/*------------------------------------------------------------------------- * drawElements Quality Program OpenGL ES 3.0 Module * ------------------------------------------------- * * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Shader operators tests. *//*--------------------------------------------------------------------*/ #include "es3fShaderOperatorTests.hpp" #include "glsShaderRenderCase.hpp" #include "gluShaderUtil.hpp" #include "tcuStringTemplate.hpp" #include "tcuVectorUtil.hpp" #include "glwFunctions.hpp" #include "glwEnums.hpp" #include "deStringUtil.hpp" #include "deInt32.h" #include "deMemory.h" #include #include using namespace tcu; using namespace glu; using namespace deqp::gls; using std::map; using std::pair; using std::vector; using std::string; using std::ostringstream; namespace deqp { namespace gles3 { namespace Functional { #if defined(abs) # undef abs #endif using de::min; using de::max; using de::clamp; // \note VS2013 gets confused without these using tcu::asinh; using tcu::acosh; using tcu::atanh; using tcu::exp2; using tcu::log2; using tcu::trunc; inline float abs (float v) { return deFloatAbs(v); } inline bool logicalAnd (bool a, bool b) { return (a && b); } inline bool logicalOr (bool a, bool b) { return (a || b); } inline bool logicalXor (bool a, bool b) { return (a != b); } // \note stdlib.h defines div() that is not compatible with the macros. template inline T div (T a, T b) { return a / b; } template inline T leftShift (T value, int amount) { return value << amount; } inline deUint32 rightShift (deUint32 value, int amount) { return value >> amount; } inline int rightShift (int value, int amount) { return (value >> amount) | (value >= 0 ? 0 : ~(~0U >> amount)); } // \note Arithmetic shift. template Vector leftShift (const Vector& value, const Vector& amount) { Vector result; for (int i = 0; i < Size; i++) result[i] = leftShift(value[i], amount[i]); return result; } template Vector rightShift (const Vector& value, const Vector& amount) { Vector result; for (int i = 0; i < Size; i++) result[i] = rightShift(value[i], amount[i]); return result; } template Vector leftShiftVecScalar (const Vector& value, int amount) { return leftShift(value, Vector(amount)); } template Vector rightShiftVecScalar (const Vector& value, int amount) { return rightShift(value, Vector(amount)); } template inline Vector minVecScalar (const Vector& v, T s) { Vector res; for (int i = 0; i < Size; i++) res[i] = min(v[i], s); return res; } template inline Vector maxVecScalar (const Vector& v, T s) { Vector res; for (int i = 0; i < Size; i++) res[i] = max(v[i], s); return res; } template inline Vector clampVecScalarScalar (const Vector& v, T s0, T s1) { Vector res; for (int i = 0; i < Size; i++) res[i] = clamp(v[i], s0, s1); return res; } template inline Vector mixVecVecScalar (const Vector& v0, const Vector& v1, T s) { Vector res; for (int i = 0; i < Size; i++) res[i] = mix(v0[i], v1[i], s); return res; } template inline Vector stepScalarVec (T s, const Vector& v) { Vector res; for (int i = 0; i < Size; i++) res[i] = step(s, v[i]); return res; } template inline Vector smoothStepScalarScalarVec (T s0, T s1, const Vector& v) { Vector res; for (int i = 0; i < Size; i++) res[i] = smoothStep(s0, s1, v[i]); return res; } inline float addOne (float v) { return v + 1.0f; } inline float subOne (float v) { return v - 1.0f; } inline int addOne (int v) { return v + 1; } inline int subOne (int v) { return v - 1; } inline deUint32 addOne (deUint32 v) { return v + 1; } inline deUint32 subOne (deUint32 v) { return v - 1; } template inline Vector addOne (const Vector& v) { return v + 1.0f; } template inline Vector subOne (const Vector& v) { return v - 1.0f; } template inline Vector addOne (const Vector& v) { return v + 1; } template inline Vector subOne (const Vector& v) { return v - 1; } template inline Vector addOne (const Vector& v) { return v + 1U; } template inline Vector subOne (const Vector& v) { return (v.asInt() - 1).asUint(); } template inline T selection (bool cond, T a, T b) { return cond ? a : b; } // Vec-scalar and scalar-vec binary operators. // \note This one is done separately due to how the overloaded minus operator is implemented for vector-scalar operands. template inline Vector subVecScalar (const Vector& v, deUint32 s) { return (v.asInt() - (int)s).asUint(); } template inline Vector addVecScalar (const Vector& v, T s) { return v + s; } // Specialize add, sub, and mul integer operations to use 64bit to avoid undefined signed integer overflows. inline int add (int a, int b) { return static_cast(static_cast(a) + static_cast(b)); } inline int sub (int a, int b) { return static_cast(static_cast(a) - static_cast(b)); } inline int mul (int a, int b) { return static_cast(static_cast(a) * static_cast(b)); } inline deUint32 add (deUint32 a, deUint32 b) { return a + b; } inline deUint32 sub (deUint32 a, deUint32 b) { return a - b; } inline deUint32 mul (deUint32 a, deUint32 b) { return a * b; } #define DECLARE_IVEC_BINARY_FUNC(OP_NAME) \ template inline Vector OP_NAME (const Vector& a, const Vector& b) \ { \ Vector res; \ for (int i = 0; i < Size; i++) \ res.m_data[i] = OP_NAME(a.m_data[i], b.m_data[i]); \ return res; \ } #define DECLARE_IVEC_INT_BINARY_FUNC(OP_NAME) \ template inline Vector OP_NAME##VecScalar (const Vector& v, int s) \ { \ Vector ret; \ for (int i = 0; i < Size; i++) \ ret[i] = OP_NAME(v.m_data[i], s); \ return ret; \ }; #define DECLARE_INT_IVEC_BINARY_FUNC(OP_NAME) \ template inline Vector OP_NAME##ScalarVec (int s, const Vector& v) \ { \ Vector ret; \ for (int i = 0; i < Size; i++) \ ret[i] = OP_NAME(s, v.m_data[i]); \ return ret; \ }; DECLARE_IVEC_BINARY_FUNC(add) DECLARE_IVEC_BINARY_FUNC(sub) DECLARE_IVEC_BINARY_FUNC(mul) DECLARE_IVEC_INT_BINARY_FUNC(add) DECLARE_IVEC_INT_BINARY_FUNC(sub) DECLARE_IVEC_INT_BINARY_FUNC(mul) DECLARE_INT_IVEC_BINARY_FUNC(add) DECLARE_INT_IVEC_BINARY_FUNC(sub) DECLARE_INT_IVEC_BINARY_FUNC(mul) template inline Vector subVecScalar (const Vector& v, T s) { return v - s; } template inline Vector mulVecScalar (const Vector& v, T s) { return v * s; } template inline Vector divVecScalar (const Vector& v, T s) { return v / s; } template inline Vector modVecScalar (const Vector& v, T s) { return mod(v, Vector(s)); } template inline Vector bitwiseAndVecScalar (const Vector& v, T s) { return bitwiseAnd(v, Vector(s)); } template inline Vector bitwiseOrVecScalar (const Vector& v, T s) { return bitwiseOr(v, Vector(s)); } template inline Vector bitwiseXorVecScalar (const Vector& v, T s) { return bitwiseXor(v, Vector(s)); } template inline Vector addScalarVec (T s, const Vector& v) { return s + v; } template inline Vector subScalarVec (T s, const Vector& v) { return s - v; } template inline Vector mulScalarVec (T s, const Vector& v) { return s * v; } template inline Vector divScalarVec (T s, const Vector& v) { return s / v; } template inline Vector modScalarVec (T s, const Vector& v) { return mod(Vector(s), v); } template inline Vector bitwiseAndScalarVec (T s, const Vector& v) { return bitwiseAnd(Vector(s), v); } template inline Vector bitwiseOrScalarVec (T s, const Vector& v) { return bitwiseOr(Vector(s), v); } template inline Vector bitwiseXorScalarVec (T s, const Vector& v) { return bitwiseXor(Vector(s), v); } // Reference functions for specific sequence operations for the sequence operator tests. // Reference for expression "in0, in2 + in1, in1 + in0" inline Vec4 sequenceNoSideEffCase0 (const Vec4& in0, const Vec4& in1, const Vec4& in2) { DE_UNREF(in2); return in1 + in0; } // Reference for expression "in0, in2 + in1, in1 + in0" inline deUint32 sequenceNoSideEffCase1 (float in0, deUint32 in1, float in2) { DE_UNREF(in0); DE_UNREF(in2); return in1 + in1; } // Reference for expression "in0 && in1, in0, ivec2(vec2(in0) + in2)" inline IVec2 sequenceNoSideEffCase2 (bool in0, bool in1, const Vec2& in2) { DE_UNREF(in1); return IVec2((int)((float)in0 + in2.x()), (int)((float)in0 + in2.y())); } // Reference for expression "in0 + vec4(in1), in2, in1" inline IVec4 sequenceNoSideEffCase3 (const Vec4& in0, const IVec4& in1, const BVec4& in2) { DE_UNREF(in0); DE_UNREF(in2); return in1; } // Reference for expression "in0++, in1 = in0 + in2, in2 = in1" inline Vec4 sequenceSideEffCase0 (const Vec4& in0, const Vec4& in1, const Vec4& in2) { DE_UNREF(in1); return in0 + 1.0f + in2; } // Reference for expression "in1++, in0 = float(in1), in1 = uint(in0 + in2)" inline deUint32 sequenceSideEffCase1 (float in0, deUint32 in1, float in2) { DE_UNREF(in0); return (deUint32)(float(in1) + 1.0f + in2); } // Reference for expression "in1 = in0, in2++, in2 = in2 + vec2(in1), ivec2(in2)" inline IVec2 sequenceSideEffCase2 (bool in0, bool in1, const Vec2& in2) { DE_UNREF(in1); return (in2 + Vec2(1.0f) + Vec2((float)in0)).asInt(); } // Reference for expression "in0 = in0 + vec4(in2), in1 = in1 + ivec4(in0), in1++" inline IVec4 sequenceSideEffCase3 (const Vec4& in0, const IVec4& in1, const BVec4& in2) { return in1 + (in0 + Vec4((float)in2.x(), (float)in2.y(), (float)in2.z(), (float)in2.w())).asInt(); } // ShaderEvalFunc-type wrappers for the above functions. void evalSequenceNoSideEffCase0 (ShaderEvalContext& ctx) { ctx.color = sequenceNoSideEffCase0 (ctx.in[0].swizzle(1, 2, 3, 0), ctx.in[1].swizzle(3, 2, 1, 0), ctx.in[2].swizzle(0, 3, 2, 1)); } void evalSequenceNoSideEffCase1 (ShaderEvalContext& ctx) { ctx.color.x() = (float)sequenceNoSideEffCase1 (ctx.in[0].z(), (deUint32)ctx.in[1].x(), ctx.in[2].y()); } void evalSequenceNoSideEffCase2 (ShaderEvalContext& ctx) { ctx.color.yz() = sequenceNoSideEffCase2 (ctx.in[0].z() > 0.0f, ctx.in[1].x() > 0.0f, ctx.in[2].swizzle(2, 1)).asFloat(); } void evalSequenceNoSideEffCase3 (ShaderEvalContext& ctx) { ctx.color = sequenceNoSideEffCase3 (ctx.in[0].swizzle(1, 2, 3, 0), ctx.in[1].swizzle(3, 2, 1, 0).asInt(), greaterThan(ctx.in[2].swizzle(0, 3, 2, 1), Vec4(0.0f, 0.0f, 0.0f, 0.0f))).asFloat(); } void evalSequenceSideEffCase0 (ShaderEvalContext& ctx) { ctx.color = sequenceSideEffCase0 (ctx.in[0].swizzle(1, 2, 3, 0), ctx.in[1].swizzle(3, 2, 1, 0), ctx.in[2].swizzle(0, 3, 2, 1)); } void evalSequenceSideEffCase1 (ShaderEvalContext& ctx) { ctx.color.x() = (float)sequenceSideEffCase1 (ctx.in[0].z(), (deUint32)ctx.in[1].x(), ctx.in[2].y()); } void evalSequenceSideEffCase2 (ShaderEvalContext& ctx) { ctx.color.yz() = sequenceSideEffCase2 (ctx.in[0].z() > 0.0f, ctx.in[1].x() > 0.0f, ctx.in[2].swizzle(2, 1)).asFloat(); } void evalSequenceSideEffCase3 (ShaderEvalContext& ctx) { ctx.color = sequenceSideEffCase3 (ctx.in[0].swizzle(1, 2, 3, 0), ctx.in[1].swizzle(3, 2, 1, 0).asInt(), greaterThan(ctx.in[2].swizzle(0, 3, 2, 1), Vec4(0.0f, 0.0f, 0.0f, 0.0f))).asFloat(); } static string stringJoin (const vector& elems, const string& delim) { string result; for (int i = 0; i < (int)elems.size(); i++) result += (i > 0 ? delim : "") + elems[i]; return result; } static void stringReplace (string& str, const string& from, const string& to) { size_t start_pos = 0; while ((start_pos = str.find(from, start_pos)) != std::string::npos) { str.replace(start_pos, from.length(), to); start_pos += to.length(); } } static string twoValuedVec4 (const string& first, const string& second, const BVec4& firstMask) { vector elems(4); for (int i = 0; i < 4; i++) elems[i] = firstMask[i] ? first : second; return "vec4(" + stringJoin(elems, ", ") + ")"; } enum { MAX_INPUTS = 3 }; enum PrecisionMask { PRECMASK_NA = 0, //!< Precision not applicable (booleans) PRECMASK_LOWP = (1<((1ull << numBitsInType) - 1); const float maxRepresentableAsFloat = floorf(nextafterf(maxAsFloat, 0)); // Not accurate for integers wider than 24 bits. return numBitsInType > 24 ? maxRepresentableAsFloat : maxAsFloat; } // Float scalar that can be either constant or a symbol that can be evaluated later. class FloatScalar { public: enum Symbol { SYMBOL_LOWP_UINT_MAX = 0, SYMBOL_MEDIUMP_UINT_MAX, SYMBOL_LOWP_UINT_MAX_RECIPROCAL, SYMBOL_MEDIUMP_UINT_MAX_RECIPROCAL, SYMBOL_ONE_MINUS_UINT32MAX_DIV_LOWP_UINT_MAX, SYMBOL_ONE_MINUS_UINT32MAX_DIV_MEDIUMP_UINT_MAX, SYMBOL_LAST }; FloatScalar (float c) : m_isConstant(true), m_value(c) {} FloatScalar (Symbol s) : m_isConstant(false), m_value(s) {} float getValue (const glw::Functions& gl, ShaderType shaderType) const { if (m_isConstant) return m_value.constant; else { switch (m_value.symbol) { case SYMBOL_LOWP_UINT_MAX: return getGLSLUintMaxAsFloat(gl, shaderType, PRECISION_LOWP); case SYMBOL_MEDIUMP_UINT_MAX: return getGLSLUintMaxAsFloat(gl, shaderType, PRECISION_MEDIUMP); case SYMBOL_LOWP_UINT_MAX_RECIPROCAL: return 1.0f / getGLSLUintMaxAsFloat(gl, shaderType, PRECISION_LOWP); case SYMBOL_MEDIUMP_UINT_MAX_RECIPROCAL: return 1.0f / getGLSLUintMaxAsFloat(gl, shaderType, PRECISION_MEDIUMP); case SYMBOL_ONE_MINUS_UINT32MAX_DIV_LOWP_UINT_MAX: return 1.0f - (float)std::numeric_limits::max() / getGLSLUintMaxAsFloat(gl, shaderType, PRECISION_LOWP); case SYMBOL_ONE_MINUS_UINT32MAX_DIV_MEDIUMP_UINT_MAX: return 1.0f - (float)std::numeric_limits::max() / getGLSLUintMaxAsFloat(gl, shaderType, PRECISION_MEDIUMP); default: DE_ASSERT(false); return 0.0f; } } } deUint32 getValueMask (const glw::Functions& gl, ShaderType shaderType) const { if (m_isConstant) return 0; int bits = 0; switch (m_value.symbol) { case SYMBOL_LOWP_UINT_MAX_RECIPROCAL: case SYMBOL_LOWP_UINT_MAX: bits = getGLSLUintBits(gl, shaderType, PRECISION_LOWP); break; case SYMBOL_MEDIUMP_UINT_MAX_RECIPROCAL: case SYMBOL_MEDIUMP_UINT_MAX: bits = getGLSLUintBits(gl, shaderType, PRECISION_MEDIUMP); break; case SYMBOL_ONE_MINUS_UINT32MAX_DIV_LOWP_UINT_MAX: case SYMBOL_ONE_MINUS_UINT32MAX_DIV_MEDIUMP_UINT_MAX: return 0; default: DE_ASSERT(false); return 0; } return bits == 32 ? 0 : (1u << bits) - 1; } private: bool m_isConstant; union ConstantOrSymbol { float constant; Symbol symbol; ConstantOrSymbol (float c) : constant (c) {} ConstantOrSymbol (Symbol s) : symbol (s) {} } m_value; }; struct Value { Value (ValueType valueType_, const FloatScalar& rangeMin_, const FloatScalar& rangeMax_) : valueType (valueType_) , rangeMin (rangeMin_) , rangeMax (rangeMax_) { } ValueType valueType; FloatScalar rangeMin; FloatScalar rangeMax; }; enum OperationType { FUNCTION = 0, OPERATOR, SIDE_EFFECT_OPERATOR // Test the side-effect (as opposed to the result) of a side-effect operator. }; struct BuiltinFuncInfo { BuiltinFuncInfo (const char* caseName_, const char* shaderFuncName_, ValueType outValue_, Value input0_, Value input1_, Value input2_, const FloatScalar& resultScale_, const FloatScalar& resultBias_, deUint32 precisionMask_, ShaderEvalFunc evalFuncScalar_, ShaderEvalFunc evalFuncVec2_, ShaderEvalFunc evalFuncVec3_, ShaderEvalFunc evalFuncVec4_, OperationType type_=FUNCTION, bool isUnaryPrefix_=true) : caseName (caseName_) , shaderFuncName (shaderFuncName_) , outValue (outValue_) , input0 (input0_) , input1 (input1_) , input2 (input2_) , resultScale (resultScale_) , resultBias (resultBias_) , referenceScale (resultScale_) , referenceBias (resultBias_) , precisionMask (precisionMask_) , evalFuncScalar (evalFuncScalar_) , evalFuncVec2 (evalFuncVec2_) , evalFuncVec3 (evalFuncVec3_) , evalFuncVec4 (evalFuncVec4_) , type (type_) , isUnaryPrefix (isUnaryPrefix_) { } BuiltinFuncInfo (const char* caseName_, const char* shaderFuncName_, ValueType outValue_, Value input0_, Value input1_, Value input2_, const FloatScalar& resultScale_, const FloatScalar& resultBias_, const FloatScalar& referenceScale_, const FloatScalar& referenceBias_, deUint32 precisionMask_, ShaderEvalFunc evalFuncScalar_, ShaderEvalFunc evalFuncVec2_, ShaderEvalFunc evalFuncVec3_, ShaderEvalFunc evalFuncVec4_, OperationType type_=FUNCTION, bool isUnaryPrefix_=true) : caseName (caseName_) , shaderFuncName (shaderFuncName_) , outValue (outValue_) , input0 (input0_) , input1 (input1_) , input2 (input2_) , resultScale (resultScale_) , resultBias (resultBias_) , referenceScale (referenceScale_) , referenceBias (referenceBias_) , precisionMask (precisionMask_) , evalFuncScalar (evalFuncScalar_) , evalFuncVec2 (evalFuncVec2_) , evalFuncVec3 (evalFuncVec3_) , evalFuncVec4 (evalFuncVec4_) , type (type_) , isUnaryPrefix (isUnaryPrefix_) { } const char* caseName; //!