convert to RGBA if transparency chunk exists. png_set_tRNS_to_alpha(fPng_ptr); color = SkEncodedInfo::kRGBA_Color; alpha = SkEncodedInfo::kBinary_Alpha; } else { color = SkEncodedInfo::kRGB_Color; alpha = SkEncodedInfo::kOpaque_Alpha; } break; case PNG_COLOR_TYPE_GRAY: // Expand grayscale images to the full 8 bits from 1, 2, or 4 bits/pixel. if (bitDepth < 8) { // TODO: Should we use SkSwizzler here? bitDepth = 8; png_set_expand_gray_1_2_4_to_8(fPng_ptr); } if (png_get_valid(fPng_ptr, fInfo_ptr, PNG_INFO_tRNS)) { png_set_tRNS_to_alpha(fPng_ptr); color = SkEncodedInfo::kGrayAlpha_Color; alpha = SkEncodedInfo::kBinary_Alpha; } else { color = SkEncodedInfo::kGray_Color; alpha = SkEncodedInfo::kOpaque_Alpha; } break; case PNG_COLOR_TYPE_GRAY_ALPHA: color = SkEncodedInfo::kGrayAlpha_Color; alpha = SkEncodedInfo::kUnpremul_Alpha; break; case PNG_COLOR_TYPE_RGBA: color = SkEncodedInfo::kRGBA_Color; alpha = SkEncodedInfo::kUnpremul_Alpha; break; default: // All the color types have been covered above. SkASSERT(false); color = SkEncodedInfo::kRGBA_Color; alpha = SkEncodedInfo::kUnpremul_Alpha; } const int numberPasses = png_set_interlace_handling(fPng_ptr); if (fOutCodec) { SkASSERT(nullptr == *fOutCodec); auto profile = read_color_profile(fPng_ptr, fInfo_ptr); if (profile) { switch (profile->profile()->data_color_space) { case skcms_Signature_CMYK: profile = nullptr; break; case skcms_Signature_Gray: if (SkEncodedInfo::kGray_Color != color && SkEncodedInfo::kGrayAlpha_Color != color) { profile = nullptr; } break; default: break; } } switch (encodedColorType) { case PNG_COLOR_TYPE_GRAY_ALPHA:{ png_color_8p sigBits; if (png_get_sBIT(fPng_ptr, fInfo_ptr, &sigBits)) { if (8 == sigBits->alpha && kGraySigBit_GrayAlphaIsJustAlpha == sigBits->gray) { color = SkEncodedInfo::kXAlpha_Color; } } break; } case PNG_COLOR_TYPE_RGB:{ png_color_8p sigBits; if (png_get_sBIT(fPng_ptr, fInfo_ptr, &sigBits)) { if (5 == sigBits->red && 6 == sigBits->green && 5 == sigBits->blue) { // Recommend a decode to 565 if the sBIT indicates 565. color = SkEncodedInfo::k565_Color; } } break; } } #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK if (encodedColorType != PNG_COLOR_TYPE_GRAY_ALPHA && SkEncodedInfo::kOpaque_Alpha == alpha) { png_color_8p sigBits; if (png_get_sBIT(fPng_ptr, fInfo_ptr, &sigBits)) { if (5 == sigBits->red && 6 == sigBits->green && 5 == sigBits->blue) { SkAndroidFrameworkUtils::SafetyNetLog("190188264"); } } } #endif // SK_BUILD_FOR_ANDROID_FRAMEWORK SkEncodedInfo encodedInfo = SkEncodedInfo::Make(origWidth, origHeight, color, alpha, bitDepth, std::move(profile)); if (1 == numberPasses) { *fOutCodec = new SkPngNormalDecoder(std::move(encodedInfo), std::unique_ptr(fStream), fChunkReader, fPng_ptr, fInfo_ptr, bitDepth); } else { *fOutCodec = new SkPngInterlacedDecoder(std::move(encodedInfo), std::unique_ptr(fStream), fChunkReader, fPng_ptr, fInfo_ptr, bitDepth, numberPasses); } static_cast(*fOutCodec)->setIdatLength(idatLength); } // Release the pointers, which are now owned by the codec or the caller is expected to // take ownership. this->releasePngPtrs(); } SkPngCodec::SkPngCodec(SkEncodedInfo&& encodedInfo, std::unique_ptr stream, SkPngChunkReader* chunkReader, void* png_ptr, void* info_ptr, int bitDepth) : INHERITED(std::move(encodedInfo), png_select_xform_format(encodedInfo), std::move(stream)) , fPngChunkReader(SkSafeRef(chunkReader)) , fPng_ptr(png_ptr) , fInfo_ptr(info_ptr) , fColorXformSrcRow(nullptr) , fBitDepth(bitDepth) , fIdatLength(0) , fDecodedIdat(false) {} SkPngCodec::~SkPngCodec() { this->destroyReadStruct(); } void SkPngCodec::destroyReadStruct() { if (fPng_ptr) { // We will never have a nullptr fInfo_ptr with a non-nullptr fPng_ptr SkASSERT(fInfo_ptr); png_destroy_read_struct((png_struct**)&fPng_ptr, (png_info**)&fInfo_ptr, nullptr); fPng_ptr = nullptr; fInfo_ptr = nullptr; } } /////////////////////////////////////////////////////////////////////////////// // Getting the pixels /////////////////////////////////////////////////////////////////////////////// SkCodec::Result SkPngCodec::initializeXforms(const SkImageInfo& dstInfo, const Options& options) { if (setjmp(PNG_JMPBUF((png_struct*)fPng_ptr))) { SkCodecPrintf("Failed on png_read_update_info.