< Name of case. const char* shaderFuncName; //!< Name in shading language. ValueType outValue; Value input0; Value input1; Value input2; FloatScalar resultScale; FloatScalar resultBias; FloatScalar referenceScale; FloatScalar referenceBias; deUint32 precisionMask; ShaderEvalFunc evalFuncScalar; ShaderEvalFunc evalFuncVec2; ShaderEvalFunc evalFuncVec3; ShaderEvalFunc evalFuncVec4; OperationType type; bool isUnaryPrefix; //!< Whether a unary operator is a prefix operator; redundant unless unary. }; static inline BuiltinFuncInfo BuiltinOperInfo (const char* caseName_, const char* shaderFuncName_, ValueType outValue_, Value input0_, Value input1_, Value input2_, const FloatScalar& resultScale_, const FloatScalar& resultBias_, deUint32 precisionMask_, ShaderEvalFunc evalFuncScalar_, ShaderEvalFunc evalFuncVec2_, ShaderEvalFunc evalFuncVec3_, ShaderEvalFunc evalFuncVec4_) { return BuiltinFuncInfo(caseName_, shaderFuncName_, outValue_, input0_, input1_, input2_, resultScale_, resultBias_, resultScale_, resultBias_, precisionMask_, evalFuncScalar_, evalFuncVec2_, evalFuncVec3_, evalFuncVec4_, OPERATOR); } static inline BuiltinFuncInfo BuiltinOperInfoSeparateRefScaleBias (const char* caseName_, const char* shaderFuncName_, ValueType outValue_, Value input0_, Value input1_, Value input2_, const FloatScalar& resultScale_, const FloatScalar& resultBias_, deUint32 precisionMask_, ShaderEvalFunc evalFuncScalar_, ShaderEvalFunc evalFuncVec2_, ShaderEvalFunc evalFuncVec3_, ShaderEvalFunc evalFuncVec4_, const FloatScalar& referenceScale_, const FloatScalar& referenceBias_) { return BuiltinFuncInfo(caseName_, shaderFuncName_, outValue_, input0_, input1_, input2_, resultScale_, resultBias_, referenceScale_, referenceBias_, precisionMask_, evalFuncScalar_, evalFuncVec2_, evalFuncVec3_, evalFuncVec4_, OPERATOR); } // For postfix (unary) operators. static inline BuiltinFuncInfo BuiltinPostOperInfo (const char* caseName_, const char* shaderFuncName_, ValueType outValue_, Value input0_, Value input1_, Value input2_, const FloatScalar& resultScale_, const FloatScalar& resultBias_, deUint32 precisionMask_, ShaderEvalFunc evalFuncScalar_, ShaderEvalFunc evalFuncVec2_, ShaderEvalFunc evalFuncVec3_, ShaderEvalFunc evalFuncVec4_) { return BuiltinFuncInfo(caseName_, shaderFuncName_, outValue_, input0_, input1_, input2_, resultScale_, resultBias_, resultScale_, resultBias_, precisionMask_, evalFuncScalar_, evalFuncVec2_, evalFuncVec3_, evalFuncVec4_, OPERATOR, false); } static inline BuiltinFuncInfo BuiltinSideEffOperInfo (const char* caseName_, const char* shaderFuncName_, ValueType outValue_, Value input0_, Value input1_, Value input2_, const FloatScalar& resultScale_, const FloatScalar& resultBias_, deUint32 precisionMask_, ShaderEvalFunc evalFuncScalar_, ShaderEvalFunc evalFuncVec2_, ShaderEvalFunc evalFuncVec3_, ShaderEvalFunc evalFuncVec4_) { return BuiltinFuncInfo(caseName_, shaderFuncName_, outValue_, input0_, input1_, input2_, resultScale_, resultBias_, resultScale_, resultBias_, precisionMask_, evalFuncScalar_, evalFuncVec2_, evalFuncVec3_, evalFuncVec4_, SIDE_EFFECT_OPERATOR); } // For postfix (unary) operators, testing side-effect. static inline BuiltinFuncInfo BuiltinPostSideEffOperInfo (const char* caseName_, const char* shaderFuncName_, ValueType outValue_, Value input0_, Value input1_, Value input2_, const FloatScalar& resultScale_, const FloatScalar& resultBias_, deUint32 precisionMask_, ShaderEvalFunc evalFuncScalar_, ShaderEvalFunc evalFuncVec2_, ShaderEvalFunc evalFuncVec3_, ShaderEvalFunc evalFuncVec4_) { return BuiltinFuncInfo(caseName_, shaderFuncName_, outValue_, input0_, input1_, input2_, resultScale_, resultBias_, resultScale_, resultBias_, precisionMask_, evalFuncScalar_, evalFuncVec2_, evalFuncVec3_, evalFuncVec4_, SIDE_EFFECT_OPERATOR, false); } // BuiltinFuncGroup struct BuiltinFuncGroup { BuiltinFuncGroup (const char* name_, const char* description_) : name(name_), description(description_) {} BuiltinFuncGroup& operator<< (const BuiltinFuncInfo& info) { funcInfos.push_back(info); return *this; } const char* name; const char* description; std::vector funcInfos; }; static const char* s_inSwizzles[MAX_INPUTS][4] = { { "z", "wy", "zxy", "yzwx" }, { "x", "yx", "yzx", "wzyx" }, { "y", "zy", "wyz", "xwzy" } }; static const char* s_outSwizzles[] = { "x", "yz", "xyz", "xyzw" }; static const BVec4 s_outSwizzleChannelMasks[] = { BVec4(true, false, false, false), BVec4(false, true, true, false), BVec4(true, true, true, false), BVec4(true, true, true, true ) }; // OperatorShaderEvaluator class OperatorShaderEvaluator : public ShaderEvaluator { public: OperatorShaderEvaluator (const glw::Functions& gl, ShaderType shaderType, ShaderEvalFunc evalFunc, const FloatScalar& scale, const FloatScalar& bias, int resultScalarSize) : m_gl (gl) , m_shaderType (shaderType) , m_evalFunc (evalFunc) , m_scale (scale) , m_bias (bias) , m_resultScalarSize (resultScalarSize) , m_areScaleAndBiasEvaluated (false) , m_evaluatedScale (-1.0f) , m_evaluatedBias (-1.0f) { DE_ASSERT(de::inRange(resultScalarSize, 1, 4)); } virtual ~OperatorShaderEvaluator (void) { } virtual void evaluate (ShaderEvalContext& ctx) { m_evalFunc(ctx); if (!m_areScaleAndBiasEvaluated) { m_evaluatedScale = m_scale.getValue(m_gl, m_shaderType); m_evaluatedBias = m_bias.getValue(m_gl, m_shaderType); m_areScaleAndBiasEvaluated = true; } for (int i = 0; i < 4; i++) if (s_outSwizzleChannelMasks[m_resultScalarSize-1][i]) ctx.color[i] = ctx.color[i] * m_evaluatedScale + m_evaluatedBias; } private: const glw::Functions& m_gl; ShaderType m_shaderType; ShaderEvalFunc m_evalFunc; FloatScalar m_scale; FloatScalar m_bias; int m_resultScalarSize; bool m_areScaleAndBiasEvaluated; float m_evaluatedScale; float m_evaluatedBias; }; // Concrete value. struct ShaderValue { ShaderValue (DataType type_, const FloatScalar& rangeMin_, const FloatScalar& rangeMax_) : type (type_) , rangeMin (rangeMin_) , rangeMax (rangeMax_) { } ShaderValue (void) : type (TYPE_LAST) , rangeMin (0.0f) , rangeMax (0.0f) { } DataType type; FloatScalar rangeMin; FloatScalar rangeMax; }; struct ShaderDataSpec { ShaderDataSpec (void) : resultScale (1.0f) , resultBias (0.0f) , referenceScale (1.0f) , referenceBias (0.0f) , precision (PRECISION_LAST) , output (TYPE_LAST) , numInputs (0) { } FloatScalar resultScale; FloatScalar resultBias; FloatScalar referenceScale; FloatScalar referenceBias; Precision precision; DataType output; int numInputs; ShaderValue inputs[MAX_INPUTS]; }; // ShaderOperatorCase class ShaderOperatorCase : public ShaderRenderCase { public: ShaderOperatorCase (Context& context, const char* caseName, const char* description, bool isVertexCase, ShaderEvalFunc evalFunc, const string& shaderOp, const ShaderDataSpec& spec); virtual ~ShaderOperatorCase (void); protected: void setupShaderData (void); private: ShaderOperatorCase (const ShaderOperatorCase&); // not allowed! ShaderOperatorCase& operator= (const ShaderOperatorCase&); // not allowed! ShaderDataSpec m_spec; string m_shaderOp; OperatorShaderEvaluator m_evaluator; }; ShaderOperatorCase::ShaderOperatorCase (Context& context, const char* caseName, const char* description, bool isVertexCase, ShaderEvalFunc evalFunc, const string& shaderOp, const ShaderDataSpec& spec) : ShaderRenderCase (context.getTestContext(), context.getRenderContext(), context.getContextInfo(), caseName, description, isVertexCase, m_evaluator) , m_spec (spec) , m_shaderOp (shaderOp) , m_evaluator (m_renderCtx.getFunctions(), isVertexCase ? SHADERTYPE_VERTEX : SHADERTYPE_FRAGMENT, evalFunc, spec.referenceScale, spec.referenceBias, getDataTypeScalarSize(spec.output)) { } void ShaderOperatorCase::setupShaderData (void) { ShaderType shaderType = m_isVertexCase ? SHADERTYPE_VERTEX : SHADERTYPE_FRAGMENT; const char* precision = m_spec.precision != PRECISION_LAST ? getPrecisionName(m_spec.precision) : DE_NULL; const char* inputPrecision[MAX_INPUTS]; ostringstream vtx; ostringstream frag; ostringstream& op = m_isVertexCase ? vtx : frag; vtx << "#version 300 es\n"; frag << "#version 300 es\n"; // Compute precision for inputs. for (int i = 0; i < m_spec.numInputs; i++) { bool isBoolVal = de::inRange(m_spec.inputs[i].type, TYPE_BOOL, TYPE_BOOL_VEC4); bool isIntVal = de::inRange(m_spec.inputs[i].type, TYPE_INT, TYPE_INT_VEC4); bool isUintVal = de::inRange(m_spec.inputs[i].type, TYPE_UINT, TYPE_UINT_VEC4); // \note Mediump interpolators are used for booleans, and highp for integers. Precision prec = isBoolVal ? PRECISION_MEDIUMP : isIntVal || isUintVal ? PRECISION_HIGHP : m_spec.precision; inputPrecision[i] = getPrecisionName(prec); } // Attributes. vtx << "in highp vec4 a_position;\n"; for (int i = 0; i < m_spec.numInputs; i++) vtx << "in " << inputPrecision[i] << " vec4 a_in" << i << ";\n"; // Color output. frag << "layout(location = 0) out mediump vec4 o_color;\n"; if (m_isVertexCase) { vtx << "out mediump vec4 v_color;\n"; frag << "in mediump vec4 v_color;\n"; } else { for (int i = 0; i < m_spec.numInputs; i++) { vtx << "out " << inputPrecision[i] << " vec4 v_in" << i << ";\n"; frag << "in " << inputPrecision[i] << " vec4 v_in" << i << ";\n"; } } vtx << "\n"; vtx << "void main()\n"; vtx << "{\n"; vtx << " gl_Position = a_position;\n"; frag << "\n"; frag << "void main()\n"; frag << "{\n"; bool isResFloatVec = de::inRange(m_spec.output, TYPE_FLOAT, TYPE_FLOAT_VEC4); bool isResBoolVec = de::inRange(m_spec.output, TYPE_BOOL, TYPE_BOOL_VEC4); bool hasReference = !isResFloatVec && !isResBoolVec && (m_spec.precision == PRECISION_LOWP || m_spec.precision == PRECISION_MEDIUMP); string refShaderOp = m_shaderOp; // Expression inputs. string prefix = m_isVertexCase ? "a_" : "v_"; for (int i = 0; i < m_spec.numInputs; i++) { DataType inType = m_spec.inputs[i].type; int inSize = getDataTypeScalarSize(inType); bool isBool = de::inRange(inType, TYPE_BOOL, TYPE_BOOL_VEC4); bool isInt = de::inRange(inType, TYPE_INT, TYPE_INT_VEC4); bool isUint = de::inRange(inType, TYPE_UINT, TYPE_UINT_VEC4); const char* typeName = getDataTypeName(inType); const char* swizzle = s_inSwizzles[i][inSize-1]; bool hasReferenceIn = hasReference && !isBool; // For int/uint types, generate: // // highp type highp_inN = ...; // precision type inN = highp_inN; // // inN_high will be used later for reference checking. // // For other types, generate: // // precision type inN = ...; // op << "\t"; if (precision && !isBool) { if (hasReferenceIn) op << "highp "; else op << precision << " "; } op << typeName << " "; if (hasReferenceIn) op << "highp_"; op << "in" << i << " = "; if (isBool) { if (inSize == 1) op << "("; else op << "greaterThan("; } else if (isInt || isUint) op << typeName << "("; op << prefix << "in" << i << "." << swizzle; if (isBool) { if (inSize == 1) op << " > 0.0)"; else op << ", vec" << inSize << "(0.0))"; } else if (isInt || isUint) op << ")"; op << ";\n"; if (hasReferenceIn) { op << "\t" << precision << " " << typeName << " in" << i << " = highp_in" << i << ";\n"; string inputName = "in" + string(1, static_cast('0' + i)); stringReplace(refShaderOp, inputName, "highp_" + inputName); } } // Result variable. { const char* outTypeName = getDataTypeName(m_spec.output); bool isBoolOut = de::inRange(m_spec.output, TYPE_BOOL, TYPE_BOOL_VEC4); op << "\t"; if (precision && !isBoolOut) op << precision << " "; op << outTypeName << " res = " << outTypeName << "(0.0);\n"; if (hasReference) { op << "\thighp " << outTypeName << " ref = " << outTypeName << "(0.0);\n"; } op << "\n"; } // Expression. op << "\t" << m_shaderOp << "\n"; if (hasReference) { stringReplace(refShaderOp, "res", "ref"); op << "\t" << refShaderOp << "\n"; } op << "\n"; // Implementations may use more bits than advertised. Assume an implementation advertising 16 // bits for mediump, but actually using 24 bits for a particular operation. We have: // // highp ref = expr; // mediump res = expr; // // We expect res&0xFFFF to be correct, because that ensures that _at least_ 16 bits were // provided. However, we also need to make sure that if there is anything in the upper 16 bits // of res, that those bits match with ref. In short, we expect to see the following bits // (assume the advertised number of bits is N, and the actual calculation is done in M bits): // // ref = a31 ... aM aM-1 ... aN aN-1 ... a0 // res = 0 ... 0 bM-1 ... bN bN-1 ... b0 // // The test verifies that bN-1 ... b0 is correct based on the shader output. We additionally // want to make sure that: // // - bM-1 ... bN is identical to aM-1 ... aN // - bits above bM-1 are zero. // // This is done as follows: // // diff = res ^ ref --> should produce a31 ... aM 0 ... 0 // diff == 0: accept res // diff != 0: // lsb = log2((~diff + 1u) & diff) --> log2(0 .. 0 1 0 ...0) // == findLSB(diff) // // outOfRangeMask = 0xFFFFFFFF << lsb --> 1 ... 1 0 ... 0 // // (res & outOfRangeMask) == 0: accept res // // Note that (diff & ~outOfRangeMask) == 0 necessarily holds, because outOfRangeMask has 1s // starting from the first bit that differs between res and ref, which means that res and ref // are identical in those bits. int outScalarSize = getDataTypeScalarSize(m_spec.output); string floatType = ""; if (!isResFloatVec) { if (outScalarSize == 1) floatType = "float"; else floatType = "vec" + string(1, static_cast('0' + outScalarSize)); } if (hasReference) { bool isInt = de::inRange(m_spec.output, TYPE_INT, TYPE_INT_VEC4); const char* outTypeName = getDataTypeName(m_spec.output); const char* outBasicTypeName = getDataTypeName(isInt ? TYPE_INT : TYPE_UINT); deUint32 resultMask = m_spec.resultScale.getValueMask(m_renderCtx.getFunctions(), shaderType); op << "\thighp " << outTypeName << " diff = res ^ ref;\n"; op << "\tdiff = (~diff + " << outTypeName << "(1)) & diff;\n"; op << "\thighp " << outTypeName << " lsb = " << outTypeName << "(32);\n"; op << "\thighp " << outTypeName << " outOfRangeMask = " << outTypeName << "(0);\n"; if (outScalarSize == 1) { op << "\tif (diff != " << outTypeName << "(0))\n\t{\n"; op << "\t\tlsb = " << outTypeName << "(log2(" << floatType << "(diff)));\n"; op << "\t\toutOfRangeMask = " << outTypeName << "(0xFFFFFFFF) << lsb;\n"; op << "\t}\n"; } else { op << "\tbvec" << outScalarSize << " isDiffZero = equal(diff, " << outTypeName << "(0));\n"; op << "\thighp " << outTypeName << " lsbUnsantized = " << outTypeName << "(log2(vec" << outScalarSize << "((~diff + " << outTypeName << "(1)) & diff)));\n"; for (int channel = 0; channel < outScalarSize; ++channel) { op << "\tif (!isDiffZero[" << channel << "])\n\t{\n"; op << "\t\tlsb[" << channel << "] = lsbUnsantized[" << channel << "];\n"; op << "\t\toutOfRangeMask[" << channel << "] = " << outBasicTypeName << "(0xFFFFFFFF) << lsb[" << channel << "];\n"; op << "\t}\n"; } } op << "\thighp " << outTypeName << " outOfRangeRes = res & outOfRangeMask;\n"; op << "\tif (outOfRangeRes != " << outTypeName << "(0)) res = " << outTypeName << "(0);\n"; if (resultMask != 0) op << "\tres &= " << outTypeName << "(" << resultMask << ");\n"; op << "\n"; } // Convert to color. op << "\thighp vec4 color = vec4(0.0, 0.0, 0.0, 1.0);\n"; op << "\tcolor." << s_outSwizzles[outScalarSize-1] << " = " << floatType << "(res);\n"; // Scale & bias. float resultScale = m_spec.resultScale.getValue(m_renderCtx.getFunctions(), shaderType); float resultBias = m_spec.resultBias.getValue(m_renderCtx.getFunctions(), shaderType); if ((resultScale != 1.0f) || (resultBias != 0.0f)) { op << "\tcolor = color"; if (resultScale != 1.0f) op << " * " << twoValuedVec4(de::toString(resultScale), "1.0", s_outSwizzleChannelMasks[outScalarSize-1]); if (resultBias != 0.0f) op << " + " << twoValuedVec4(de::floatToString(resultBias, 2), "0.0", s_outSwizzleChannelMasks[outScalarSize-1]); op << ";\n"; } // .. if (m_isVertexCase) { vtx << " v_color = color;\n"; frag << " o_color = v_color;\n"; } else { for (int i = 0; i < m_spec.numInputs; i++) vtx << " v_in" << i << " = a_in" << i << ";\n"; frag << " o_color = color;\n"; } vtx << "}\n"; frag << "}\n"; m_vertShaderSource = vtx.str(); m_fragShaderSource = frag.str(); // Setup the user attributes. m_userAttribTransforms.resize(m_spec.numInputs); for (int inputNdx = 0; inputNdx < m_spec.numInputs; inputNdx++) { const ShaderValue& v = m_spec.inputs[inputNdx]; DE_ASSERT(v.type != TYPE_LAST); float rangeMin = v.rangeMin.getValue(m_renderCtx.getFunctions(), shaderType); float rangeMax = v.rangeMax.getValue(m_renderCtx.getFunctions(), shaderType); float scale = rangeMax - rangeMin; float minBias = rangeMin; float maxBias = rangeMax; Mat4 attribMatrix; for (int rowNdx = 0; rowNdx < 4; rowNdx++) { Vec4 row; switch ((rowNdx + inputNdx) % 4) { case 0: row = Vec4(scale, 0.0f, 0.0f, minBias); break; case 1: row = Vec4(0.0f, scale, 0.0f, minBias); break; case 2: row = Vec4(-scale, 0.0f, 0.0f, maxBias); break; case 3: row = Vec4(0.0f, -scale, 0.0f, maxBias); break; default: DE_ASSERT(false); } attribMatrix.setRow(rowNdx, row); } m_userAttribTransforms[inputNdx] = attribMatrix; } } ShaderOperatorCase::~ShaderOperatorCase (void) { } // ShaderOperatorTests. ShaderOperatorTests::ShaderOperatorTests(Context& context) : TestCaseGroup(context, "operator", "Operator tests.") { } ShaderOperatorTests::~ShaderOperatorTests (void) { } // Vector math functions. template inline T nop (T f) { return f; } template Vector nop (const Vector& v) { return v; } #define DECLARE_UNARY_GENTYPE_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_float (ShaderEvalContext& c) { c.color.x() = FUNC_NAME(c.in[0].swizzle(2)).x(); } \ void eval_##FUNC_NAME##_vec2 (ShaderEvalContext& c) { c.color.yz() = FUNC_NAME(c.in[0].swizzle(3, 1)); } \ void eval_##FUNC_NAME##_vec3 (ShaderEvalContext& c) { c.color.xyz() = FUNC_NAME(c.in[0].swizzle(2, 0, 1)); } \ void eval_##FUNC_NAME##_vec4 (ShaderEvalContext& c) { c.color = FUNC_NAME(c.in[0].swizzle(1, 2, 3, 0)); } #define DECLARE_BINARY_GENTYPE_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_float (ShaderEvalContext& c) { c.color.x() = FUNC_NAME(c.in[0].swizzle(2), c.in[1].swizzle(0)).x(); } \ void eval_##FUNC_NAME##_vec2 (ShaderEvalContext& c) { c.color.yz() = FUNC_NAME(c.in[0].swizzle(3, 1), c.in[1].swizzle(1, 0)); } \ void eval_##FUNC_NAME##_vec3 (ShaderEvalContext& c) { c.color.xyz() = FUNC_NAME(c.in[0].swizzle(2, 0, 1), c.in[1].swizzle(1, 2, 0)); } \ void eval_##FUNC_NAME##_vec4 (ShaderEvalContext& c) { c.color = FUNC_NAME(c.in[0].swizzle(1, 2, 3, 0), c.in[1].swizzle(3, 2, 1, 0)); } #define DECLARE_TERNARY_GENTYPE_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_float (ShaderEvalContext& c) { c.color.x() = FUNC_NAME(c.in[0].swizzle(2), c.in[1].swizzle(0), c.in[2].swizzle(1)).x(); } \ void eval_##FUNC_NAME##_vec2 (ShaderEvalContext& c) { c.color.yz() = FUNC_NAME(c.in[0].swizzle(3, 1), c.in[1].swizzle(1, 0), c.in[2].swizzle(2, 1)); } \ void eval_##FUNC_NAME##_vec3 (ShaderEvalContext& c) { c.color.xyz() = FUNC_NAME(c.in[0].swizzle(2, 0, 1), c.in[1].swizzle(1, 2, 0), c.in[2].swizzle(3, 1, 2)); } \ void eval_##FUNC_NAME##_vec4 (ShaderEvalContext& c) { c.color = FUNC_NAME(c.in[0].swizzle(1, 2, 3, 0), c.in[1].swizzle(3, 2, 1, 0), c.in[2].swizzle(0, 3, 2, 1)); } #define DECLARE_UNARY_SCALAR_GENTYPE_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_float (ShaderEvalContext& c) { c.color.x() = FUNC_NAME(c.in[0].swizzle(2)); } \ void eval_##FUNC_NAME##_vec2 (ShaderEvalContext& c) { c.color.x() = FUNC_NAME(c.in[0].swizzle(3, 1)); } \ void eval_##FUNC_NAME##_vec3 (ShaderEvalContext& c) { c.color.x() = FUNC_NAME(c.in[0].swizzle(2, 0, 1)); } \ void eval_##FUNC_NAME##_vec4 (ShaderEvalContext& c) { c.color.x() = FUNC_NAME(c.in[0].swizzle(1, 2, 3, 0)); } #define DECLARE_BINARY_SCALAR_GENTYPE_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_float (ShaderEvalContext& c) { c.color.x() = FUNC_NAME(c.in[0].swizzle(2), c.in[1].swizzle(0)); } \ void eval_##FUNC_NAME##_vec2 (ShaderEvalContext& c) { c.color.x() = FUNC_NAME(c.in[0].swizzle(3, 1), c.in[1].swizzle(1, 0)); } \ void eval_##FUNC_NAME##_vec3 (ShaderEvalContext& c) { c.color.x() = FUNC_NAME(c.in[0].swizzle(2, 0, 1), c.in[1].swizzle(1, 2, 0)); } \ void eval_##FUNC_NAME##_vec4 (ShaderEvalContext& c) { c.color.x() = FUNC_NAME(c.in[0].swizzle(1, 2, 3, 0), c.in[1].swizzle(3, 2, 1, 0)); } #define DECLARE_BINARY_BOOL_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_bool (ShaderEvalContext& c) { c.color.x() = (float)FUNC_NAME(c.in[0].z() > 0.0f, c.in[1].x() > 0.0f); } #define DECLARE_UNARY_BOOL_GENTYPE_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_bool (ShaderEvalContext& c) { c.color.x() = (float)FUNC_NAME(c.in[0].z() > 0.0f); } \ void eval_##FUNC_NAME##_bvec2 (ShaderEvalContext& c) { c.color.yz() = FUNC_NAME(greaterThan(c.in[0].swizzle(3, 1), Vec2(0.0f))).asFloat(); } \ void eval_##FUNC_NAME##_bvec3 (ShaderEvalContext& c) { c.color.xyz() = FUNC_NAME(greaterThan(c.in[0].swizzle(2, 0, 1), Vec3(0.0f))).asFloat(); } \ void eval_##FUNC_NAME##_bvec4 (ShaderEvalContext& c) { c.color = FUNC_NAME(greaterThan(c.in[0].swizzle(1, 2, 3, 0), Vec4(0.0f))).asFloat(); } #define DECLARE_TERNARY_BOOL_GENTYPE_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_bool (ShaderEvalContext& c) { c.color.x() = (float)FUNC_NAME(c.in[0].z() > 0.0f, c.in[1].x() > 0.0f, c.in[2].y() > 0.0f); } \ void eval_##FUNC_NAME##_bvec2 (ShaderEvalContext& c) { c.color.yz() = FUNC_NAME(greaterThan(c.in[0].swizzle(3, 1), Vec2(0.0f)), greaterThan(c.in[1].swizzle(1, 0), Vec2(0.0f)), greaterThan(c.in[2].swizzle(2, 1), Vec2(0.0f))).asFloat(); } \ void eval_##FUNC_NAME##_bvec3 (ShaderEvalContext& c) { c.color.xyz() = FUNC_NAME(greaterThan(c.in[0].swizzle(2, 0, 1), Vec3(0.0f)), greaterThan(c.in[1].swizzle(1, 2, 0), Vec3(0.0f)), greaterThan(c.in[2].swizzle(3, 1, 2), Vec3(0.0f))).asFloat(); } \ void eval_##FUNC_NAME##_bvec4 (ShaderEvalContext& c) { c.color = FUNC_NAME(greaterThan(c.in[0].swizzle(1, 2, 3, 0), Vec4(0.0f)), greaterThan(c.in[1].swizzle(3, 2, 1, 0), Vec4(0.0f)), greaterThan(c.in[2].swizzle(0, 3, 2, 1), Vec4(0.0f))).asFloat(); } #define DECLARE_UNARY_INT_GENTYPE_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_int (ShaderEvalContext& c) { c.color.x() = (float)FUNC_NAME((int)c.in[0].z()); } \ void eval_##FUNC_NAME##_ivec2 (ShaderEvalContext& c) { c.color.yz() = FUNC_NAME(c.in[0].swizzle(3, 1).asInt()).asFloat(); } \ void eval_##FUNC_NAME##_ivec3 (ShaderEvalContext& c) { c.color.xyz() = FUNC_NAME(c.in[0].swizzle(2, 0, 1).asInt()).asFloat(); } \ void eval_##FUNC_NAME##_ivec4 (ShaderEvalContext& c) { c.color = FUNC_NAME(c.in[0].swizzle(1, 2, 3, 0).asInt()).asFloat(); } #define DECLARE_BINARY_INT_GENTYPE_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_int (ShaderEvalContext& c) { c.color.x() = (float)FUNC_NAME((int)c.in[0].z(), (int)c.in[1].x()); } \ void eval_##FUNC_NAME##_ivec2 (ShaderEvalContext& c) { c.color.yz() = FUNC_NAME(c.in[0].swizzle(3, 1).asInt(), c.in[1].swizzle(1, 0).asInt()).asFloat(); } \ void eval_##FUNC_NAME##_ivec3 (ShaderEvalContext& c) { c.color.xyz() = FUNC_NAME(c.in[0].swizzle(2, 0, 1).asInt(), c.in[1].swizzle(1, 2, 0).asInt()).asFloat(); } \ void eval_##FUNC_NAME##_ivec4 (ShaderEvalContext& c) { c.color = FUNC_NAME(c.in[0].swizzle(1, 2, 3, 0).asInt(), c.in[1].swizzle(3, 2, 1, 0).asInt()).asFloat(); } #define DECLARE_UNARY_UINT_GENTYPE_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_uint (ShaderEvalContext& c) { c.color.x() = (float)FUNC_NAME((deUint32)c.in[0].z()); } \ void eval_##FUNC_NAME##_uvec2 (ShaderEvalContext& c) { c.color.yz() = FUNC_NAME(c.in[0].swizzle(3, 1).asUint()).asFloat(); } \ void eval_##FUNC_NAME##_uvec3 (ShaderEvalContext& c) { c.color.xyz() = FUNC_NAME(c.in[0].swizzle(2, 0, 1).asUint()).asFloat(); } \ void eval_##FUNC_NAME##_uvec4 (ShaderEvalContext& c) { c.color = FUNC_NAME(c.in[0].swizzle(1, 2, 3, 0).asUint()).asFloat(); } #define DECLARE_BINARY_UINT_GENTYPE_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_uint (ShaderEvalContext& c) { c.color.x() = (float)FUNC_NAME((deUint32)c.in[0].z(), (deUint32)c.in[1].x()); } \ void eval_##FUNC_NAME##_uvec2 (ShaderEvalContext& c) { c.color.yz() = FUNC_NAME(c.in[0].swizzle(3, 1).asUint(), c.in[1].swizzle(1, 0).asUint()).asFloat(); } \ void eval_##FUNC_NAME##_uvec3 (ShaderEvalContext& c) { c.color.xyz() = FUNC_NAME(c.in[0].swizzle(2, 0, 1).asUint(), c.in[1].swizzle(1, 2, 0).asUint()).asFloat(); } \ void eval_##FUNC_NAME##_uvec4 (ShaderEvalContext& c) { c.color = FUNC_NAME(c.in[0].swizzle(1, 2, 3, 0).asUint(), c.in[1].swizzle(3, 2, 1, 0).asUint()).asFloat(); } #define DECLARE_TERNARY_INT_GENTYPE_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_int (ShaderEvalContext& c) { c.color.x() = (float)FUNC_NAME((int)c.in[0].z(), (int)c.in[1].x(), (int)c.in[2].y()); } \ void eval_##FUNC_NAME##_ivec2 (ShaderEvalContext& c) { c.color.yz() = FUNC_NAME(c.in[0].swizzle(3, 1).asInt(), c.in[1].swizzle(1, 0).asInt(), c.in[2].swizzle(2, 1).asInt()).asFloat(); } \ void eval_##FUNC_NAME##_ivec3 (ShaderEvalContext& c) { c.color.xyz() = FUNC_NAME(c.in[0].swizzle(2, 0, 1).asInt(), c.in[1].swizzle(1, 2, 0).asInt(), c.in[2].swizzle(3, 1, 2).asInt()).asFloat(); } \ void eval_##FUNC_NAME##_ivec4 (ShaderEvalContext& c) { c.color = FUNC_NAME(c.in[0].swizzle(1, 2, 3, 0).asInt(), c.in[1].swizzle(3, 2, 1, 0).asInt(), c.in[2].swizzle(0, 3, 2, 1).asInt()).asFloat(); } #define DECLARE_TERNARY_UINT_GENTYPE_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_uint (ShaderEvalContext& c) { c.color.x() = (float)FUNC_NAME((deUint32)c.in[0].z(), (deUint32)c.in[1].x(), (deUint32)c.in[2].y()); } \ void eval_##FUNC_NAME##_uvec2 (ShaderEvalContext& c) { c.color.yz() = FUNC_NAME(c.in[0].swizzle(3, 1).asUint(), c.in[1].swizzle(1, 0).asUint(), c.in[2].swizzle(2, 1).asUint()).asFloat(); } \ void eval_##FUNC_NAME##_uvec3 (ShaderEvalContext& c) { c.color.xyz() = FUNC_NAME(c.in[0].swizzle(2, 0, 1).asUint(), c.in[1].swizzle(1, 2, 0).asUint(), c.in[2].swizzle(3, 1, 2).asUint()).asFloat(); } \ void eval_##FUNC_NAME##_uvec4 (ShaderEvalContext& c) { c.color = FUNC_NAME(c.in[0].swizzle(1, 2, 3, 0).asUint(), c.in[1].swizzle(3, 2, 1, 0).asUint(), c.in[2].swizzle(0, 3, 2, 1).asUint()).asFloat(); } #define DECLARE_VEC_FLOAT_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_vec2 (ShaderEvalContext& c) { c.color.yz() = FUNC_NAME(c.in[0].swizzle(3, 1), c.in[1].x()); } \ void eval_##FUNC_NAME##_vec3 (ShaderEvalContext& c) { c.color.xyz() = FUNC_NAME(c.in[0].swizzle(2, 0, 1), c.in[1].x()); } \ void eval_##FUNC_NAME##_vec4 (ShaderEvalContext& c) { c.color = FUNC_NAME(c.in[0].swizzle(1, 2, 3, 0), c.in[1].x()); } #define DECLARE_VEC_FLOAT_FLOAT_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_vec2 (ShaderEvalContext& c) { c.color.yz() = FUNC_NAME(c.in[0].swizzle(3, 1), c.in[1].x(), c.in[2].y()); } \ void eval_##FUNC_NAME##_vec3 (ShaderEvalContext& c) { c.color.xyz() = FUNC_NAME(c.in[0].swizzle(2, 0, 1), c.in[1].x(), c.in[2].y()); } \ void eval_##FUNC_NAME##_vec4 (ShaderEvalContext& c) { c.color = FUNC_NAME(c.in[0].swizzle(1, 2, 3, 0), c.in[1].x(), c.in[2].y()); } #define DECLARE_VEC_VEC_FLOAT_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_vec2 (ShaderEvalContext& c) { c.color.yz() = FUNC_NAME(c.in[0].swizzle(3, 1), c.in[1].swizzle(1, 0), c.in[2].y()); } \ void eval_##FUNC_NAME##_vec3 (ShaderEvalContext& c) { c.color.xyz() = FUNC_NAME(c.in[0].swizzle(2, 0, 1), c.in[1].swizzle(1, 2, 0), c.in[2].y()); } \ void eval_##FUNC_NAME##_vec4 (ShaderEvalContext& c) { c.color = FUNC_NAME(c.in[0].swizzle(1, 2, 3, 0), c.in[1].swizzle(3, 2, 1, 0), c.in[2].y()); } #define DECLARE_FLOAT_FLOAT_VEC_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_vec2 (ShaderEvalContext& c) { c.color.yz() = FUNC_NAME(c.in[0].z(), c.in[1].x(), c.in[2].swizzle(2, 1)); } \ void eval_##FUNC_NAME##_vec3 (ShaderEvalContext& c) { c.color.xyz() = FUNC_NAME(c.in[0].z(), c.in[1].x(), c.in[2].swizzle(3, 1, 2)); } \ void eval_##FUNC_NAME##_vec4 (ShaderEvalContext& c) { c.color = FUNC_NAME(c.in[0].z(), c.in[1].x(), c.in[2].swizzle(0, 3, 2, 1)); } #define DECLARE_FLOAT_VEC_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_vec2 (ShaderEvalContext& c) { c.color.yz() = FUNC_NAME(c.in[0].z(), c.in[1].swizzle(1, 0)); } \ void eval_##FUNC_NAME##_vec3 (ShaderEvalContext& c) { c.color.xyz() = FUNC_NAME(c.in[0].z(), c.in[1].swizzle(1, 2, 0)); } \ void eval_##FUNC_NAME##_vec4 (ShaderEvalContext& c) { c.color = FUNC_NAME(c.in[0].z(), c.in[1].swizzle(3, 2, 1, 0)); } #define DECLARE_IVEC_INT_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_ivec2 (ShaderEvalContext& c) { c.color.yz() = FUNC_NAME(c.in[0].swizzle(3, 1).asInt(), (int)c.in[1].x()).asFloat(); } \ void eval_##FUNC_NAME##_ivec3 (ShaderEvalContext& c) { c.color.xyz() = FUNC_NAME(c.in[0].swizzle(2, 0, 1).asInt(), (int)c.in[1].x()).asFloat(); } \ void eval_##FUNC_NAME##_ivec4 (ShaderEvalContext& c) { c.color = FUNC_NAME(c.in[0].swizzle(1, 2, 3, 0).asInt(), (int)c.in[1].x()).asFloat(); } #define DECLARE_IVEC_INT_INT_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_ivec2 (ShaderEvalContext& c) { c.color.yz() = FUNC_NAME(c.in[0].swizzle(3, 1).asInt(), (int)c.in[1].x(), (int)c.in[2].y()).asFloat(); } \ void eval_##FUNC_NAME##_ivec3 (ShaderEvalContext& c) { c.color.xyz() = FUNC_NAME(c.in[0].swizzle(2, 0, 1).asInt(), (int)c.in[1].x(), (int)c.in[2].y()).asFloat(); } \ void eval_##FUNC_NAME##_ivec4 (ShaderEvalContext& c) { c.color = FUNC_NAME(c.in[0].swizzle(1, 2, 3, 0).asInt(), (int)c.in[1].x(), (int)c.in[2].y()).asFloat(); } #define DECLARE_INT_IVEC_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_ivec2 (ShaderEvalContext& c) { c.color.yz() = FUNC_NAME((int)c.in[0].z(), c.in[1].swizzle(1, 0).asInt()).asFloat(); } \ void eval_##FUNC_NAME##_ivec3 (ShaderEvalContext& c) { c.color.xyz() = FUNC_NAME((int)c.in[0].z(), c.in[1].swizzle(1, 2, 0).asInt()).asFloat(); } \ void eval_##FUNC_NAME##_ivec4 (ShaderEvalContext& c) { c.color = FUNC_NAME((int)c.in[0].z(), c.in[1].swizzle(3, 2, 1, 0).asInt()).asFloat(); } #define DECLARE_UVEC_UINT_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_uvec2 (ShaderEvalContext& c) { c.color.yz() = FUNC_NAME(c.in[0].swizzle(3, 1).asUint(), (deUint32)c.in[1].x()).asFloat(); } \ void eval_##FUNC_NAME##_uvec3 (ShaderEvalContext& c) { c.color.xyz() = FUNC_NAME(c.in[0].swizzle(2, 0, 1).asUint(), (deUint32)c.in[1].x()).asFloat(); } \ void eval_##FUNC_NAME##_uvec4 (ShaderEvalContext& c) { c.color = FUNC_NAME(c.in[0].swizzle(1, 2, 3, 