\n"); return kInvalidInput; } png_read_update_info(fPng_ptr, fInfo_ptr); // Reset fSwizzler and this->colorXform(). We can't do this in onRewind() because the // interlaced scanline decoder may need to rewind. fSwizzler.reset(nullptr); // If skcms directly supports the encoded PNG format, we should skip format // conversion in the swizzler (or skip swizzling altogether). bool skipFormatConversion = false; switch (this->getEncodedInfo().color()) { case SkEncodedInfo::kRGB_Color: if (this->getEncodedInfo().bitsPerComponent() != 16) { break; } [[fallthrough]]; case SkEncodedInfo::kRGBA_Color: case SkEncodedInfo::kGray_Color: skipFormatConversion = this->colorXform(); break; default: break; } if (skipFormatConversion && !options.fSubset) { fXformMode = kColorOnly_XformMode; return kSuccess; } if (SkEncodedInfo::kPalette_Color == this->getEncodedInfo().color()) { if (!this->createColorTable(dstInfo)) { return kInvalidInput; } } this->initializeSwizzler(dstInfo, options, skipFormatConversion); return kSuccess; } void SkPngCodec::initializeXformParams() { switch (fXformMode) { case kColorOnly_XformMode: fXformWidth = this->dstInfo().width(); break; case kSwizzleColor_XformMode: fXformWidth = this->swizzler()->swizzleWidth(); break; default: break; } } void SkPngCodec::initializeSwizzler(const SkImageInfo& dstInfo, const Options& options, bool skipFormatConversion) { SkImageInfo swizzlerInfo = dstInfo; Options swizzlerOptions = options; fXformMode = kSwizzleOnly_XformMode; if (this->colorXform() && this->xformOnDecode()) { if (SkEncodedInfo::kGray_Color == this->getEncodedInfo().color()) { swizzlerInfo = swizzlerInfo.makeColorType(kGray_8_SkColorType); } else { swizzlerInfo = swizzlerInfo.makeColorType(kXformSrcColorType); } if (kPremul_SkAlphaType == dstInfo.alphaType()) { swizzlerInfo = swizzlerInfo.makeAlphaType(kUnpremul_SkAlphaType); } fXformMode = kSwizzleColor_XformMode; // Here, we swizzle into temporary memory, which is not zero initialized. // FIXME (msarett): // Is this a problem? swizzlerOptions.fZeroInitialized = kNo_ZeroInitialized; } if (skipFormatConversion) { // We cannot skip format conversion when there is a color table. SkASSERT(!fColorTable); int srcBPP = 0; switch (this->getEncodedInfo().color()) { case SkEncodedInfo::kRGB_Color: SkASSERT(this->getEncodedInfo().bitsPerComponent() == 16); srcBPP = 6; break; case SkEncodedInfo::kRGBA_Color: srcBPP = this->getEncodedInfo().bitsPerComponent() / 2; break; case SkEncodedInfo::kGray_Color: srcBPP = 1; break; default: SkASSERT(false); break; } fSwizzler = SkSwizzler::MakeSimple(srcBPP, swizzlerInfo, swizzlerOptions); } else { const SkPMColor* colors = get_color_ptr(fColorTable.get()); fSwizzler = SkSwizzler::Make(this->getEncodedInfo(), colors, swizzlerInfo, swizzlerOptions); } SkASSERT(fSwizzler); } SkSampler* SkPngCodec::getSampler(bool createIfNecessary) { if (fSwizzler || !createIfNecessary) { return fSwizzler.get(); } this->initializeSwizzler(this->dstInfo(), this->options(), true); return fSwizzler.get(); } bool SkPngCodec::onRewind() { // This sets fPng_ptr and fInfo_ptr to nullptr. If read_header // succeeds, they will be repopulated, and if it fails, they will // remain nullptr. Any future accesses to fPng_ptr and fInfo_ptr will // come through this function which will rewind and again attempt // to reinitialize them. this->destroyReadStruct(); png_structp png_ptr; png_infop info_ptr; if (kSuccess != read_header(this->stream(), fPngChunkReader.get(), nullptr, &png_ptr, &info_ptr)) { return false; } fPng_ptr = png_ptr; fInfo_ptr = info_ptr; fDecodedIdat = false; return true; } SkCodec::Result SkPngCodec::onGetPixels(const SkImageInfo& dstInfo, void* dst, size_t rowBytes, const Options& options, int* rowsDecoded) { Result result = this->initializeXforms(dstInfo, options); if (kSuccess != result) { return result; } if (options.fSubset) { return kUnimplemented; } this->allocateStorage(dstInfo); this->initializeXformParams(); return this->decodeAllRows(dst, rowBytes, rowsDecoded); } SkCodec::Result SkPngCodec::onStartIncrementalDecode(const SkImageInfo& dstInfo, void* dst, size_t rowBytes, const SkCodec::Options& options) { Result result = this->initializeXforms(dstInfo, options); if (kSuccess != result) { return result; } this->allocateStorage(dstInfo); int firstRow, lastRow; if (options.fSubset) { firstRow = options.fSubset->top(); lastRow = options.fSubset->bottom() - 1; } else { firstRow = 0; lastRow = dstInfo.height() - 1; } this->setRange(firstRow, lastRow, dst, rowBytes); return kSuccess; } SkCodec::Result SkPngCodec::onIncrementalDecode(int* rowsDecoded) { // FIXME: Only necessary on the first call. this->initializeXformParams(); return this->decode(rowsDecoded); } std::unique_ptr SkPngCodec::MakeFromStream(std::unique_ptr stream, Result* result, SkPngChunkReader* chunkReader) { SkCodec* outCodec = nullptr; *result = read_header(stream.get(), chunkReader, &outCodec, nullptr, nullptr); if (kSuccess == *result) { // Codec has taken ownership of the stream. SkASSERT(outCodec); stream.release(); } return std::unique_ptr(outCodec); }