0).asUint(), (deUint32)c.in[1].x()).asFloat(); } #define DECLARE_UVEC_UINT_UINT_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_uvec2 (ShaderEvalContext& c) { c.color.yz() = FUNC_NAME(c.in[0].swizzle(3, 1).asUint(), (deUint32)c.in[1].x(), (deUint32)c.in[2].y()).asFloat(); } \ void eval_##FUNC_NAME##_uvec3 (ShaderEvalContext& c) { c.color.xyz() = FUNC_NAME(c.in[0].swizzle(2, 0, 1).asUint(), (deUint32)c.in[1].x(), (deUint32)c.in[2].y()).asFloat(); } \ void eval_##FUNC_NAME##_uvec4 (ShaderEvalContext& c) { c.color = FUNC_NAME(c.in[0].swizzle(1, 2, 3, 0).asUint(), (deUint32)c.in[1].x(), (deUint32)c.in[2].y()).asFloat(); } #define DECLARE_UINT_UVEC_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_uvec2 (ShaderEvalContext& c) { c.color.yz() = FUNC_NAME((deUint32)c.in[0].z(), c.in[1].swizzle(1, 0).asUint()).asFloat(); } \ void eval_##FUNC_NAME##_uvec3 (ShaderEvalContext& c) { c.color.xyz() = FUNC_NAME((deUint32)c.in[0].z(), c.in[1].swizzle(1, 2, 0).asUint()).asFloat(); } \ void eval_##FUNC_NAME##_uvec4 (ShaderEvalContext& c) { c.color = FUNC_NAME((deUint32)c.in[0].z(), c.in[1].swizzle(3, 2, 1, 0).asUint()).asFloat(); } #define DECLARE_BINARY_INT_VEC_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_ivec2 (ShaderEvalContext& c) { c.color.yz() = FUNC_NAME(c.in[0].swizzle(3, 1).asInt(), c.in[1].swizzle(1, 0).asInt()).asFloat(); } \ void eval_##FUNC_NAME##_ivec3 (ShaderEvalContext& c) { c.color.xyz() = FUNC_NAME(c.in[0].swizzle(2, 0, 1).asInt(), c.in[1].swizzle(1, 2, 0).asInt()).asFloat(); } \ void eval_##FUNC_NAME##_ivec4 (ShaderEvalContext& c) { c.color = FUNC_NAME(c.in[0].swizzle(1, 2, 3, 0).asInt(), c.in[1].swizzle(3, 2, 1, 0).asInt()).asFloat(); } #define DECLARE_BINARY_UINT_VEC_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_uvec2 (ShaderEvalContext& c) { c.color.yz() = FUNC_NAME(c.in[0].swizzle(3, 1).asUint(), c.in[1].swizzle(1, 0).asUint()).asFloat(); } \ void eval_##FUNC_NAME##_uvec3 (ShaderEvalContext& c) { c.color.xyz() = FUNC_NAME(c.in[0].swizzle(2, 0, 1).asUint(), c.in[1].swizzle(1, 2, 0).asUint()).asFloat(); } \ void eval_##FUNC_NAME##_uvec4 (ShaderEvalContext& c) { c.color = FUNC_NAME(c.in[0].swizzle(1, 2, 3, 0).asUint(), c.in[1].swizzle(3, 2, 1, 0).asUint()).asFloat(); } #define DECLARE_UINT_INT_GENTYPE_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_uint (ShaderEvalContext& c) { c.color.x() = (float)FUNC_NAME((deUint32)c.in[0].z(), (int)c.in[1].x()); } \ void eval_##FUNC_NAME##_uvec2 (ShaderEvalContext& c) { c.color.yz() = FUNC_NAME(c.in[0].swizzle(3, 1).asUint(), c.in[1].swizzle(1, 0).asInt()).asFloat(); } \ void eval_##FUNC_NAME##_uvec3 (ShaderEvalContext& c) { c.color.xyz() = FUNC_NAME(c.in[0].swizzle(2, 0, 1).asUint(), c.in[1].swizzle(1, 2, 0).asInt()).asFloat(); } \ void eval_##FUNC_NAME##_uvec4 (ShaderEvalContext& c) { c.color = FUNC_NAME(c.in[0].swizzle(1, 2, 3, 0).asUint(), c.in[1].swizzle(3, 2, 1, 0).asInt()).asFloat(); } #define DECLARE_UVEC_INT_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_uvec2 (ShaderEvalContext& c) { c.color.yz() = FUNC_NAME(c.in[0].swizzle(3, 1).asUint(), (int)c.in[1].x()).asFloat(); } \ void eval_##FUNC_NAME##_uvec3 (ShaderEvalContext& c) { c.color.xyz() = FUNC_NAME(c.in[0].swizzle(2, 0, 1).asUint(), (int)c.in[1].x()).asFloat(); } \ void eval_##FUNC_NAME##_uvec4 (ShaderEvalContext& c) { c.color = FUNC_NAME(c.in[0].swizzle(1, 2, 3, 0).asUint(), (int)c.in[1].x()).asFloat(); } // Operators. DECLARE_UNARY_GENTYPE_FUNCS(nop) DECLARE_UNARY_GENTYPE_FUNCS(negate) DECLARE_UNARY_GENTYPE_FUNCS(addOne) DECLARE_UNARY_GENTYPE_FUNCS(subOne) DECLARE_BINARY_GENTYPE_FUNCS(add) DECLARE_BINARY_GENTYPE_FUNCS(sub) DECLARE_BINARY_GENTYPE_FUNCS(mul) DECLARE_BINARY_GENTYPE_FUNCS(div) void eval_selection_float (ShaderEvalContext& c) { c.color.x() = selection(c.in[0].z() > 0.0f, c.in[1].x(), c.in[2].y()); } void eval_selection_vec2 (ShaderEvalContext& c) { c.color.yz() = selection(c.in[0].z() > 0.0f, c.in[1].swizzle(1, 0), c.in[2].swizzle(2, 1)); } void eval_selection_vec3 (ShaderEvalContext& c) { c.color.xyz() = selection(c.in[0].z() > 0.0f, c.in[1].swizzle(1, 2, 0), c.in[2].swizzle(3, 1, 2)); } void eval_selection_vec4 (ShaderEvalContext& c) { c.color = selection(c.in[0].z() > 0.0f, c.in[1].swizzle(3, 2, 1, 0), c.in[2].swizzle(0, 3, 2, 1)); } DECLARE_UNARY_INT_GENTYPE_FUNCS(nop) DECLARE_UNARY_INT_GENTYPE_FUNCS(negate) DECLARE_UNARY_INT_GENTYPE_FUNCS(addOne) DECLARE_UNARY_INT_GENTYPE_FUNCS(subOne) DECLARE_UNARY_INT_GENTYPE_FUNCS(bitwiseNot) DECLARE_BINARY_INT_GENTYPE_FUNCS(add) DECLARE_BINARY_INT_GENTYPE_FUNCS(sub) DECLARE_BINARY_INT_GENTYPE_FUNCS(mul) DECLARE_BINARY_INT_GENTYPE_FUNCS(div) DECLARE_BINARY_INT_GENTYPE_FUNCS(mod) DECLARE_BINARY_INT_GENTYPE_FUNCS(bitwiseAnd) DECLARE_BINARY_INT_GENTYPE_FUNCS(bitwiseOr) DECLARE_BINARY_INT_GENTYPE_FUNCS(bitwiseXor) void eval_leftShift_int (ShaderEvalContext& c) { c.color.x() = (float)leftShift((int)c.in[0].z(), (int)c.in[1].x()); } DECLARE_BINARY_INT_VEC_FUNCS(leftShift) void eval_rightShift_int (ShaderEvalContext& c) { c.color.x() = (float)rightShift((int)c.in[0].z(), (int)c.in[1].x()); } DECLARE_BINARY_INT_VEC_FUNCS(rightShift) DECLARE_IVEC_INT_FUNCS(leftShiftVecScalar) DECLARE_IVEC_INT_FUNCS(rightShiftVecScalar) void eval_selection_int (ShaderEvalContext& c) { c.color.x() = (float)selection(c.in[0].z() > 0.0f, (int)c.in[1].x(), (int)c.in[2].y()); } void eval_selection_ivec2 (ShaderEvalContext& c) { c.color.yz() = selection(c.in[0].z() > 0.0f, c.in[1].swizzle(1, 0).asInt(), c.in[2].swizzle(2, 1).asInt()).asFloat(); } void eval_selection_ivec3 (ShaderEvalContext& c) { c.color.xyz() = selection(c.in[0].z() > 0.0f, c.in[1].swizzle(1, 2, 0).asInt(), c.in[2].swizzle(3, 1, 2).asInt()).asFloat(); } void eval_selection_ivec4 (ShaderEvalContext& c) { c.color = selection(c.in[0].z() > 0.0f, c.in[1].swizzle(3, 2, 1, 0).asInt(), c.in[2].swizzle(0, 3, 2, 1).asInt()).asFloat(); } DECLARE_UNARY_UINT_GENTYPE_FUNCS(nop) DECLARE_UNARY_UINT_GENTYPE_FUNCS(negate) DECLARE_UNARY_UINT_GENTYPE_FUNCS(bitwiseNot) DECLARE_UNARY_UINT_GENTYPE_FUNCS(addOne) DECLARE_UNARY_UINT_GENTYPE_FUNCS(subOne) DECLARE_BINARY_UINT_GENTYPE_FUNCS(add) DECLARE_BINARY_UINT_GENTYPE_FUNCS(sub) DECLARE_BINARY_UINT_GENTYPE_FUNCS(mul) DECLARE_BINARY_UINT_GENTYPE_FUNCS(div) DECLARE_BINARY_UINT_GENTYPE_FUNCS(mod) DECLARE_BINARY_UINT_GENTYPE_FUNCS(bitwiseAnd) DECLARE_BINARY_UINT_GENTYPE_FUNCS(bitwiseOr) DECLARE_BINARY_UINT_GENTYPE_FUNCS(bitwiseXor) DECLARE_UINT_INT_GENTYPE_FUNCS(leftShift) DECLARE_UINT_INT_GENTYPE_FUNCS(rightShift) DECLARE_UVEC_INT_FUNCS(leftShiftVecScalar) DECLARE_UVEC_INT_FUNCS(rightShiftVecScalar) void eval_selection_uint (ShaderEvalContext& c) { c.color.x() = (float)selection(c.in[0].z() > 0.0f, (deUint32)c.in[1].x(), (deUint32)c.in[2].y()); } void eval_selection_uvec2 (ShaderEvalContext& c) { c.color.yz() = selection(c.in[0].z() > 0.0f, c.in[1].swizzle(1, 0).asUint(), c.in[2].swizzle(2, 1).asUint()).asFloat(); } void eval_selection_uvec3 (ShaderEvalContext& c) { c.color.xyz() = selection(c.in[0].z() > 0.0f, c.in[1].swizzle(1, 2, 0).asUint(), c.in[2].swizzle(3, 1, 2).asUint()).asFloat(); } void eval_selection_uvec4 (ShaderEvalContext& c) { c.color = selection(c.in[0].z() > 0.0f, c.in[1].swizzle(3, 2, 1, 0).asUint(), c.in[2].swizzle(0, 3, 2, 1).asUint()).asFloat(); } DECLARE_UNARY_BOOL_GENTYPE_FUNCS(boolNot) DECLARE_BINARY_BOOL_FUNCS(logicalAnd) DECLARE_BINARY_BOOL_FUNCS(logicalOr) DECLARE_BINARY_BOOL_FUNCS(logicalXor) void eval_selection_bool (ShaderEvalContext& c) { c.color.x() = (float)selection(c.in[0].z() > 0.0f, c.in[1].x() > 0.0f, c.in[2].y() > 0.0f); } void eval_selection_bvec2 (ShaderEvalContext& c) { c.color.yz() = selection(c.in[0].z() > 0.0f, greaterThan(c.in[1].swizzle(1, 0), Vec2(0.0f, 0.0f)), greaterThan(c.in[2].swizzle(2, 1), Vec2(0.0f, 0.0f))).asFloat(); } void eval_selection_bvec3 (ShaderEvalContext& c) { c.color.xyz() = selection(c.in[0].z() > 0.0f, greaterThan(c.in[1].swizzle(1, 2, 0), Vec3(0.0f, 0.0f, 0.0f)), greaterThan(c.in[2].swizzle(3, 1, 2), Vec3(0.0f, 0.0f, 0.0f))).asFloat(); } void eval_selection_bvec4 (ShaderEvalContext& c) { c.color = selection(c.in[0].z() > 0.0f, greaterThan(c.in[1].swizzle(3, 2, 1, 0), Vec4(0.0f, 0.0f, 0.0f, 0.0f)), greaterThan(c.in[2].swizzle(0, 3, 2, 1), Vec4(0.0f, 0.0f, 0.0f, 0.0f))).asFloat(); } DECLARE_VEC_FLOAT_FUNCS(addVecScalar) DECLARE_VEC_FLOAT_FUNCS(subVecScalar) DECLARE_VEC_FLOAT_FUNCS(mulVecScalar) DECLARE_VEC_FLOAT_FUNCS(divVecScalar) DECLARE_FLOAT_VEC_FUNCS(addScalarVec) DECLARE_FLOAT_VEC_FUNCS(subScalarVec) DECLARE_FLOAT_VEC_FUNCS(mulScalarVec) DECLARE_FLOAT_VEC_FUNCS(divScalarVec) DECLARE_IVEC_INT_FUNCS(addVecScalar) DECLARE_IVEC_INT_FUNCS(subVecScalar) DECLARE_IVEC_INT_FUNCS(mulVecScalar) DECLARE_IVEC_INT_FUNCS(divVecScalar) DECLARE_IVEC_INT_FUNCS(modVecScalar) DECLARE_IVEC_INT_FUNCS(bitwiseAndVecScalar) DECLARE_IVEC_INT_FUNCS(bitwiseOrVecScalar) DECLARE_IVEC_INT_FUNCS(bitwiseXorVecScalar) DECLARE_INT_IVEC_FUNCS(addScalarVec) DECLARE_INT_IVEC_FUNCS(subScalarVec) DECLARE_INT_IVEC_FUNCS(mulScalarVec) DECLARE_INT_IVEC_FUNCS(divScalarVec) DECLARE_INT_IVEC_FUNCS(modScalarVec) DECLARE_INT_IVEC_FUNCS(bitwiseAndScalarVec) DECLARE_INT_IVEC_FUNCS(bitwiseOrScalarVec) DECLARE_INT_IVEC_FUNCS(bitwiseXorScalarVec) DECLARE_UVEC_UINT_FUNCS(addVecScalar) DECLARE_UVEC_UINT_FUNCS(subVecScalar) DECLARE_UVEC_UINT_FUNCS(mulVecScalar) DECLARE_UVEC_UINT_FUNCS(divVecScalar) DECLARE_UVEC_UINT_FUNCS(modVecScalar) DECLARE_UVEC_UINT_FUNCS(bitwiseAndVecScalar) DECLARE_UVEC_UINT_FUNCS(bitwiseOrVecScalar) DECLARE_UVEC_UINT_FUNCS(bitwiseXorVecScalar) DECLARE_UINT_UVEC_FUNCS(addScalarVec) DECLARE_UINT_UVEC_FUNCS(subScalarVec) DECLARE_UINT_UVEC_FUNCS(mulScalarVec) DECLARE_UINT_UVEC_FUNCS(divScalarVec) DECLARE_UINT_UVEC_FUNCS(modScalarVec) DECLARE_UINT_UVEC_FUNCS(bitwiseAndScalarVec) DECLARE_UINT_UVEC_FUNCS(bitwiseOrScalarVec) DECLARE_UINT_UVEC_FUNCS(bitwiseXorScalarVec) // Built-in functions. DECLARE_UNARY_GENTYPE_FUNCS(radians) DECLARE_UNARY_GENTYPE_FUNCS(degrees) DECLARE_UNARY_GENTYPE_FUNCS(sin) DECLARE_UNARY_GENTYPE_FUNCS(cos) DECLARE_UNARY_GENTYPE_FUNCS(tan) DECLARE_UNARY_GENTYPE_FUNCS(asin) DECLARE_UNARY_GENTYPE_FUNCS(acos) DECLARE_UNARY_GENTYPE_FUNCS(atan) DECLARE_BINARY_GENTYPE_FUNCS(atan2) DECLARE_UNARY_GENTYPE_FUNCS(sinh) DECLARE_UNARY_GENTYPE_FUNCS(cosh) DECLARE_UNARY_GENTYPE_FUNCS(tanh) DECLARE_UNARY_GENTYPE_FUNCS(asinh) DECLARE_UNARY_GENTYPE_FUNCS(acosh) DECLARE_UNARY_GENTYPE_FUNCS(atanh) DECLARE_BINARY_GENTYPE_FUNCS(pow) DECLARE_UNARY_GENTYPE_FUNCS(exp) DECLARE_UNARY_GENTYPE_FUNCS(log) DECLARE_UNARY_GENTYPE_FUNCS(exp2) DECLARE_UNARY_GENTYPE_FUNCS(log2) DECLARE_UNARY_GENTYPE_FUNCS(sqrt) DECLARE_UNARY_GENTYPE_FUNCS(inverseSqrt) DECLARE_UNARY_GENTYPE_FUNCS(abs) DECLARE_UNARY_GENTYPE_FUNCS(sign) DECLARE_UNARY_GENTYPE_FUNCS(floor) DECLARE_UNARY_GENTYPE_FUNCS(trunc) DECLARE_UNARY_GENTYPE_FUNCS(roundToEven) DECLARE_UNARY_GENTYPE_FUNCS(ceil) DECLARE_UNARY_GENTYPE_FUNCS(fract) DECLARE_BINARY_GENTYPE_FUNCS(mod) DECLARE_VEC_FLOAT_FUNCS(modVecScalar) DECLARE_BINARY_GENTYPE_FUNCS(min) DECLARE_VEC_FLOAT_FUNCS(minVecScalar) DECLARE_BINARY_INT_GENTYPE_FUNCS(min) DECLARE_IVEC_INT_FUNCS(minVecScalar) DECLARE_BINARY_UINT_GENTYPE_FUNCS(min) DECLARE_UVEC_UINT_FUNCS(minVecScalar) DECLARE_BINARY_GENTYPE_FUNCS(max) DECLARE_VEC_FLOAT_FUNCS(maxVecScalar) DECLARE_BINARY_INT_GENTYPE_FUNCS(max) DECLARE_IVEC_INT_FUNCS(maxVecScalar) DECLARE_BINARY_UINT_GENTYPE_FUNCS(max) DECLARE_UVEC_UINT_FUNCS(maxVecScalar) DECLARE_TERNARY_GENTYPE_FUNCS(clamp) DECLARE_VEC_FLOAT_FLOAT_FUNCS(clampVecScalarScalar) DECLARE_TERNARY_INT_GENTYPE_FUNCS(clamp) DECLARE_IVEC_INT_INT_FUNCS(clampVecScalarScalar) DECLARE_TERNARY_UINT_GENTYPE_FUNCS(clamp) DECLARE_UVEC_UINT_UINT_FUNCS(clampVecScalarScalar) DECLARE_TERNARY_GENTYPE_FUNCS(mix) DECLARE_VEC_VEC_FLOAT_FUNCS(mixVecVecScalar) DECLARE_BINARY_GENTYPE_FUNCS(step) DECLARE_FLOAT_VEC_FUNCS(stepScalarVec) DECLARE_TERNARY_GENTYPE_FUNCS(smoothStep) DECLARE_FLOAT_FLOAT_VEC_FUNCS(smoothStepScalarScalarVec) DECLARE_UNARY_SCALAR_GENTYPE_FUNCS(length) DECLARE_BINARY_SCALAR_GENTYPE_FUNCS(distance) DECLARE_BINARY_SCALAR_GENTYPE_FUNCS(dot) void eval_cross_vec3 (ShaderEvalContext& c) { c.color.xyz() = cross(c.in[0].swizzle(2, 0, 1), c.in[1].swizzle(1, 2, 0)); } DECLARE_UNARY_GENTYPE_FUNCS(normalize) DECLARE_TERNARY_GENTYPE_FUNCS(faceForward) DECLARE_BINARY_GENTYPE_FUNCS(reflect) void eval_refract_float (ShaderEvalContext& c) { c.color.x() = refract(c.in[0].z(), c.in[1].x(), c.in[2].y()); } void eval_refract_vec2 (ShaderEvalContext& c) { c.color.yz() = refract(c.in[0].swizzle(3, 1), c.in[1].swizzle(1, 0), c.in[2].y()); } void eval_refract_vec3 (ShaderEvalContext& c) { c.color.xyz() = refract(c.in[0].swizzle(2, 0, 1), c.in[1].swizzle(1, 2, 0), c.in[2].y()); } void eval_refract_vec4 (ShaderEvalContext& c) { c.color = refract(c.in[0].swizzle(1, 2, 3, 0), c.in[1].swizzle(3, 2, 1, 0), c.in[2].y()); } // Compare functions. #define DECLARE_FLOAT_COMPARE_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_float (ShaderEvalContext& c) { c.color.x() = (float)FUNC_NAME(c.in[0].z(), c.in[1].x()); } \ void eval_##FUNC_NAME##_vec2 (ShaderEvalContext& c) { c.color.x() = (float)FUNC_NAME(c.in[0].swizzle(3, 1), c.in[1].swizzle(1, 0)); } \ void eval_##FUNC_NAME##_vec3 (ShaderEvalContext& c) { c.color.x() = (float)FUNC_NAME(c.in[0].swizzle(2, 0, 1), c.in[1].swizzle(1, 2, 0)); } \ void eval_##FUNC_NAME##_vec4 (ShaderEvalContext& c) { c.color.x() = (float)FUNC_NAME(c.in[0].swizzle(1, 2, 3, 0), c.in[1].swizzle(3, 2, 1, 0)); } #define DECLARE_FLOAT_CWISE_COMPARE_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_float (ShaderEvalContext& c) { c.color.x() = (float)FUNC_NAME(c.in[0].z(), c.in[1].x()); } \ void eval_##FUNC_NAME##_vec2 (ShaderEvalContext& c) { c.color.yz() = FUNC_NAME(c.in[0].swizzle(3, 1), c.in[1].swizzle(1, 0)).asFloat(); } \ void eval_##FUNC_NAME##_vec3 (ShaderEvalContext& c) { c.color.xyz() = FUNC_NAME(c.in[0].swizzle(2, 0, 1), c.in[1].swizzle(1, 2, 0)).asFloat(); } \ void eval_##FUNC_NAME##_vec4 (ShaderEvalContext& c) { c.color = FUNC_NAME(c.in[0].swizzle(1, 2, 3, 0), c.in[1].swizzle(3, 2, 1, 0)).asFloat(); } #define DECLARE_INT_COMPARE_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_int (ShaderEvalContext& c) { c.color.x() = (float)FUNC_NAME(chopToInt(c.in[0].z()), chopToInt(c.in[1].x())); } \ void eval_##FUNC_NAME##_ivec2 (ShaderEvalContext& c) { c.color.x() = (float)FUNC_NAME(chopToInt(c.in[0].swizzle(3, 1)), chopToInt(c.in[1].swizzle(1, 0))); } \ void eval_##FUNC_NAME##_ivec3 (ShaderEvalContext& c) { c.color.x() = (float)FUNC_NAME(chopToInt(c.in[0].swizzle(2, 0, 1)), chopToInt(c.in[1].swizzle(1, 2, 0))); } \ void eval_##FUNC_NAME##_ivec4 (ShaderEvalContext& c) { c.color.x() = (float)FUNC_NAME(chopToInt(c.in[0].swizzle(1, 2, 3, 0)), chopToInt(c.in[1].swizzle(3, 2, 1, 0))); } #define DECLARE_INT_CWISE_COMPARE_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_int (ShaderEvalContext& c) { c.color.x() = (float)FUNC_NAME(chopToInt(c.in[0].z()), chopToInt(c.in[1].x())); } \ void eval_##FUNC_NAME##_ivec2 (ShaderEvalContext& c) { c.color.yz() = FUNC_NAME(chopToInt(c.in[0].swizzle(3, 1)), chopToInt(c.in[1].swizzle(1, 0))).asFloat(); } \ void eval_##FUNC_NAME##_ivec3 (ShaderEvalContext& c) { c.color.xyz() = FUNC_NAME(chopToInt(c.in[0].swizzle(2, 0, 1)), chopToInt(c.in[1].swizzle(1, 2, 0))).asFloat(); } \ void eval_##FUNC_NAME##_ivec4 (ShaderEvalContext& c) { c.color = FUNC_NAME(chopToInt(c.in[0].swizzle(1, 2, 3, 0)), chopToInt(c.in[1].swizzle(3, 2, 1, 0))).asFloat(); } #define DECLARE_UINT_COMPARE_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_uint (ShaderEvalContext& c) { c.color.x() = (float)FUNC_NAME((deUint32)c.in[0].z(), (deUint32)c.in[1].x()); } \ void eval_##FUNC_NAME##_uvec2 (ShaderEvalContext& c) { c.color.x() = (float)FUNC_NAME(c.in[0].swizzle(3, 1).asUint(), c.in[1].swizzle(1, 0).asUint()); } \ void eval_##FUNC_NAME##_uvec3 (ShaderEvalContext& c) { c.color.x() = (float)FUNC_NAME(c.in[0].swizzle(2, 0, 1).asUint(), c.in[1].swizzle(1, 2, 0).asUint()); } \ void eval_##FUNC_NAME##_uvec4 (ShaderEvalContext& c) { c.color.x() = (float)FUNC_NAME(c.in[0].swizzle(1, 2, 3, 0).asUint(), c.in[1].swizzle(3, 2, 1, 0).asUint()); } #define DECLARE_UINT_CWISE_COMPARE_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_uint (ShaderEvalContext& c) { c.color.x() = (float)FUNC_NAME((deUint32)c.in[0].z(), (deUint32)c.in[1].x()); } \ void eval_##FUNC_NAME##_uvec2 (ShaderEvalContext& c) { c.color.yz() = FUNC_NAME(c.in[0].swizzle(3, 1).asUint(), c.in[1].swizzle(1, 0).asUint()).asFloat(); } \ void eval_##FUNC_NAME##_uvec3 (ShaderEvalContext& c) { c.color.xyz() = FUNC_NAME(c.in[0].swizzle(2, 0, 1).asUint(), c.in[1].swizzle(1, 2, 0).asUint()).asFloat(); } \ void eval_##FUNC_NAME##_uvec4 (ShaderEvalContext& c) { c.color = FUNC_NAME(c.in[0].swizzle(1, 2, 3, 0).asUint(), c.in[1].swizzle(3, 2, 1, 0).asUint()).asFloat(); } #define DECLARE_BOOL_COMPARE_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_bool (ShaderEvalContext& c) { c.color.x() = (float)FUNC_NAME(c.in[0].z() > 0.0f, c.in[1].x() > 0.0f); } \ void eval_##FUNC_NAME##_bvec2 (ShaderEvalContext& c) { c.color.x() = (float)FUNC_NAME(greaterThan(c.in[0].swizzle(3, 1), Vec2(0.0f)), greaterThan(c.in[1].swizzle(1, 0), Vec2(0.0f))); } \ void eval_##FUNC_NAME##_bvec3 (ShaderEvalContext& c) { c.color.x() = (float)FUNC_NAME(greaterThan(c.in[0].swizzle(2, 0, 1), Vec3(0.0f)), greaterThan(c.in[1].swizzle(1, 2, 0), Vec3(0.0f))); } \ void eval_##FUNC_NAME##_bvec4 (ShaderEvalContext& c) { c.color.x() = (float)FUNC_NAME(greaterThan(c.in[0].swizzle(1, 2, 3, 0), Vec4(0.0f)), greaterThan(c.in[1].swizzle(3, 2, 1, 0), Vec4(0.0f))); } #define DECLARE_BOOL_CWISE_COMPARE_FUNCS(FUNC_NAME) \ void eval_##FUNC_NAME##_bool (ShaderEvalContext& c) { c.color.x() = (float)FUNC_NAME(c.in[0].z() > 0.0f, c.in[1].x() > 0.0f); } \ void eval_##FUNC_NAME##_bvec2 (ShaderEvalContext& c) { c.color.yz() = FUNC_NAME(greaterThan(c.in[0].swizzle(3, 1), Vec2(0.0f)), greaterThan(c.in[1].swizzle(1, 0), Vec2(0.0f))).asFloat(); } \ void eval_##FUNC_NAME##_bvec3 (ShaderEvalContext& c) { c.color.xyz() = FUNC_NAME(greaterThan(c.in[0].swizzle(2, 0, 1), Vec3(0.0f)), greaterThan(c.in[1].swizzle(1, 2, 0), Vec3(0.0f))).asFloat(); } \ void eval_##FUNC_NAME##_bvec4 (ShaderEvalContext& c) { c.color = FUNC_NAME(greaterThan(c.in[0].swizzle(1, 2, 3, 0), Vec4(0.0f)), greaterThan(c.in[1].swizzle(3, 2, 1, 0), Vec4(0.0f))).asFloat(); } DECLARE_FLOAT_COMPARE_FUNCS(allEqual) DECLARE_FLOAT_COMPARE_FUNCS(anyNotEqual) DECLARE_FLOAT_CWISE_COMPARE_FUNCS(lessThan) DECLARE_FLOAT_CWISE_COMPARE_FUNCS(lessThanEqual) DECLARE_FLOAT_CWISE_COMPARE_FUNCS(greaterThan) DECLARE_FLOAT_CWISE_COMPARE_FUNCS(greaterThanEqual) DECLARE_FLOAT_CWISE_COMPARE_FUNCS(equal) DECLARE_FLOAT_CWISE_COMPARE_FUNCS(notEqual) DECLARE_INT_COMPARE_FUNCS(allEqual) DECLARE_INT_COMPARE_FUNCS(anyNotEqual) DECLARE_INT_CWISE_COMPARE_FUNCS(lessThan) DECLARE_INT_CWISE_COMPARE_FUNCS(lessThanEqual) DECLARE_INT_CWISE_COMPARE_FUNCS(greaterThan) DECLARE_INT_CWISE_COMPARE_FUNCS(greaterThanEqual) DECLARE_INT_CWISE_COMPARE_FUNCS(equal) DECLARE_INT_CWISE_COMPARE_FUNCS(notEqual) DECLARE_UINT_COMPARE_FUNCS(allEqual) DECLARE_UINT_COMPARE_FUNCS(anyNotEqual) DECLARE_UINT_CWISE_COMPARE_FUNCS(lessThan) DECLARE_UINT_CWISE_COMPARE_FUNCS(lessThanEqual) DECLARE_UINT_CWISE_COMPARE_FUNCS(greaterThan) DECLARE_UINT_CWISE_COMPARE_FUNCS(greaterThanEqual) DECLARE_UINT_CWISE_COMPARE_FUNCS(equal) DECLARE_UINT_CWISE_COMPARE_FUNCS(notEqual) DECLARE_BOOL_COMPARE_FUNCS(allEqual) DECLARE_BOOL_COMPARE_FUNCS(anyNotEqual) DECLARE_BOOL_CWISE_COMPARE_FUNCS(equal) DECLARE_BOOL_CWISE_COMPARE_FUNCS(notEqual) // Boolean functions. #define DECLARE_UNARY_SCALAR_BVEC_FUNCS(GLSL_NAME, FUNC_NAME) \ void eval_##GLSL_NAME##_bvec2 (ShaderEvalContext& c) { c.color.x() = float(FUNC_NAME(greaterThan(c.in[0].swizzle(3, 1), Vec2(0.0f)))); } \ void eval_##GLSL_NAME##_bvec3 (ShaderEvalContext& c) { c.color.x() = float(FUNC_NAME(greaterThan(c.in[0].swizzle(2, 0, 1), Vec3(0.0f)))); } \ void eval_##GLSL_NAME##_bvec4 (ShaderEvalContext& c) { c.color.x() = float(FUNC_NAME(greaterThan(c.in[0].swizzle(1, 2, 3, 0), Vec4(0.0f)))); } #define DECLARE_UNARY_BVEC_BVEC_FUNCS(GLSL_NAME, FUNC_NAME) \ void eval_##GLSL_NAME##_bvec2 (ShaderEvalContext& c) { c.color.yz() = FUNC_NAME(greaterThan(c.in[0].swizzle(3, 1), Vec2(0.0f))).asFloat(); } \ void eval_##GLSL_NAME##_bvec3 (ShaderEvalContext& c) { c.color.xyz() = FUNC_NAME(greaterThan(c.in[0].swizzle(2, 0, 1), Vec3(0.0f))).asFloat(); } \ void eval_##GLSL_NAME##_bvec4 (ShaderEvalContext& c) { c.color.xyzw() = FUNC_NAME(greaterThan(c.in[0].swizzle(1, 2, 3, 0), Vec4(0.0f))).asFloat(); } DECLARE_UNARY_SCALAR_BVEC_FUNCS(any, boolAny) DECLARE_UNARY_SCALAR_BVEC_FUNCS(all, boolAll) void ShaderOperatorTests::init (void) { #define BOOL_FUNCS(FUNC_NAME) eval_##FUNC_NAME##_bool, DE_NULL, DE_NULL, DE_NULL #define FLOAT_VEC_FUNCS(FUNC_NAME) DE_NULL, eval_##FUNC_NAME##_vec2, eval_##FUNC_NAME##_vec3, eval_##FUNC_NAME##_vec4 #define INT_VEC_FUNCS(FUNC_NAME) DE_NULL, eval_##FUNC_NAME##_ivec2, eval_##FUNC_NAME##_ivec3, eval_##FUNC_NAME##_ivec4 #define UINT_VEC_FUNCS(FUNC_NAME) DE_NULL, eval_##FUNC_NAME##_uvec2, eval_##FUNC_NAME##_uvec3, eval_##FUNC_NAME##_uvec4 #define BOOL_VEC_FUNCS(FUNC_NAME) DE_NULL, eval_##FUNC_NAME##_bvec2, eval_##FUNC_NAME##_bvec3, eval_##FUNC_NAME##_bvec4 #define FLOAT_GENTYPE_FUNCS(FUNC_NAME) eval_##FUNC_NAME##_float, eval_##FUNC_NAME##_vec2, eval_##FUNC_NAME##_vec3, eval_##FUNC_NAME##_vec4 #define INT_GENTYPE_FUNCS(FUNC_NAME) eval_##FUNC_NAME##_int, eval_##FUNC_NAME##_ivec2, eval_##FUNC_NAME##_ivec3, eval_##FUNC_NAME##_ivec4 #define UINT_GENTYPE_FUNCS(FUNC_NAME) eval_##FUNC_NAME##_uint, eval_##FUNC_NAME##_uvec2, eval_##FUNC_NAME##_uvec3, eval_##FUNC_NAME##_uvec4 #define BOOL_GENTYPE_FUNCS(FUNC_NAME) eval_##FUNC_NAME##_bool, eval_##FUNC_NAME##_bvec2, eval_##FUNC_NAME##_bvec3, eval_##FUNC_NAME##_bvec4 // Shorthands. Value notUsed = Value(VALUE_NONE, 0.0f, 0.0f); FloatScalar::Symbol lUMax = FloatScalar::SYMBOL_LOWP_UINT_MAX; FloatScalar::Symbol mUMax = FloatScalar::SYMBOL_MEDIUMP_UINT_MAX; FloatScalar::Symbol lUMaxR = FloatScalar::SYMBOL_LOWP_UINT_MAX_RECIPROCAL; FloatScalar::Symbol mUMaxR = FloatScalar::SYMBOL_MEDIUMP_UINT_MAX_RECIPROCAL; std::vector funcInfoGroups; // Unary operators. funcInfoGroups.push_back( BuiltinFuncGroup("unary_operator", "Unary operator tests") << BuiltinOperInfo ("plus", "+", GT, Value(GT, -1.0f, 1.0f), notUsed, notUsed, 0.5f, 0.5f, PRECMASK_ALL, FLOAT_GENTYPE_FUNCS(nop)) << BuiltinOperInfo ("plus", "+", IGT, Value(IGT, -5.0f, 5.0f), notUsed, notUsed, 0.1f, 0.5f, PRECMASK_ALL, INT_GENTYPE_FUNCS(nop)) << BuiltinOperInfo ("plus", "+", UGT, Value(UGT, 0.0f, 2e2f), notUsed, notUsed, 5e-3f, 0.0f, PRECMASK_ALL, UINT_GENTYPE_FUNCS(nop)) << BuiltinOperInfo ("minus", "-", GT, Value(GT, -1.0f, 1.0f), notUsed, notUsed, 0.5f, 0.5f, PRECMASK_ALL, FLOAT_GENTYPE_FUNCS(negate)) << BuiltinOperInfo ("minus", "-", IGT, Value(IGT, -5.0f, 5.0f), notUsed, notUsed, 0.1f, 0.5f, PRECMASK_ALL, INT_GENTYPE_FUNCS(negate)) << BuiltinOperInfoSeparateRefScaleBias ("minus", "-", UGT, Value(UGT, 0.0f, lUMax), notUsed, notUsed, lUMaxR, 0.0f, PRECMASK_LOWP, UINT_GENTYPE_FUNCS(negate), lUMaxR, FloatScalar::SYMBOL_ONE_MINUS_UINT32MAX_DIV_LOWP_UINT_MAX) << BuiltinOperInfoSeparateRefScaleBias ("minus", "-", UGT, Value(UGT, 0.0f, mUMax), notUsed, notUsed, mUMaxR, 0.0f, PRECMASK_MEDIUMP, UINT_GENTYPE_FUNCS(negate), mUMaxR, FloatScalar::SYMBOL_ONE_MINUS_UINT32MAX_DIV_MEDIUMP_UINT_MAX) << BuiltinOperInfo ("minus", "-", UGT, Value(UGT, 0.0f, 4e9f), notUsed, notUsed, 2e-10f, 0.0f, PRECMASK_HIGHP, UINT_GENTYPE_FUNCS(negate)) << BuiltinOperInfo ("not", "!", B, Value(B, -1.0f, 1.0f), notUsed, notUsed, 1.0f, 0.0f, PRECMASK_NA, eval_boolNot_bool, DE_NULL, DE_NULL, DE_NULL) << BuiltinOperInfo ("bitwise_not", "~", IGT, Value(IGT, -1e5f, 1e5f), notUsed, notUsed, 5e-5f, 0.5f, PRECMASK_HIGHP, INT_GENTYPE_FUNCS(bitwiseNot)) << BuiltinOperInfo ("bitwise_not", "~", UGT, Value(UGT, 0.0f, 2e9f), notUsed, notUsed, 2e-10f, 0.0f, PRECMASK_HIGHP, UINT_GENTYPE_FUNCS(bitwiseNot)) // Pre/post incr/decr side effect cases. << BuiltinSideEffOperInfo ("pre_increment_effect", "++", GT, Value(GT, -1.0f, 1.0f), notUsed, notUsed, 0.5f, 0.0f, PRECMASK_ALL, FLOAT_GENTYPE_FUNCS(addOne)) << BuiltinSideEffOperInfo ("pre_increment_effect", "++", IGT, Value(IGT, -6.0f, 4.0f), notUsed, notUsed, 0.1f, 0.5f, PRECMASK_ALL, INT_GENTYPE_FUNCS(addOne)) << BuiltinSideEffOperInfo ("pre_increment_effect", "++", UGT, Value(UGT, 0.0f, 9.0f), notUsed, notUsed, 0.1f, 0.0f, PRECMASK_ALL, UINT_GENTYPE_FUNCS(addOne)) << BuiltinSideEffOperInfo ("pre_decrement_effect", "--", GT, Value(GT, -1.0f, 1.0f), notUsed, notUsed, 0.5f, 1.0f, PRECMASK_ALL, FLOAT_GENTYPE_FUNCS(subOne)) << BuiltinSideEffOperInfo ("pre_decrement_effect", "--", IGT, Value(IGT, -4.0f, 6.0f), notUsed, notUsed, 0.1f, 0.5f, PRECMASK_ALL, INT_GENTYPE_FUNCS(subOne)) << BuiltinSideEffOperInfo ("pre_decrement_effect", "--", UGT, Value(UGT, 1.0f, 10.0f), notUsed, notUsed, 0.1f, 0.0f, PRECMASK_ALL, UINT_GENTYPE_FUNCS(subOne)) << BuiltinPostSideEffOperInfo ("post_increment_effect", "++", GT, Value(GT, -1.0f, 1.0f), notUsed, notUsed, 0.5f, 0.0f, PRECMASK_ALL, FLOAT_GENTYPE_FUNCS(addOne)) << BuiltinPostSideEffOperInfo ("post_increment_effect", "++", IGT, Value(IGT, -6.0f, 4.0f), notUsed, notUsed, 0.1f, 0.5f, PRECMASK_ALL, INT_GENTYPE_FUNCS(addOne)) << BuiltinPostSideEffOperInfo ("post_increment_effect", "++", UGT, Value(UGT, 0.0f, 9.0f), notUsed, notUsed, 0.1f, 0.0f, PRECMASK_ALL, UINT_GENTYPE_FUNCS(addOne)) << BuiltinPostSideEffOperInfo ("post_decrement_effect", "--", GT, Value(GT, -1.0f, 1.0f), notUsed, notUsed, 0.5f, 1.0f, PRECMASK_ALL, FLOAT_GENTYPE_FUNCS(subOne)) << BuiltinPostSideEffOperInfo ("post_decrement_effect", "--", IGT, Value(IGT, -4.0f, 6.0f), notUsed, notUsed, 0.1f, 0.5f, PRECMASK_ALL, INT_GENTYPE_FUNCS(subOne)) << BuiltinPostSideEffOperInfo ("post_decrement_effect", "--", UGT, Value(UGT, 1.0f, 10.0f), notUsed, notUsed, 0.1f, 0.0f, PRECMASK_ALL, UINT_GENTYPE_FUNCS(subOne)) // Pre/post incr/decr result cases. << BuiltinOperInfo ("pre_increment_result", "++", GT, Value(GT, -1.0f, 1.0f), notUsed, notUsed, 0.5f, 0.0f, PRECMASK_ALL, FLOAT_GENTYPE_FUNCS(addOne)) << BuiltinOperInfo ("pre_increment_result", "++", IGT, Value(IGT, -6.0f, 4.0f), notUsed, notUsed, 0.1f, 0.5f, PRECMASK_ALL, INT_GENTYPE_FUNCS(addOne)) << BuiltinOperInfo ("pre_increment_result", "++", UGT, Value(UGT, 0.0f, 9.0f), notUsed, notUsed, 0.1f, 0.0f, PRECMASK_ALL, UINT_GENTYPE_FUNCS(addOne)) << BuiltinOperInfo ("pre_decrement_result", "--", GT, Value(GT, -1.0f, 1.0f), notUsed, notUsed, 0.5f, 1.0f, PRECMASK_ALL, FLOAT_GENTYPE_FUNCS(subOne)) << BuiltinOperInfo ("pre_decrement_result", "--", IGT, Value(IGT, -4.0f, 6.0f), notUsed, notUsed, 0.1f, 0.5f, PRECMASK_ALL, INT_GENTYPE_FUNCS(subOne)) << BuiltinOperInfo ("pre_decrement_result", "--", UGT, Value(UGT, 1.0f, 10.0f), notUsed, notUsed, 0.1f, 0.0f, PRECMASK_ALL, UINT_GENTYPE_FUNCS(subOne)) << BuiltinPostOperInfo ("post_increment_result", "++", GT, Value(GT, -1.0f, 1.0f), notUsed, notUsed, 0.5f, 0.5f, PRECMASK_ALL, FLOAT_GENTYPE_FUNCS(nop)) << BuiltinPostOperInfo ("post_increment_result", "++", IGT, Value(IGT, -5.0f, 5.0f), notUsed, notUsed, 0.1f, 0.5f, PRECMASK_ALL, INT_GENTYPE_FUNCS(nop)) << BuiltinPostOperInfo ("post_increment_result", "++", UGT, Value(UGT, 0.0f, 9.0f), notUsed, notUsed, 0.1f, 0.0f, PRECMASK_ALL, UINT_GENTYPE_FUNCS(nop)) << BuiltinPostOperInfo ("post_decrement_result", "--", GT, Value(GT, -1.0f, 1.0f), notUsed, notUsed, 0.5f, 0.5f, PRECMASK_ALL, FLOAT_GENTYPE_FUNCS(nop)) << BuiltinPostOperInfo ("post_decrement_result", "--", IGT, Value(IGT, -5.0f, 5.0f), notUsed, notUsed, 0.1f, 0.5f, PRECMASK_ALL, INT_GENTYPE_FUNCS(nop)) << BuiltinPostOperInfo ("post_decrement_result", "--", UGT, Value(UGT, 1.0f, 10.0f), notUsed, notUsed, 0.1f, 0.0f, PRECMASK_ALL, UINT_GENTYPE_FUNCS(nop)) ); BuiltinFuncGroup binaryOpGroup("binary_operator", "Binary operator tests"); // Normal binary operations and their corresponding assignment operations have lots in common; generate both in the following loop. for (int binaryOperatorType = 0; binaryOperatorType <= 2; binaryOperatorType++) // 0: normal op test, 1: assignment op side-effect test, 2: assignment op result test { bool isNormalOp = binaryOperatorType == 0; bool isAssignEff = binaryOperatorType == 1; bool isAssignRes = binaryOperatorType == 2; DE_ASSERT(isNormalOp || isAssignEff || isAssignRes); DE_UNREF(isAssignRes); const char* addName = isNormalOp ? "add" : isAssignEff ? "add_assign_effect" : "add_assign_result"; const char* subName = isNormalOp ? "sub" : isAssignEff ? "sub_assign_effect" : "sub_assign_result"; const char* mulName = isNormalOp ? "mul" : isAssignEff ? "mul_assign_effect" : "mul_assign_result"; const char* divName = isNormalOp ? "div" : isAssignEff ? "div_assign_effect" : "div_assign_result"; const char* modName = isNormalOp ? "mod" : isAssignEff ? "mod_assign_effect" : "mod_assign_result"; const char* andName = isNormalOp ? "bitwise_and" : isAssignEff ? "bitwise_and_assign_effect" : "bitwise_and_assign_result"; const char* orName = isNormalOp ? "bitwise_or" : isAssignEff ? "bitwise_or_assign_effect" : "bitwise_or_assign_result"; const char* xorName = isNormalOp ? "bitwise_xor" : isAssignEff ? "bitwise_xor_assign_effect" : "bitwise_xor_assign_result"; const char* leftShiftName = isNormalOp ? "left_shift" : isAssignEff ? "left_shift_assign_effect" : "left_shift_assign_result"; const char* rightShiftName = isNormalOp ? "right_shift" : isAssignEff ? "right_shift_assign_effect" : "right_shift_assign_result"; const char* addOp = isNormalOp ? "+" : "+="; const char* subOp = isNormalOp ? "-" : "-="; const char* mulOp = isNormalOp ? "*" : "*="; const char* divOp = isNormalOp ? "/" : "/="; const char* modOp = isNormalOp ? "%" : "%="; const char* andOp = isNormalOp ? "&" : "&="; const char* orOp = isNormalOp ? "|" : "|="; const char* xorOp = isNormalOp ? "^" : "^="; const char* leftShiftOp = isNormalOp ? "<<" : "<<="; const char* rightShiftOp = isNormalOp ? ">>" : ">>="; // Pointer to appropriate OperInfo function. BuiltinFuncInfo (*operInfoFunc)(const char*, const char*, ValueType, Value, Value, Value, const FloatScalar&, const FloatScalar&, deUint32, ShaderEvalFunc, ShaderEvalFunc, ShaderEvalFunc, ShaderEvalFunc) = isAssignEff ? BuiltinSideEffOperInfo : BuiltinOperInfo; DE_ASSERT(operInfoFunc != DE_NULL); // The following cases will be added for each operator, precision and fundamental type (float, int, uint) combination, where applicable: // gentype gentype // vector scalar // For normal (non-assigning) operators only: // scalar vector // The add operator. binaryOpGroup << operInfoFunc(addName, addOp, GT, Value(GT, -1.0f, 1.0f), Value(GT, -1.0f, 1.0f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, FLOAT_GENTYPE_FUNCS(add)) << operInfoFunc(addName, addOp, IGT, Value(IGT, -4.0f, 6.0f), Value(IGT, -6.0f, 5.0f), notUsed, 0.1f, 0.5f, PRECMASK_LOWP_MEDIUMP, INT_GENTYPE_FUNCS(add)) << operInfoFunc(addName, addOp, IGT, Value(IGT, -2e9f, 2e9f), Value(IGT, -2e9f, 2e9f), notUsed, 4e-10f, 0.5f, PRECMASK_HIGHP, INT_GENTYPE_FUNCS(add)) << operInfoFunc(addName, addOp, UGT, Value(UGT, 0.0f, 1e2f), Value(UGT, 0.0f, 1e2f), notUsed, 5e-3f, 0.0f, PRECMASK_LOWP_MEDIUMP, UINT_GENTYPE_FUNCS(add)) << operInfoFunc(addName, addOp, UGT, Value(UGT, 0.0f, 4e9f), Value(UGT, 0.0f, 4e9f), notUsed, 2e-10f, 0.0f, PRECMASK_HIGHP, UINT_GENTYPE_FUNCS(add)) << operInfoFunc(addName, addOp, FV, Value(FV, -1.0f, 1.0f), Value(F, -1.0f, 1.0f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, FLOAT_VEC_FUNCS(addVecScalar)) << operInfoFunc(addName, addOp, IV, Value(IV, -4.0f, 6.0f), Value(I, -6.0f, 5.0f), notUsed, 0.1f, 0.5f, PRECMASK_LOWP_MEDIUMP, INT_VEC_FUNCS(addVecScalar)) << operInfoFunc(addName, addOp, IV, Value(IV, -2e9f, 2e9f), Value(I, -2e9f, 2e9f), notUsed, 4e-10f, 0.5f, PRECMASK_HIGHP, INT_VEC_FUNCS(addVecScalar)) << operInfoFunc(addName, addOp, UV, Value(UV, 0.0f, 1e2f), Value(U, 0.0f, 1e2f), notUsed, 5e-3f, 0.0f, PRECMASK_LOWP_MEDIUMP, UINT_VEC_FUNCS(addVecScalar)) << operInfoFunc(addName, addOp, UV, Value(UV, 0.0f, 4e9f), Value(U, 0.0f, 4e9f), notUsed, 2e-10f, 0.0f, PRECMASK_HIGHP, UINT_VEC_FUNCS(addVecScalar)); if (isNormalOp) binaryOpGroup << operInfoFunc(addName, addOp, FV, Value(F, -1.0f, 1.0f), Value(FV, -1.0f, 1.0f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, FLOAT_VEC_FUNCS(addScalarVec)) << operInfoFunc(addName, addOp, IV, Value(I, -4.0f, 6.0f), Value(IV, -6.0f, 5.0f), notUsed, 0.1f, 0.5f, PRECMASK_LOWP_MEDIUMP, INT_VEC_FUNCS(addScalarVec)) << operInfoFunc(addName, addOp, IV, Value(I, -2e9f, 2e9f), Value(IV, -2e9f, 2e9f), notUsed, 4e-10f, 0.5f, PRECMASK_HIGHP, INT_VEC_FUNCS(addScalarVec)) << operInfoFunc(addName, addOp, UV, Value(U, 0.0f, 1e2f), Value(UV, 0.0f, 1e2f), notUsed, 5e-3f, 0.0f, PRECMASK_LOWP_MEDIUMP, UINT_VEC_FUNCS(addScalarVec)) << operInfoFunc(addName, addOp, UV, Value(U, 0.0f, 4e9f), Value(UV, 0.0f, 4e9f), notUsed, 2e-10f, 0.0f, PRECMASK_HIGHP, UINT_VEC_FUNCS(addScalarVec)); // The subtract operator. binaryOpGroup << operInfoFunc(subName, subOp, GT, Value(GT, -1.0f, 1.0f), Value(GT, -1.0f, 1.0f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, FLOAT_GENTYPE_FUNCS(sub)) << operInfoFunc(subName, subOp, IGT, Value(IGT, -4.0f, 6.0f), Value(IGT, -6.0f, 5.0f), notUsed, 0.1f, 0.5f, PRECMASK_LOWP_MEDIUMP, INT_GENTYPE_FUNCS(sub)) << operInfoFunc(subName, subOp, IGT, Value(IGT, -2e9f, 2e9f), Value(IGT, -2e9f, 2e9f), notUsed, 4e-10f, 0.5f, PRECMASK_HIGHP, INT_GENTYPE_FUNCS(sub)) << operInfoFunc(subName, subOp, UGT, Value(UGT, 1e2f, 2e2f), Value(UGT, 0.0f, 1e2f), notUsed, 5e-3f, 0.0f, PRECMASK_LOWP_MEDIUMP, UINT_GENTYPE_FUNCS(sub)) << operInfoFunc(subName, subOp, UGT, Value(UGT, .5e9f, 3.7e9f), Value(UGT, 0.0f, 3.9e9f), notUsed, 2e-10f, 0.0f, PRECMASK_HIGHP, UINT_GENTYPE_FUNCS(sub)) << operInfoFunc(subName, subOp, FV, Value(FV, -1.0f, 1.0f), Value(F, -1.0f, 1.0f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, FLOAT_VEC_FUNCS(subVecScalar)) << operInfoFunc(subName, subOp, IV, Value(IV, -4.0f, 6.0f), Value(I, -6.0f, 5.0f), notUsed, 0.1f, 0.5f, PRECMASK_LOWP_MEDIUMP, INT_VEC_FUNCS(subVecScalar)) << operInfoFunc(subName, subOp, IV, Value(IV, -2e9f, 2e9f), Value(I, -2e9f, 2e9f), notUsed, 4e-10f, 0.5f, PRECMASK_HIGHP, INT_VEC_FUNCS(subVecScalar)) << operInfoFunc(subName, subOp, UV, Value(UV, 1e2f, 2e2f), Value(U, 0.0f, 1e2f), notUsed, 5e-3f, 0.0f, PRECMASK_LOWP_MEDIUMP, UINT_VEC_FUNCS(subVecScalar)) << operInfoFunc(subName, subOp, UV, Value(UV, 0.0f, 4e9f), Value(U, 0.0f, 4e9f), notUsed, 2e-10f, 0.0f, PRECMASK_HIGHP, UINT_VEC_FUNCS(subVecScalar)); if (isNormalOp) binaryOpGroup << operInfoFunc(subName, subOp, FV, Value(F, -1.0f, 1.0f), Value(FV, -1.0f, 1.0f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, FLOAT_VEC_FUNCS(subScalarVec)) << operInfoFunc(subName, subOp, IV, Value(I, -4.0f, 6.0f), Value(IV, -6.0f, 5.0f), notUsed, 0.1f, 0.5f, PRECMASK_LOWP_MEDIUMP, INT_VEC_FUNCS(subScalarVec)) << operInfoFunc(subName, subOp, IV, Value(I, -2e9f, 2e9f), Value(IV, -2e9f, 2e9f), notUsed, 4e-10f, 0.5f, PRECMASK_HIGHP, INT_VEC_FUNCS(subScalarVec)) << operInfoFunc(subName, subOp, UV, Value(U, 1e2f, 2e2f), Value(UV, 0.0f, 1e2f), notUsed, 5e-3f, 0.0f, PRECMASK_LOWP_MEDIUMP, UINT_VEC_FUNCS(subScalarVec)) << operInfoFunc(subName, subOp, UV, Value(U, 0.0f, 4e9f), Value(UV, 0.0f, 4e9f), notUsed, 2e-10f, 0.0f, PRECMASK_HIGHP, UINT_VEC_FUNCS(subScalarVec)); // The multiply operator. binaryOpGroup << operInfoFunc(mulName, mulOp, GT, Value(GT, -1.0f, 1.0f), Value(GT, -1.0f, 1.0f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, FLOAT_GENTYPE_FUNCS(mul)) << operInfoFunc(mulName, mulOp, IGT, Value(IGT, -4.0f, 6.0f), Value(IGT, -6.0f, 5.0f), notUsed, 0.1f, 0.5f, PRECMASK_LOWP_MEDIUMP, INT_GENTYPE_FUNCS(mul)) << operInfoFunc(mulName, mulOp, IGT, Value(IGT, -3e5f, 3e5f), Value(IGT, -3e4f, 3e4f), notUsed, 4e-10f, 0.5f, PRECMASK_HIGHP, INT_GENTYPE_FUNCS(mul)) << operInfoFunc(mulName, mulOp, UGT, Value(UGT, 0.0f, 16.0f), Value(UGT, 0.0f, 16.0f), notUsed, 4e-3f, 0.0f, PRECMASK_LOWP_MEDIUMP, UINT_GENTYPE_FUNCS(mul)) << operInfoFunc(mulName, mulOp, UGT, Value(UGT, 0.0f, 6e5f), Value(UGT, 0.0f, 6e4f), notUsed, 2e-10f, 0.0f, PRECMASK_HIGHP, UINT_GENTYPE_FUNCS(mul)) << operInfoFunc(mulName, mulOp, FV, Value(FV, -1.0f, 1.0f), Value(F, -1.0f, 1.0f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, FLOAT_VEC_FUNCS(mulVecScalar)) << operInfoFunc(mulName, mulOp, IV, Value(IV, -4.0f, 6.0f), Value(I, -6.0f, 5.0f), notUsed, 0.1f, 0.5f, PRECMASK_LOWP_MEDIUMP, INT_VEC_FUNCS(mulVecScalar)) << operInfoFunc(mulName, mulOp, IV, Value(IV, -3e5f, 3e5f), Value(I, -3e4f, 3e4f), notUsed, 4e-10f, 0.5f, PRECMASK_HIGHP, INT_VEC_FUNCS(mulVecScalar)) << operInfoFunc(mulName, mulOp, UV, Value(UV, 0.0f, 16.0f), Value(U, 0.0f, 16.0f), notUsed, 4e-3f, 0.0f, PRECMASK_LOWP_MEDIUMP, UINT_VEC_FUNCS(mulVecScalar)) << operInfoFunc(mulName, mulOp, UV, Value(UV, 0.0f, 6e5f), Value(U, 0.0f, 6e4f), notUsed, 2e-10f, 0.0f, PRECMASK_HIGHP, UINT_VEC_FUNCS(mulVecScalar)); if (isNormalOp) binaryOpGroup << operInfoFunc(mulName, mulOp, FV, Value(F, -1.0f, 1.0f), Value(FV, -1.0f, 1.0f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, FLOAT_VEC_FUNCS(mulScalarVec)) << operInfoFunc(mulName, mulOp, IV, Value(I, -4.0f, 6.0f), Value(IV, -6.0f, 5.0f), notUsed, 0.1f, 0.5f, PRECMASK_LOWP_MEDIUMP, INT_VEC_FUNCS(mulScalarVec)) << operInfoFunc(mulName, mulOp, IV, Value(I, -3e5f, 3e5f), Value(IV, -3e4f, 3e4f), notUsed, 4e-10f, 0.5f, PRECMASK_HIGHP, INT_VEC_FUNCS(mulScalarVec)) << operInfoFunc(mulName, mulOp, UV, Value(U, 0.0f, 16.0f), Value(UV, 0.0f, 16.0f), notUsed, 4e-3f, 0.0f, PRECMASK_LOWP_MEDIUMP, UINT_VEC_FUNCS(mulScalarVec)) << operInfoFunc(mulName, mulOp, UV, Value(U, 0.0f, 6e5f), Value(UV, 0.0f, 6e4f), notUsed, 2e-10f, 0.0f, PRECMASK_HIGHP, UINT_VEC_FUNCS(mulScalarVec)); // The divide operator. binaryOpGroup << operInfoFunc(divName, divOp, GT, Value(GT, -1.0f, 1.0f), Value(GT, -2.0f, -0.5f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, FLOAT_GENTYPE_FUNCS(div)) << operInfoFunc(divName, divOp, IGT, Value(IGT, 24.0f, 24.0f), Value(IGT, -4.0f, -1.0f), notUsed, 0.04f, 1.0f, PRECMASK_LOWP_MEDIUMP, INT_GENTYPE_FUNCS(div)) << operInfoFunc(divName, divOp, IGT, Value(IGT, 40320.0f, 40320.0f), Value(IGT, -8.0f, -1.0f), notUsed, 1e-5f, 0.5f, PRECMASK_HIGHP, INT_GENTYPE_FUNCS(div)) << operInfoFunc(divName, divOp, UGT, Value(UGT, 0.0f, 24.0f), Value(UGT, 1.0f, 4.0f), notUsed, 0.04f, 0.0f, PRECMASK_LOWP_MEDIUMP, UINT_GENTYPE_FUNCS(div)) << operInfoFunc(divName, divOp, UGT, Value(UGT, 0.0f, 40320.0f), Value(UGT, 1.0f, 8.0f), notUsed, 1e-5f, 0.0f, PRECMASK_HIGHP, UINT_GENTYPE_FUNCS(div)) << operInfoFunc(divName, divOp, FV, Value(FV, -1.0f, 1.0f), Value(F, -2.0f, -0.5f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, FLOAT_VEC_FUNCS(divVecScalar)) << operInfoFunc(divName, divOp, IV, Value(IV, 24.0f, 24.0f), Value(I, -4.0f, -1.0f), notUsed, 0.04f, 1.0f, PRECMASK_LOWP_MEDIUMP, INT_VEC_FUNCS(divVecScalar)) << operInfoFunc(divName, divOp, IV, Value(IV, 40320.0f, 40320.0f), Value(I, -8.0f, -1.0f), notUsed, 1e-5f, 0.5f, PRECMASK_HIGHP, INT_VEC_FUNCS(divVecScalar)) << operInfoFunc(divName, divOp, UV, Value(UV, 0.0f, 24.0f), Value(U, 1.0f, 4.0f), notUsed, 0.04f, 0.0f, PRECMASK_LOWP_MEDIUMP, UINT_VEC_FUNCS(divVecScalar)) << operInfoFunc(divName, divOp, UV, Value(UV, 0.0f, 40320.0f), Value(U, 1.0f, 8.0f), notUsed, 1e-5f, 0.0f, PRECMASK_HIGHP, UINT_VEC_FUNCS(divVecScalar)); if (isNormalOp) binaryOpGroup << operInfoFunc(divName, divOp, FV, Value(F, -1.0f, 1.0f), Value(FV, -2.0f, -0.5f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, FLOAT_VEC_FUNCS(divScalarVec)) << operInfoFunc(divName, divOp, IV, Value(I, 24.0f, 24.0f), Value(IV, -4.0f, -1.0f), notUsed, 0.04f, 1.0f, PRECMASK_LOWP_MEDIUMP, INT_VEC_FUNCS(divScalarVec)) << operInfoFunc(divName, divOp, IV, Value(I, 40320.0f, 40320.0f), Value(IV, -8.0f, -1.0f), notUsed, 1e-5f, 0.5f, PRECMASK_HIGHP, INT_VEC_FUNCS(divScalarVec)) << operInfoFunc(divName, divOp, UV, Value(U, 0.0f, 24.0f), Value(UV, 1.0f, 4.0f), notUsed, 0.04f, 0.0f, PRECMASK_LOWP_MEDIUMP, UINT_VEC_FUNCS(divScalarVec)) << operInfoFunc(divName, divOp, UV, Value(U, 0.0f, 40320.0f), Value(UV, 1.0f, 8.0f), notUsed, 1e-5f, 0.0f, PRECMASK_HIGHP, UINT_VEC_FUNCS(divScalarVec)); // The modulus operator. binaryOpGroup << operInfoFunc(modName, modOp, IGT, Value(IGT, 0.0f, 6.0f), Value(IGT, 1.1f, 6.1f), notUsed, 0.25f, 0.5f, PRECMASK_LOWP_MEDIUMP, INT_GENTYPE_FUNCS(mod)) << operInfoFunc(modName, modOp, IGT, Value(IGT, 0.0f, 14.0f), Value(IGT, 1.1f, 11.1f), notUsed, 0.1f, 0.5f, PRECMASK_HIGHP, INT_GENTYPE_FUNCS(mod)) << operInfoFunc(modName, modOp, UGT, Value(UGT, 0.0f, 6.0f), Value(UGT, 1.1f, 6.1f), notUsed, 0.25f, 0.0f, PRECMASK_LOWP_MEDIUMP, UINT_GENTYPE_FUNCS(mod)) << operInfoFunc(modName, modOp, UGT, Value(UGT, 0.0f, 24.0f), Value(UGT, 1.1f, 11.1f), notUsed, 0.1f, 0.0f, PRECMASK_HIGHP, UINT_GENTYPE_FUNCS(mod)) << operInfoFunc(modName, modOp, IV, Value(IV, 0.0f, 6.0f), Value(I, 1.1f, 6.1f), notUsed, 0.25f, 0.5f, PRECMASK_LOWP_MEDIUMP, INT_VEC_FUNCS(modVecScalar)) << operInfoFunc(modName, modOp, IV, Value(IV, 0.0f, 6.0f), Value(I, 1.1f, 11.1f), notUsed, 0.1f, 0.5f, PRECMASK_HIGHP, INT_VEC_FUNCS(modVecScalar)) << operInfoFunc(modName, modOp, UV, Value(UV, 0.0f, 6.0f), Value(U, 1.1f, 6.1f), notUsed, 0.25f, 0.0f, PRECMASK_LOWP_MEDIUMP, UINT_VEC_FUNCS(modVecScalar)) << operInfoFunc(modName, modOp, UV, Value(UV, 0.0f, 24.0f), Value(U, 1.1f, 11.1f), notUsed, 0.1f, 0.0f, PRECMASK_HIGHP, UINT_VEC_FUNCS(modVecScalar)); if (isNormalOp) binaryOpGroup << operInfoFunc(modName, modOp, IV, Value(I, 0.0f, 6.0f), Value(IV, 1.1f, 6.1f), notUsed, 0.25f, 0.5f, PRECMASK_LOWP_MEDIUMP, INT_VEC_FUNCS(modScalarVec)) << operInfoFunc(modName, modOp, IV, Value(I, 0.0f, 6.0f), Value(IV, 1.1f, 11.1f), notUsed, 0.1f, 0.5f, PRECMASK_HIGHP, INT_VEC_FUNCS(modScalarVec)) << operInfoFunc(modName, modOp, UV, Value(U, 0.0f, 6.0f), Value(UV, 1.1f, 6.1f), notUsed, 0.25f, 0.0f, PRECMASK_LOWP_MEDIUMP, UINT_VEC_FUNCS(modScalarVec)) << operInfoFunc(modName, modOp, UV, Value(U, 0.0f, 24.0f), Value(UV, 1.1f, 11.1f), notUsed, 0.1f, 0.0f, PRECMASK_HIGHP, UINT_VEC_FUNCS(modScalarVec)); // The bitwise and operator. binaryOpGroup << operInfoFunc(andName, andOp, IGT, Value(IGT, -16.0f, 16.0f), Value(IGT, -16.0f, 16.0f), notUsed, 0.03f, 0.5f, PRECMASK_LOWP_MEDIUMP, INT_GENTYPE_FUNCS(bitwiseAnd)) << operInfoFunc(andName, andOp, IGT, Value(IGT, -2e9f, 2e9f), Value(IGT, -2e9f, 2e9f), notUsed, 4e-10f, 0.5f, PRECMASK_HIGHP, INT_GENTYPE_FUNCS(bitwiseAnd)) << operInfoFunc(andName, andOp, UGT, Value(UGT, 0.0f, 32.0f), Value(UGT, 0.0f, 32.0f), notUsed, 0.03f, 0.0f, PRECMASK_LOWP_MEDIUMP, UINT_GENTYPE_FUNCS(bitwiseAnd)) << operInfoFunc(andName, andOp, UGT, Value(UGT, 0.0f, 4e9f), Value(UGT, 0.0f, 4e9f), notUsed, 2e-10f, 0.0f, PRECMASK_HIGHP, UINT_GENTYPE_FUNCS(bitwiseAnd)) << operInfoFunc(andName, andOp, IV, Value(IV, -16.0f, 16.0f), Value(I, -16.0f, 16.0f), notUsed, 0.03f, 0.5f, PRECMASK_LOWP_MEDIUMP, INT_VEC_FUNCS(bitwiseAndVecScalar)) << operInfoFunc(andName, andOp, IV, Value(IV, -2e9f, 2e9f), Value(I, -2e9f, 2e9f), notUsed, 4e-10f, 0.5f, PRECMASK_HIGHP, INT_VEC_FUNCS(bitwiseAndVecScalar)) << operInfoFunc(andName, andOp, UV, Value(UV, 0.0f, 32.0f), Value(U, 0.0f, 32.0f), notUsed, 0.03f, 0.0f, PRECMASK_LOWP_MEDIUMP, UINT_VEC_FUNCS(bitwiseAndVecScalar)) << operInfoFunc(andName, andOp, UV, Value(UV, 0.0f, 4e9f), Value(U, 0.0f, 4e9f), notUsed, 2e-10f, 0.0f, PRECMASK_HIGHP, UINT_VEC_FUNCS(bitwiseAndVecScalar)); if (isNormalOp) binaryOpGroup << operInfoFunc(andName, andOp, IV, Value(I, -16.0f, 16.0f), Value(IV, -16.0f, 16.0f), notUsed, 0.03f, 0.5f, PRECMASK_LOWP_MEDIUMP, INT_VEC_FUNCS(bitwiseAndScalarVec)) << operInfoFunc(andName, andOp, IV, Value(I, -2e9f, 2e9f), Value(IV, -2e9f, 2e9f), notUsed, 4e-10f, 0.5f, PRECMASK_HIGHP, INT_VEC_FUNCS(bitwiseAndScalarVec)) << operInfoFunc(andName, andOp, UV, Value(U, 0.0f, 32.0f), Value(UV, 0.0f, 32.0f), notUsed, 0.03f, 0.0f, PRECMASK_LOWP_MEDIUMP, UINT_VEC_FUNCS(bitwiseAndScalarVec)) << operInfoFunc(andName, andOp, UV, Value(U, 0.0f, 4e9f), Value(UV, 0.0f, 4e9f), notUsed, 2e-10f, 0.0f, PRECMASK_HIGHP, UINT_VEC_FUNCS(bitwiseAndScalarVec)); // The bitwise or operator. binaryOpGroup << operInfoFunc(orName, orOp, IGT, Value(IGT, -16.0f, 16.0f), Value(IGT, -16.0f, 16.0f), notUsed, 0.03f, 0.5f, PRECMASK_LOWP_MEDIUMP, INT_GENTYPE_FUNCS(bitwiseOr)) << operInfoFunc(orName, orOp, IGT, Value(IGT, -2e9f, 2e9f), Value(IGT, -2e9f, 2e9f), notUsed, 4e-10f, 0.5f, PRECMASK_HIGHP, INT_GENTYPE_FUNCS(bitwiseOr)) << operInfoFunc(orName, orOp, UGT, Value(UGT, 0.0f, 32.0f), Value(UGT, 0.0f, 32.0f), notUsed, 0.03f, 0.0f, PRECMASK_LOWP_MEDIUMP, UINT_GENTYPE_FUNCS(bitwiseOr)) << operInfoFunc(orName, orOp, UGT, Value(UGT, 0.0f, 4e9f), Value(UGT, 0.0f, 4e9f), notUsed, 2e-10f, 0.0f, PRECMASK_HIGHP, UINT_GENTYPE_FUNCS(bitwiseOr)) << operInfoFunc(orName, orOp, IV, Value(IV, -16.0f, 16.0f), Value(I, -16.0f, 16.0f), notUsed, 0.03f, 0.5f, PRECMASK_LOWP_MEDIUMP, INT_VEC_FUNCS(bitwiseOrVecScalar)) << operInfoFunc(orName, orOp, IV, Value(IV, -2e9f, 2e9f), Value(I, -2e9f, 2e9f), notUsed, 4e-10f, 0.5f, PRECMASK_HIGHP, INT_VEC_FUNCS(bitwiseOrVecScalar)) << operInfoFunc(orName, orOp, UV, Value(UV, 0.0f, 32.0f), Value(U, 0.0f, 32.0f), notUsed, 0.03f, 0.0f, PRECMASK_LOWP_MEDIUMP, UINT_VEC_FUNCS(bitwiseOrVecScalar)) << operInfoFunc(orName, orOp, UV, Value(UV, 0.0f, 4e9f), Value(U, 0.0f, 4e9f), notUsed, 2e-10f, 0.0f, PRECMASK_HIGHP, UINT_VEC_FUNCS(bitwiseOrVecScalar)); if (isNormalOp) binaryOpGroup << operInfoFunc(orName, orOp, IV, Value(I, -16.0f, 16.0f), Value(IV, -16.0f, 16.0f), notUsed, 0.03f, 0.5f, PRECMASK_LOWP_MEDIUMP, INT_VEC_FUNCS(bitwiseOrScalarVec)) << operInfoFunc(orName, orOp, IV, Value(I, -2e9f, 2e9f), Value(IV, -2e9f, 2e9f), notUsed, 4e-10f, 0.5f, PRECMASK_HIGHP, INT_VEC_FUNCS(bitwiseOrScalarVec)) << operInfoFunc(orName, orOp, UV, Value(U, 0.0f, 32.0f), Value(UV, 0.0f, 32.0f), notUsed, 0.03f, 0.0f, PRECMASK_LOWP_MEDIUMP, UINT_VEC_FUNCS(bitwiseOrScalarVec)) << operInfoFunc(orName, orOp, UV, Value(U, 0.0f, 4e9f), Value(UV, 0.0f, 4e9f), notUsed, 2e-10f, 0.0f, PRECMASK_HIGHP, UINT_VEC_FUNCS(bitwiseOrScalarVec)); // The bitwise xor operator. binaryOpGroup << operInfoFunc(xorName, xorOp, IGT, Value(IGT, -16.0f, 16.0f), Value(IGT, -16.0f, 16.0f), notUsed, 0.03f, 0.5f, PRECMASK_LOWP_MEDIUMP, INT_GENTYPE_FUNCS(bitwiseXor)) << operInfoFunc(xorName, xorOp, IGT, Value(IGT, -2e9f, 2e9f), Value(IGT, -2e9f, 2e9f), notUsed, 4e-10f, 0.5f, PRECMASK_HIGHP, INT_GENTYPE_FUNCS(bitwiseXor)) << operInfoFunc(xorName, xorOp, UGT, Value(UGT, 0.0f, 32.0f), Value(UGT, 0.0f, 32.0f), notUsed, 0.03f, 0.0f, PRECMASK_LOWP_MEDIUMP, UINT_GENTYPE_FUNCS(bitwiseXor)) << operInfoFunc(xorName, xorOp, UGT, Value(UGT, 0.0f, 4e9f), Value(UGT, 0.0f, 4e9f), notUsed, 2e-10f, 0.0f, PRECMASK_HIGHP, UINT_GENTYPE_FUNCS(bitwiseXor)) << operInfoFunc(xorName, xorOp, IV, Value(IV, -16.0f, 16.0f), Value(I, -16.0f, 16.0f), notUsed, 0.03f, 0.5f, PRECMASK_LOWP_MEDIUMP, INT_VEC_FUNCS(bitwiseXorVecScalar)) << operInfoFunc(xorName, xorOp, IV, Value(IV, -2e9f, 2e9f), Value(I, -2e9f, 2e9f), notUsed, 4e-10f, 0.5f, PRECMASK_HIGHP, INT_VEC_FUNCS(bitwiseXorVecScalar)) << operInfoFunc(xorName, xorOp, UV, Value(UV, 0.0f, 32.0f), Value(U, 0.0f, 32.0f), notUsed, 0.03f, 0.0f, PRECMASK_LOWP_MEDIUMP, UINT_VEC_FUNCS(bitwiseXorVecScalar)) << operInfoFunc(xorName, xorOp, UV, Value(UV, 0.0f, 4e9f), Value(U, 0.0f, 4e9f), notUsed, 2e-10f, 0.0f, PRECMASK_HIGHP, UINT_VEC_FUNCS(bitwiseXorVecScalar)); if (isNormalOp) binaryOpGroup << operInfoFunc(xorName, xorOp, IV, Value(I, -16.0f, 16.0f), Value(IV, -16.0f, 16.0f), notUsed, 0.03f, 0.5f, PRECMASK_LOWP_MEDIUMP, INT_VEC_FUNCS(bitwiseXorScalarVec)) << operInfoFunc(xorName, xorOp, IV, Value(I, -2e9f, 2e9f), Value(IV, -2e9f, 2e9f), notUsed, 4e-10f, 0.5f, PRECMASK_HIGHP, INT_VEC_FUNCS(bitwiseXorScalarVec)) << operInfoFunc(xorName, xorOp, UV, Value(U, 0.0f, 32.0f), Value(UV, 0.0f, 32.0f), notUsed, 0.03f, 0.0f, PRECMASK_LOWP_MEDIUMP, UINT_VEC_FUNCS(bitwiseXorScalarVec)) << operInfoFunc(xorName, xorOp, UV, Value(U, 0.0f, 4e9f), Value(UV, 0.0f, 4e9f), notUsed, 2e-10f, 0.0f, PRECMASK_HIGHP, UINT_VEC_FUNCS(bitwiseXorScalarVec)); // The left shift operator. Second operand (shift amount) can be either int or uint, even for uint and int first operand, respectively. for (int isSignedAmount = 0; isSignedAmount <= 1; isSignedAmount++) { ValueType gType = isSignedAmount == 0 ? UGT : IGT; ValueType sType = isSignedAmount == 0 ? U : I; binaryOpGroup << operInfoFunc(leftShiftName, leftShiftOp, IGT, Value(IGT, -7.0f, 7.0f), Value(gType, 0.0f, 4.0f), notUsed, 4e-3f, 0.5f, PRECMASK_LOWP_MEDIUMP, INT_GENTYPE_FUNCS(leftShift)) << operInfoFunc(leftShiftName, leftShiftOp, IGT, Value(IGT, -7.0f, 7.0f), Value(gType, 0.0f, 27.0f), notUsed, 5e-10f, 0.5f, PRECMASK_HIGHP, INT_GENTYPE_FUNCS(leftShift)) << operInfoFunc(leftShiftName, leftShiftOp, UGT, Value(UGT, 0.0f, 7.0f), Value(gType, 0.0f, 5.0f), notUsed, 4e-3f, 0.0f, PRECMASK_LOWP_MEDIUMP, UINT_GENTYPE_FUNCS(leftShift)) << operInfoFunc(leftShiftName, leftShiftOp, UGT, Value(UGT, 0.0f, 7.0f), Value(gType, 0.0f, 28.0f), notUsed, 5e-10f, 0.0f, PRECMASK_HIGHP, UINT_GENTYPE_FUNCS(leftShift)) << operInfoFunc(leftShiftName, leftShiftOp, IV, Value(IV, -7.0f, 7.0f), Value(sType, 0.0f, 4.0f), notUsed, 4e-3f, 0.5f, PRECMASK_LOWP_MEDIUMP, INT_VEC_FUNCS(leftShiftVecScalar)) << operInfoFunc(leftShiftName, leftShiftOp, IV, Value(IV, -7.0f, 7.0f), Value(sType, 0.0f, 27.0f), notUsed, 5e-10f, 0.5f, PRECMASK_HIGHP, INT_VEC_FUNCS(leftShiftVecScalar)) << operInfoFunc(leftShiftName, leftShiftOp, UV, Value(UV, 0.0f, 7.0f), Value(sType, 0.0f, 5.0f), notUsed, 4e-3f, 0.0f, PRECMASK_LOWP_MEDIUMP, UINT_VEC_FUNCS(leftShiftVecScalar)) << operInfoFunc(leftShiftName, leftShiftOp, UV, Value(UV, 0.0f, 7.0f), Value(sType, 0.0f, 28.0f), notUsed, 5e-10f, 0.0f, PRECMASK_HIGHP, UINT_VEC_FUNCS(leftShiftVecScalar)); } // The right shift operator. Second operand (shift amount) can be either int or uint, even for uint and int first operand, respectively. for (int isSignedAmount = 0; isSignedAmount <= 1; isSignedAmount++) { ValueType gType = isSignedAmount == 0 ? UGT : IGT; ValueType sType = isSignedAmount == 0 ? U : I; binaryOpGroup << operInfoFunc(rightShiftName, rightShiftOp, IGT, Value(IGT, -127.0f, 127.0f), Value(gType, 0.0f, 8.0f), notUsed, 4e-3f, 0.5f, PRECMASK_LOWP_MEDIUMP, INT_GENTYPE_FUNCS(rightShift)) << operInfoFunc(rightShiftName, rightShiftOp, IGT, Value(IGT, -2e9f, 2e9f), Value(gType, 0.0f, 31.0f), notUsed, 5e-10f, 0.5f, PRECMASK_HIGHP, INT_GENTYPE_FUNCS(rightShift)) << operInfoFunc(rightShiftName, rightShiftOp, UGT, Value(UGT, 0.0f, 255.0f), Value(gType, 0.0f, 8.0f), notUsed, 4e-3f, 0.0f, PRECMASK_LOWP_MEDIUMP, UINT_GENTYPE_FUNCS(rightShift)) << operInfoFunc(rightShiftName, rightShiftOp, UGT, Value(UGT, 0.0f, 4e9f), Value(gType, 0.0f, 31.0f), notUsed, 5e-10f, 0.0f, PRECMASK_HIGHP, UINT_GENTYPE_FUNCS(rightShift)) << operInfoFunc(rightShiftName, rightShiftOp, IV, Value(IV, -127.0f, 127.0f), Value(sType, 0.0f, 8.0f), notUsed, 4e-3f, 0.5f, PRECMASK_LOWP_MEDIUMP, INT_VEC_FUNCS(rightShiftVecScalar)) << operInfoFunc(rightShiftName, rightShiftOp, IV, Value(IV, -2e9f, 2e9f), Value(sType, 0.0f, 31.0f), notUsed, 5e-10f, 0.5f, PRECMASK_HIGHP, INT_VEC_FUNCS(rightShiftVecScalar)) << operInfoFunc(rightShiftName, rightShiftOp, UV, Value(UV, 0.0f, 255.0f), Value(sType, 0.0f, 8.0f), notUsed, 4e-3f, 0.0f, PRECMASK_LOWP_MEDIUMP, UINT_VEC_FUNCS(rightShiftVecScalar)) << operInfoFunc(rightShiftName, rightShiftOp, UV, Value(UV, 0.0f, 4e9f), Value(sType, 0.0f, 31.0f), notUsed, 5e-10f, 0.0f, PRECMASK_HIGHP, UINT_VEC_FUNCS(rightShiftVecScalar)); } } // Rest of binary operators. binaryOpGroup // Scalar relational operators. << BuiltinOperInfo("less", "<", B, Value(F, -1.0f, 1.0f), Value(F, -1.0f, 1.0f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, eval_lessThan_float, DE_NULL, DE_NULL, DE_NULL) << BuiltinOperInfo("less", "<", B, Value(I, -5.0f, 5.0f), Value(I, -5.0f, 5.0f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, eval_lessThan_int, DE_NULL, DE_NULL, DE_NULL) << BuiltinOperInfo("less", "<", B, Value(U, 0.0f, 16.0f), Value(U, 0.0f, 16.0f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, eval_lessThan_uint, DE_NULL, DE_NULL, DE_NULL) << BuiltinOperInfo("less_or_equal", "<=", B, Value(F, -1.0f, 1.0f), Value(F, -1.0f, 1.0f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, eval_lessThanEqual_float, DE_NULL, DE_NULL, DE_NULL) << BuiltinOperInfo("less_or_equal", "<=", B, Value(I, -5.0f, 5.0f), Value(I, -5.0f, 5.0f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, eval_lessThanEqual_int, DE_NULL, DE_NULL, DE_NULL) << BuiltinOperInfo("less_or_equal", "<=", B, Value(U, 0.0f, 16.0f), Value(U, 0.0f, 16.0f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, eval_lessThanEqual_uint, DE_NULL, DE_NULL, DE_NULL) << BuiltinOperInfo("greater", ">", B, Value(F, -1.0f, 1.0f), Value(F, -1.0f, 1.0f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, eval_greaterThan_float, DE_NULL, DE_NULL, DE_NULL) << BuiltinOperInfo("greater", ">", B, Value(I, -5.0f, 5.0f), Value(I, -5.0f, 5.0f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, eval_greaterThan_int, DE_NULL, DE_NULL, DE_NULL) << BuiltinOperInfo("greater", ">", B, Value(U, 0.0f, 16.0f), Value(U, 0.0f, 16.0f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, eval_greaterThan_uint, DE_NULL, DE_NULL, DE_NULL) << BuiltinOperInfo("greater_or_equal", ">=", B, Value(F, -1.0f, 1.0f), Value(F, -1.0f, 1.0f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, eval_greaterThanEqual_float, DE_NULL, DE_NULL, DE_NULL) << BuiltinOperInfo("greater_or_equal", ">=", B, Value(I, -5.0f, 5.0f), Value(I, -5.0f, 5.0f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, eval_greaterThanEqual_int, DE_NULL, DE_NULL, DE_NULL) << BuiltinOperInfo("greater_or_equal", ">=", B, Value(U, 0.0f, 16.0f), Value(U, 0.0f, 16.0f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, eval_greaterThanEqual_uint, DE_NULL, DE_NULL, DE_NULL) // Equality comparison operators. << BuiltinOperInfo("equal", "==", B, Value(GT, -1.0f, 1.0f), Value(GT, -1.0f, 1.0f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, FLOAT_GENTYPE_FUNCS(allEqual)) << BuiltinOperInfo("equal", "==", B, Value(IGT, -5.5f, 4.7f), Value(IGT, -2.1f, 0.1f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, INT_GENTYPE_FUNCS(allEqual)) << BuiltinOperInfo("equal", "==", B, Value(UGT, 0.0f, 8.0f), Value(UGT, 3.5f, 4.5f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, UINT_GENTYPE_FUNCS(allEqual)) << BuiltinOperInfo("equal", "==", B, Value(BGT, -2.1f, 2.1f), Value(BGT, -1.1f, 3.0f), notUsed, 1.0f, 0.0f, PRECMASK_NA, BOOL_GENTYPE_FUNCS(allEqual)) << BuiltinOperInfo("not_equal", "!=", B, Value(GT, -1.0f, 1.0f), Value(GT, -1.0f, 1.0f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, FLOAT_GENTYPE_FUNCS(anyNotEqual)) << BuiltinOperInfo("not_equal", "!=", B, Value(IGT, -5.5f, 4.7f), Value(IGT, -2.1f, 0.1f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, INT_GENTYPE_FUNCS(anyNotEqual)) << BuiltinOperInfo("not_equal", "!=", B, Value(UGT, 0.0f, 8.0f), Value(UGT, 3.5f, 4.5f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, UINT_GENTYPE_FUNCS(anyNotEqual)) << BuiltinOperInfo("not_equal", "!=", B, Value(BGT, -2.1f, 2.1f), Value(BGT, -1.1f, 3.0f), notUsed, 1.0f, 0.0f, PRECMASK_NA, BOOL_GENTYPE_FUNCS(anyNotEqual)) // Logical operators. << BuiltinOperInfo("logical_and", "&&", B, Value(B, -1.0f, 1.0f), Value(B, -1.0f, 1.0f), notUsed, 1.0f, 0.0f, PRECMASK_NA, BOOL_FUNCS(logicalAnd)) << BuiltinOperInfo("logical_or", "||", B, Value(B, -1.0f, 1.0f), Value(B, -1.0f, 1.0f), notUsed, 1.0f, 0.0f, PRECMASK_NA, BOOL_FUNCS(logicalOr)) << BuiltinOperInfo("logical_xor", "^^", B, Value(B, -1.0f, 1.0f), Value(B, -1.0f, 1.0f), notUsed, 1.0f, 0.0f, PRECMASK_NA, BOOL_FUNCS(logicalXor)); funcInfoGroups.push_back(binaryOpGroup); // 8.1 Angle and Trigonometry Functions. funcInfoGroups.push_back( BuiltinFuncGroup("angle_and_trigonometry", "Angle and trigonometry function tests.") << BuiltinFuncInfo("radians", "radians", GT, Value(GT, -1.0f, 1.0f), notUsed, notUsed, 25.0f, 0.5f, PRECMASK_MEDIUMP_HIGHP, FLOAT_GENTYPE_FUNCS(radians) ) << BuiltinFuncInfo("degrees", "degrees", GT, Value(GT, -1.0f, 1.0f), notUsed, notUsed, 0.04f, 0.5f, PRECMASK_MEDIUMP_HIGHP, FLOAT_GENTYPE_FUNCS(degrees) ) << BuiltinFuncInfo("sin", "sin", GT, Value(GT, -5.0f, 5.0f), notUsed, notUsed, 0.5f, 0.5f, PRECMASK_MEDIUMP_HIGHP, FLOAT_GENTYPE_FUNCS(sin) ) << BuiltinFuncInfo("sin", "sin", GT, Value(GT, -1.5f, 1.5f), notUsed, notUsed, 0.5f, 0.5f, PRECMASK_LOWP, FLOAT_GENTYPE_FUNCS(sin) ) << BuiltinFuncInfo("cos", "cos", GT, Value(GT, -5.0f, 5.0f), notUsed, notUsed, 0.5f, 0.5f, PRECMASK_MEDIUMP_HIGHP, FLOAT_GENTYPE_FUNCS(cos) ) << BuiltinFuncInfo("cos", "cos", GT, Value(GT, -1.5f, 1.5f), notUsed, notUsed, 0.5f, 0.5f, PRECMASK_LOWP, FLOAT_GENTYPE_FUNCS(cos) ) << BuiltinFuncInfo("tan", "tan", GT, Value(GT, -5.0f, 5.0f), notUsed, notUsed, 0.5f, 0.5f, PRECMASK_MEDIUMP_HIGHP, FLOAT_GENTYPE_FUNCS(tan) ) << BuiltinFuncInfo("tan", "tan", GT, Value(GT, -1.5f, 5.5f), notUsed, notUsed, 0.5f, 0.5f, PRECMASK_LOWP, FLOAT_GENTYPE_FUNCS(tan) ) << BuiltinFuncInfo("asin", "asin", GT, Value(GT, -1.0f, 1.0f), notUsed, notUsed, 1.0f, 0.0f, PRECMASK_MEDIUMP_HIGHP, FLOAT_GENTYPE_FUNCS(asin) ) << BuiltinFuncInfo("acos", "acos", GT, Value(GT, -1.0f, 1.0f), notUsed, notUsed, 1.0f, 0.0f, PRECMASK_MEDIUMP_HIGHP, FLOAT_GENTYPE_FUNCS(acos) ) << BuiltinFuncInfo("atan", "atan", GT, Value(GT, -4.0f, 4.0f), notUsed, notUsed, 0.5f, 0.5f, PRECMASK_MEDIUMP_HIGHP, FLOAT_GENTYPE_FUNCS(atan) ) << BuiltinFuncInfo("atan2", "atan", GT, Value(GT, -4.0f, 4.0f), Value(GT, 0.5f, 2.0f), notUsed, 0.5f, 0.5f, PRECMASK_MEDIUMP_HIGHP, FLOAT_GENTYPE_FUNCS(atan2) ) << BuiltinFuncInfo("sinh", "sinh", GT, Value(GT, -5.0f, 5.0f), notUsed, notUsed, 0.5f, 0.5f, PRECMASK_MEDIUMP_HIGHP, FLOAT_GENTYPE_FUNCS(sinh) ) << BuiltinFuncInfo("sinh", "sinh", GT, Value(GT, -1.5f, 1.5f), notUsed, notUsed, 0.5f, 0.5f, PRECMASK_LOWP, FLOAT_GENTYPE_FUNCS(sinh) ) << BuiltinFuncInfo("cosh", "cosh", GT, Value(GT, -5.0f, 5.0f), notUsed, notUsed, 0.5f, 0.5f, PRECMASK_MEDIUMP_HIGHP, FLOAT_GENTYPE_FUNCS(cosh) ) << BuiltinFuncInfo("cosh", "cosh", GT, Value(GT, -1.5f, 1.5f), notUsed, notUsed, 0.5f, 0.5f, PRECMASK_LOWP, FLOAT_GENTYPE_FUNCS(cosh) ) << BuiltinFuncInfo("tanh", "tanh", GT, Value(GT, -5.0f, 5.0f), notUsed, notUsed, 0.5f, 0.5f, PRECMASK_MEDIUMP_HIGHP, FLOAT_GENTYPE_FUNCS(tanh) ) << BuiltinFuncInfo("tanh", "tanh", GT, Value(GT, -1.5f, 5.5f), notUsed, notUsed, 0.5f, 0.5f, PRECMASK_LOWP, FLOAT_GENTYPE_FUNCS(tanh) ) << BuiltinFuncInfo("asinh", "asinh", GT, Value(GT, -1.0f, 1.0f), notUsed, notUsed, 1.0f, 0.0f, PRECMASK_MEDIUMP_HIGHP, FLOAT_GENTYPE_FUNCS(asinh) ) << BuiltinFuncInfo("acosh", "acosh", GT, Value(GT, 1.0f, 2.2f), notUsed, notUsed, 1.0f, 0.0f, PRECMASK_MEDIUMP_HIGHP, FLOAT_GENTYPE_FUNCS(acosh) ) << BuiltinFuncInfo("atanh", "atanh", GT, Value(GT, -0.99f, 0.99f), notUsed, notUsed, 1.0f, 0.0f, PRECMASK_MEDIUMP_HIGHP, FLOAT_GENTYPE_FUNCS(atanh) ) ); // 8.2 Exponential Functions. funcInfoGroups.push_back( BuiltinFuncGroup("exponential", "Exponential function tests") << BuiltinFuncInfo("pow", "pow", GT, Value(GT, 0.1f, 8.0f), Value(GT, -4.0f, 2.0f), notUsed, 1.0f, 0.0f, PRECMASK_MEDIUMP_HIGHP, FLOAT_GENTYPE_FUNCS(pow) ) << BuiltinFuncInfo("exp", "exp", GT, Value(GT, -6.0f, 3.0f), notUsed, notUsed, 0.5f, 0.0f, PRECMASK_MEDIUMP_HIGHP, FLOAT_GENTYPE_FUNCS(exp) ) << BuiltinFuncInfo("log", "log", GT, Value(GT, 0.1f, 10.0f), notUsed, notUsed, 0.5f, 0.3f, PRECMASK_MEDIUMP_HIGHP, FLOAT_GENTYPE_FUNCS(log) ) << BuiltinFuncInfo("exp2", "exp2", GT, Value(GT, -7.0f, 2.0f), notUsed, notUsed, 1.0f, 0.0f, PRECMASK_MEDIUMP_HIGHP, FLOAT_GENTYPE_FUNCS(exp2) ) << BuiltinFuncInfo("log2", "log2", GT, Value(GT, 0.1f, 10.0f), notUsed, notUsed, 1.0f, 0.0f, PRECMASK_MEDIUMP_HIGHP, FLOAT_GENTYPE_FUNCS(log2) ) << BuiltinFuncInfo("sqrt", "sqrt", GT, Value(GT, 0.0f, 10.0f), notUsed, notUsed, 0.3f, 0.0f, PRECMASK_MEDIUMP_HIGHP, FLOAT_GENTYPE_FUNCS(sqrt) ) << BuiltinFuncInfo("inversesqrt", "inversesqrt", GT, Value(GT, 0.5f, 10.0f), notUsed, notUsed, 1.0f, 0.0f, PRECMASK_MEDIUMP_HIGHP, FLOAT_GENTYPE_FUNCS(inverseSqrt) ) ); // 8.3 Common Functions. funcInfoGroups.push_back( BuiltinFuncGroup("common_functions", "Common function tests.") << BuiltinFuncInfo("abs", "abs", GT, Value(GT, -2.0f, 2.0f), notUsed, notUsed, 0.5f, 0.5f, PRECMASK_ALL, FLOAT_GENTYPE_FUNCS(abs) ) << BuiltinFuncInfo("sign", "sign", GT, Value(GT, -1.5f, 1.5f), notUsed, notUsed, 0.3f, 0.5f, PRECMASK_ALL, FLOAT_GENTYPE_FUNCS(sign) ) << BuiltinFuncInfo("floor", "floor", GT, Value(GT, -2.5f, 2.5f), notUsed, notUsed, 0.2f, 0.7f, PRECMASK_ALL, FLOAT_GENTYPE_FUNCS(floor) ) << BuiltinFuncInfo("trunc", "trunc", GT, Value(GT, -2.5f, 2.5f), notUsed, notUsed, 0.2f, 0.7f, PRECMASK_ALL, FLOAT_GENTYPE_FUNCS(trunc) ) << BuiltinFuncInfo("round", "round", GT, Value(GT, -2.5f, 2.5f), notUsed, notUsed, 0.2f, 0.7f, PRECMASK_ALL, FLOAT_GENTYPE_FUNCS(roundToEven) ) << BuiltinFuncInfo("roundEven", "roundEven", GT, Value(GT, -2.5f, 2.5f), notUsed, notUsed, 0.2f, 0.7f, PRECMASK_ALL, FLOAT_GENTYPE_FUNCS(roundToEven) ) << BuiltinFuncInfo("ceil", "ceil", GT, Value(GT, -2.5f, 2.5f), notUsed, notUsed, 0.2f, 0.5f, PRECMASK_ALL, FLOAT_GENTYPE_FUNCS(ceil) ) << BuiltinFuncInfo("fract", "fract", GT, Value(GT, -1.5f, 1.5f), notUsed, notUsed, 0.8f, 0.1f, PRECMASK_ALL, FLOAT_GENTYPE_FUNCS(fract) ) << BuiltinFuncInfo("mod", "mod", GT, Value(GT, -2.0f, 2.0f), Value(GT, 0.9f, 6.0f), notUsed, 0.5f, 0.5f, PRECMASK_MEDIUMP_HIGHP, FLOAT_GENTYPE_FUNCS(mod) ) << BuiltinFuncInfo("mod", "mod", GT, Value(FV, -2.0f, 2.0f), Value(F, 0.9f, 6.0f), notUsed, 0.5f, 0.5f, PRECMASK_MEDIUMP_HIGHP, FLOAT_VEC_FUNCS(modVecScalar) ) << BuiltinFuncInfo("min", "min", GT, Value(GT, -1.0f, 1.0f), Value(GT, -1.0f, 1.0f), notUsed, 0.5f, 0.5f, PRECMASK_ALL, FLOAT_GENTYPE_FUNCS(min) ) << BuiltinFuncInfo("min", "min", GT, Value(FV, -1.0f, 1.0f), Value(F, -1.0f, 1.0f), notUsed, 0.5f, 0.5f, PRECMASK_ALL, FLOAT_VEC_FUNCS(minVecScalar) ) << BuiltinFuncInfo("min", "min", IGT,Value(IGT, -4.0f, 4.0f), Value(IGT, -4.0f, 4.0f), notUsed, 0.125f, 0.5f, PRECMASK_ALL, INT_GENTYPE_FUNCS(min) ) << BuiltinFuncInfo("min", "min", IGT,Value(IV, -4.0f, 4.0f), Value(I, -4.0f, 4.0f), notUsed, 0.125f, 0.5f, PRECMASK_ALL, INT_VEC_FUNCS(minVecScalar) ) << BuiltinFuncInfo("min", "min", UGT,Value(UGT, 0.0f, 8.0f), Value(UGT, 0.0f, 8.0f), notUsed, 0.125f, 0.0f, PRECMASK_ALL, UINT_GENTYPE_FUNCS(min) ) << BuiltinFuncInfo("min", "min", UGT,Value(UV, 0.0f, 8.0f), Value(U, 0.0f, 8.0f), notUsed, 0.125f, 0.0f, PRECMASK_ALL, UINT_VEC_FUNCS(minVecScalar) ) << BuiltinFuncInfo("max", "max", GT, Value(GT, -1.0f, 1.0f), Value(GT, -1.0f, 1.0f), notUsed, 0.5f, 0.5f, PRECMASK_ALL, FLOAT_GENTYPE_FUNCS(max) ) << BuiltinFuncInfo("max", "max", GT, Value(FV, -1.0f, 1.0f), Value(F, -1.0f, 1.0f), notUsed, 0.5f, 0.5f, PRECMASK_ALL, FLOAT_VEC_FUNCS(maxVecScalar) ) << BuiltinFuncInfo("max", "max", IGT,Value(IGT, -4.0f, 4.0f), Value(IGT, -4.0f, 4.0f), notUsed, 0.125f, 0.5f, PRECMASK_ALL, INT_GENTYPE_FUNCS(max) ) << BuiltinFuncInfo("max", "max", IGT,Value(IV, -4.0f, 4.0f), Value(I, -4.0f, 4.0f), notUsed, 0.125f, 0.5f, PRECMASK_ALL, INT_VEC_FUNCS(maxVecScalar) ) << BuiltinFuncInfo("max", "max", UGT,Value(UGT, 0.0f, 8.0f), Value(UGT, 0.0f, 8.0f), notUsed, 0.125f, 0.0f, PRECMASK_ALL, UINT_GENTYPE_FUNCS(max) ) << BuiltinFuncInfo("max", "max", UGT,Value(UV, 0.0f, 8.0f), Value(U, 0.0f, 8.0f), notUsed, 0.125f, 0.0f, PRECMASK_ALL, UINT_VEC_FUNCS(maxVecScalar) ) << BuiltinFuncInfo("clamp", "clamp", GT, Value(GT, -1.0f, 1.0f), Value(GT, -0.5f, 0.5f), Value(GT, 0.5f, 1.0f), 0.5f, 0.5f, PRECMASK_ALL, FLOAT_GENTYPE_FUNCS(clamp) ) << BuiltinFuncInfo("clamp", "clamp", GT, Value(FV, -1.0f, 1.0f), Value(F, -0.5f, 0.5f), Value(F, 0.5f, 1.0f), 0.5f, 0.5f, PRECMASK_ALL, FLOAT_VEC_FUNCS(clampVecScalarScalar) ) << BuiltinFuncInfo("clamp", "clamp", IGT,Value(IGT, -4.0f, 4.0f), Value(IGT, -2.0f, 2.0f), Value(IGT, 2.0f, 4.0f), 0.125f, 0.5f, PRECMASK_ALL, INT_GENTYPE_FUNCS(clamp) ) << BuiltinFuncInfo("clamp", "clamp", IGT,Value(IV, -4.0f, 4.0f), Value(I, -2.0f, 2.0f), Value(I, 2.0f, 4.0f), 0.125f, 0.5f, PRECMASK_ALL, INT_VEC_FUNCS(clampVecScalarScalar) ) << BuiltinFuncInfo("clamp", "clamp", UGT,Value(UGT, 0.0f, 8.0f), Value(UGT, 2.0f, 6.0f), Value(UGT, 6.0f, 8.0f), 0.125f, 0.0f, PRECMASK_ALL, UINT_GENTYPE_FUNCS(clamp) ) << BuiltinFuncInfo("clamp", "clamp", UGT,Value(UV, 0.0f, 8.0f), Value(U, 2.0f, 6.0f), Value(U, 6.0f, 8.0f), 0.125f, 0.0f, PRECMASK_ALL, UINT_VEC_FUNCS(clampVecScalarScalar) ) << BuiltinFuncInfo("mix", "mix", GT, Value(GT, -1.0f, 1.0f), Value(GT, -1.0f, 1.0f), Value(GT, 0.0f, 1.0f), 0.5f, 0.5f, PRECMASK_ALL, FLOAT_GENTYPE_FUNCS(mix) ) << BuiltinFuncInfo("mix", "mix", GT, Value(FV, -1.0f, 1.0f), Value(FV, -1.0f, 1.0f), Value(F, 0.0f, 1.0f), 0.5f, 0.5f, PRECMASK_ALL, FLOAT_VEC_FUNCS(mixVecVecScalar) ) << BuiltinFuncInfo("step", "step", GT, Value(GT, -1.0f, 1.0f), Value(GT, -1.0f, 0.0f), notUsed, 0.5f, 0.25f, PRECMASK_ALL, FLOAT_GENTYPE_FUNCS(step) ) << BuiltinFuncInfo("step", "step", GT, Value(F, -1.0f, 1.0f), Value(FV, -1.0f, 0.0f), notUsed, 0.5f, 0.25f, PRECMASK_ALL, FLOAT_VEC_FUNCS(stepScalarVec) ) << BuiltinFuncInfo("smoothstep", "smoothstep", GT, Value(GT, -0.5f, 0.0f), Value(GT, 0.1f, 1.0f), Value(GT, -1.0f, 1.0f), 0.5f, 0.5f, PRECMASK_ALL, FLOAT_GENTYPE_FUNCS(smoothStep) ) << BuiltinFuncInfo("smoothstep", "smoothstep", GT, Value(F, -0.5f, 0.0f), Value(F, 0.1f, 1.0f), Value(FV, -1.0f, 1.0f), 0.5f, 0.5f, PRECMASK_ALL, FLOAT_VEC_FUNCS(smoothStepScalarScalarVec) ) ); // 8.4 Geometric Functions. funcInfoGroups.push_back( BuiltinFuncGroup("geometric", "Geometric function tests.") << BuiltinFuncInfo("length", "length", F, Value(GT, -5.0f, 5.0f), notUsed, notUsed, 0.1f, 0.5f, PRECMASK_MEDIUMP_HIGHP, FLOAT_GENTYPE_FUNCS(length) ) << BuiltinFuncInfo("distance", "distance", F, Value(GT, -5.0f, 5.0f), Value(GT, -5.0f, 5.0f), notUsed, 0.1f, 0.5f, PRECMASK_MEDIUMP_HIGHP, FLOAT_GENTYPE_FUNCS(distance) ) << BuiltinFuncInfo("dot", "dot", F, Value(GT, -5.0f, 5.0f), Value(GT, -5.0f, 5.0f), notUsed, 0.1f, 0.5f, PRECMASK_MEDIUMP_HIGHP, FLOAT_GENTYPE_FUNCS(dot) ) << BuiltinFuncInfo("cross", "cross", V3, Value(GT, -5.0f, 5.0f), Value(GT, -5.0f, 5.0f), notUsed, 0.1f, 0.5f, PRECMASK_MEDIUMP_HIGHP, DE_NULL, DE_NULL, eval_cross_vec3, DE_NULL ) << BuiltinFuncInfo("normalize", "normalize", GT, Value(GT, 0.1f, 4.0f), notUsed, notUsed, 0.5f, 0.5f, PRECMASK_MEDIUMP_HIGHP, FLOAT_GENTYPE_FUNCS(normalize) ) << BuiltinFuncInfo("faceforward", "faceforward", GT, Value(GT, -5.0f, 5.0f), Value(GT, -5.0f, 5.0f), Value(GT, -1.0f, 1.0f), 0.5f, 0.5f, PRECMASK_MEDIUMP_HIGHP, FLOAT_GENTYPE_FUNCS(faceForward) ) << BuiltinFuncInfo("reflect", "reflect", GT, Value(GT, -0.8f, -0.5f), Value(GT, 0.5f, 0.8f), notUsed, 0.5f, 0.5f, PRECMASK_MEDIUMP_HIGHP, FLOAT_GENTYPE_FUNCS(reflect) ) << BuiltinFuncInfo("refract", "refract", GT, Value(GT, -0.8f, 1.2f), Value(GT, -1.1f, 0.5f), Value(F, 0.2f, 1.5f), 0.5f, 0.5f, PRECMASK_MEDIUMP_HIGHP, FLOAT_GENTYPE_FUNCS(refract) ) ); // 8.5 Matrix Functions. // separate matrix tests? // funcInfoGroups.push_back( // BuiltinFuncGroup("matrix", "Matrix function tests.") // << BuiltinFuncInfo("matrixCompMult", "matrixCompMult", M, ... ) // ); // 8.6 Vector Relational Functions. funcInfoGroups.push_back( BuiltinFuncGroup("float_compare", "Floating point comparison tests.") << BuiltinFuncInfo("lessThan", "lessThan", BV, Value(FV, -1.0f, 1.0f), Value(FV, -1.0f, 1.0f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, FLOAT_VEC_FUNCS(lessThan) ) << BuiltinFuncInfo("lessThanEqual", "lessThanEqual", BV, Value(FV, -1.0f, 1.0f), Value(FV, -1.0f, 1.0f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, FLOAT_VEC_FUNCS(lessThanEqual) ) << BuiltinFuncInfo("greaterThan", "greaterThan", BV, Value(FV, -1.0f, 1.0f), Value(FV, -1.0f, 1.0f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, FLOAT_VEC_FUNCS(greaterThan) ) << BuiltinFuncInfo("greaterThanEqual", "greaterThanEqual", BV, Value(FV, -1.0f, 1.0f), Value(FV, -1.0f, 1.0f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, FLOAT_VEC_FUNCS(greaterThanEqual) ) << BuiltinFuncInfo("equal", "equal", BV, Value(FV, -1.0f, 1.0f), Value(FV, -1.0f, 1.0f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, FLOAT_VEC_FUNCS(equal) ) << BuiltinFuncInfo("notEqual", "notEqual", BV, Value(FV, -1.0f, 1.0f), Value(FV, -1.0f, 1.0f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, FLOAT_VEC_FUNCS(notEqual) ) ); funcInfoGroups.push_back( BuiltinFuncGroup("int_compare", "Integer comparison tests.") << BuiltinFuncInfo("lessThan", "lessThan", BV, Value(IV, -5.2f, 4.9f), Value(IV, -5.0f, 5.0f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, INT_VEC_FUNCS(lessThan) ) << BuiltinFuncInfo("lessThanEqual", "lessThanEqual", BV, Value(IV, -5.2f, 4.9f), Value(IV, -5.0f, 5.0f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, INT_VEC_FUNCS(lessThanEqual) ) << BuiltinFuncInfo("greaterThan", "greaterThan", BV, Value(IV, -5.2f, 4.9f), Value(IV, -5.0f, 5.0f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, INT_VEC_FUNCS(greaterThan) ) << BuiltinFuncInfo("greaterThanEqual", "greaterThanEqual", BV, Value(IV, -5.2f, 4.9f), Value(IV, -5.0f, 5.0f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, INT_VEC_FUNCS(greaterThanEqual) ) << BuiltinFuncInfo("equal", "equal", BV, Value(IV, -5.2f, 4.9f), Value(IV, -5.0f, 5.0f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, INT_VEC_FUNCS(equal) ) << BuiltinFuncInfo("notEqual", "notEqual", BV, Value(IV, -5.2f, 4.9f), Value(IV, -5.0f, 5.0f), notUsed, 1.0f, 0.0f, PRECMASK_ALL, INT_VEC_FUNCS(notEqual) ) ); funcInfoGroups.push_back( BuiltinFuncGroup("bool_compare", "Boolean comparison tests.") << BuiltinFuncInfo("equal", "equal", BV, Value(BV, -5.2f, 4.9f), Value(BV, -5.0f, 5.0f), notUsed, 1.0f, 0.0f, PRECMASK_NA, BOOL_VEC_FUNCS(equal) ) << BuiltinFuncInfo("notEqual", "notEqual", BV, Value(BV, -5.2f, 4.9f), Value(BV, -5.0f, 5.0f), notUsed, 1.0f, 0.0f, PRECMASK_NA, BOOL_VEC_FUNCS(notEqual) ) << BuiltinFuncInfo("any", "any", B, Value(BV, -1.0f, 0.3f), notUsed, notUsed, 1.0f, 0.0f, PRECMASK_NA, BOOL_VEC_FUNCS(any) ) << BuiltinFuncInfo("all", "all", B, Value(BV, -0.3f, 1.0f), notUsed, notUsed, 1.0f, 0.0f, PRECMASK_NA, BOOL_VEC_FUNCS(all) ) << BuiltinFuncInfo("not", "not", BV, Value(BV, -1.0f, 1.0f), notUsed, notUsed, 1.0f, 0.0f, PRECMASK_NA, BOOL_VEC_FUNCS(boolNot) ) ); static const ShaderType s_shaderTypes[] = { SHADERTYPE_VERTEX, SHADERTYPE_FRAGMENT }; static const DataType s_floatTypes[] = { TYPE_FLOAT, TYPE_FLOAT_VEC2, TYPE_FLOAT_VEC3, TYPE_FLOAT_VEC4 }; static const DataType s_intTypes[] = { TYPE_INT, TYPE_INT_VEC2, TYPE_INT_VEC3, TYPE_INT_VEC4 }; static const DataType s_uintTypes[] = { TYPE_UINT, TYPE_UINT_VEC2, TYPE_UINT_VEC3, TYPE_UINT_VEC4 }; static const DataType s_boolTypes[] = { TYPE_BOOL, TYPE_BOOL_VEC2, TYPE_BOOL_VEC3, TYPE_BOOL_VEC4 }; for (int outerGroupNdx = 0; outerGroupNdx < (int)funcInfoGroups.size(); outerGroupNdx++) { // Create outer group. const BuiltinFuncGroup& outerGroupInfo = funcInfoGroups[outerGroupNdx]; TestCaseGroup* outerGroup = new TestCaseGroup(m_context, outerGroupInfo.name, outerGroupInfo.description); addChild(outerGroup); // Only create new group if name differs from previous one. TestCaseGroup* innerGroup = DE_NULL; for (int funcInfoNdx = 0; funcInfoNdx < (int)outerGroupInfo.funcInfos.size(); funcInfoNdx++) { const BuiltinFuncInfo& funcInfo = outerGroupInfo.funcInfos[funcInfoNdx]; const char* shaderFuncName = funcInfo.shaderFuncName; bool isBoolCase = (funcInfo.precisionMask == PRECMASK_NA); bool isBoolOut = (funcInfo.outValue & (VALUE_BOOL | VALUE_BOOL_VEC | VALUE_BOOL_GENTYPE)) != 0; bool isIntOut = (funcInfo.outValue & (VALUE_INT | VALUE_INT_VEC | VALUE_INT_GENTYPE)) != 0; bool isUintOut = (funcInfo.outValue & (VALUE_UINT | VALUE_UINT_VEC | VALUE_UINT_GENTYPE)) != 0; bool isFloatOut = !isBoolOut && !isIntOut && !isUintOut; if (!innerGroup || (string(innerGroup->getName()) != funcInfo.caseName)) { string groupDesc = string("Built-in function ") + shaderFuncName + "() tests."; innerGroup = new TestCaseGroup(m_context, funcInfo.caseName, groupDesc.c_str()); outerGroup->addChild(innerGroup); } for (int inScalarSize = 1; inScalarSize <= 4; inScalarSize++) { int outScalarSize = ((funcInfo.outValue == VALUE_FLOAT) || (funcInfo.outValue == VALUE_BOOL)) ? 1 : inScalarSize; // \todo [petri] Int. DataType outDataType = isFloatOut ? s_floatTypes[outScalarSize - 1] : isIntOut ? s_intTypes[outScalarSize - 1] : isUintOut ? s_uintTypes[outScalarSize - 1] : isBoolOut ? s_boolTypes[outScalarSize - 1] : TYPE_LAST; ShaderEvalFunc evalFunc = DE_NULL; switch (inScalarSize) { case 1: evalFunc = funcInfo.evalFuncScalar; break; case 2: evalFunc = funcInfo.evalFuncVec2; break; case 3: evalFunc = funcInfo.evalFuncVec3; break; case 4: evalFunc = funcInfo.evalFuncVec4; break; default: DE_ASSERT(false); } // Skip if no valid eval func. // \todo [petri] Better check for V3 only etc. cases? if (evalFunc == DE_NULL) continue; for (int precision = 0; precision < PRECISION_LAST; precision++) { if ((funcInfo.precisionMask & (1< 0) desc += ", "; desc += getDataTypeName(curInDataType); if (inputNdx == 0 || prevInDataType != curInDataType) // \note Only write input type to case name if different from previous input type (avoid overly long names). name += string("") + getDataTypeName(curInDataType) + "_"; // Generate op input source. if (funcInfo.type == OPERATOR || funcInfo.type == FUNCTION) { if (inputNdx != 0) { if (funcInfo.type == OPERATOR && !isUnaryOp) shaderOp += " " + string(shaderFuncName) + " "; else shaderOp += ", "; } shaderOp += "in" + de::toString(inputNdx); if (funcInfo.type == OPERATOR && isUnaryOp && !funcInfo.isUnaryPrefix) shaderOp += string(shaderFuncName); } else { DE_ASSERT(funcInfo.type == SIDE_EFFECT_OPERATOR); if (inputNdx != 0 || (isUnaryOp && funcInfo.isUnaryPrefix)) shaderOp += string("") + (isUnaryOp ? "" : " ") + shaderFuncName + (isUnaryOp ? "" : " "); shaderOp += inputNdx == 0 ? "res" : "in" + de::toString(inputNdx); // \note in0 has already been assigned to res, so start from in1. if (isUnaryOp && !funcInfo.isUnaryPrefix) shaderOp += shaderFuncName; } // Fill in shader info. shaderSpec.inputs[shaderSpec.numInputs++] = ShaderValue(curInDataType, v.rangeMin, v.rangeMax); } if (funcInfo.type == FUNCTION) shaderOp += ")"; shaderOp += ";"; desc += ")."; name += shaderTypeName; // Create the test case. innerGroup->addChild(new ShaderOperatorCase(m_context, name.c_str(), desc.c_str(), isVertexCase, evalFunc, shaderOp, shaderSpec)); } } } } } } // The ?: selection operator. static const struct { DataType type; // The type of "Y" and "Z" operands in "X ? Y : Z" (X is always bool). ShaderEvalFunc evalFunc; } s_selectionInfo[] = { { TYPE_FLOAT, eval_selection_float }, { TYPE_FLOAT_VEC2, eval_selection_vec2 }, { TYPE_FLOAT_VEC3, eval_selection_vec3 }, { TYPE_FLOAT_VEC4, eval_selection_vec4 }, { TYPE_INT, eval_selection_int }, { TYPE_INT_VEC2, eval_selection_ivec2 }, { TYPE_INT_VEC3, eval_selection_ivec3 }, { TYPE_INT_VEC4, eval_selection_ivec4 }, { TYPE_UINT, eval_selection_uint }, { TYPE_UINT_VEC2, eval_selection_uvec2 }, { TYPE_UINT_VEC3, eval_selection_uvec3 }, { TYPE_UINT_VEC4, eval_selection_uvec4 }, { TYPE_BOOL, eval_selection_bool }, { TYPE_BOOL_VEC2, eval_selection_bvec2 }, { TYPE_BOOL_VEC3, eval_selection_bvec3 }, { TYPE_BOOL_VEC4, eval_selection_bvec4 } }; TestCaseGroup* selectionGroup = new TestCaseGroup(m_context, "selection", "Selection operator tests"); addChild(selectionGroup); for (int typeNdx = 0; typeNdx < DE_LENGTH_OF_ARRAY(s_selectionInfo); typeNdx++) { DataType curType = s_selectionInfo[typeNdx].type; ShaderEvalFunc evalFunc = s_selectionInfo[typeNdx].evalFunc; bool isBoolCase = isDataTypeBoolOrBVec(curType); bool isFloatCase = isDataTypeFloatOrVec(curType); bool isIntCase = isDataTypeIntOrIVec(curType); bool isUintCase = isDataTypeUintOrUVec(curType); const char* dataTypeStr = getDataTypeName(curType); DE_ASSERT(isBoolCase || isFloatCase || isIntCase || isUintCase); DE_UNREF(isIntCase); for (int precision = 0; precision < (int)PRECISION_LAST; precision++) { if (isBoolCase && precision != PRECISION_MEDIUMP) // Use mediump interpolators for booleans. continue; const char* precisionStr = getPrecisionName((Precision)precision); string precisionPrefix = isBoolCase ? "" : (string(precisionStr) + "_"); for (int shaderTypeNdx = 0; shaderTypeNdx < DE_LENGTH_OF_ARRAY(s_shaderTypes); shaderTypeNdx++) { ShaderType shaderType = s_shaderTypes[shaderTypeNdx]; ShaderDataSpec shaderSpec; const char* shaderTypeName = getShaderTypeName(shaderType); bool isVertexCase = (ShaderType)shaderType == SHADERTYPE_VERTEX; string name = precisionPrefix + dataTypeStr + "_" + shaderTypeName; shaderSpec.numInputs = 3; shaderSpec.precision = isBoolCase ? PRECISION_LAST : (Precision)precision; shaderSpec.output = curType; shaderSpec.resultScale = isBoolCase ? 1.0f : isFloatCase ? 0.5f : isUintCase ? 0.5f : 0.1f; shaderSpec.resultBias = isBoolCase ? 0.0f : isFloatCase ? 0.5f : isUintCase ? 0.0f : 0.5f; shaderSpec.referenceScale = shaderSpec.resultScale; shaderSpec.referenceBias = shaderSpec.resultBias; float rangeMin = isBoolCase ? -1.0f : isFloatCase ? -1.0f : isUintCase ? 0.0f : -5.0f; float rangeMax = isBoolCase ? 1.0f : isFloatCase ? 1.0f : isUintCase ? 2.0f : 5.0f; shaderSpec.inputs[0] = ShaderValue(TYPE_BOOL, -1.0f, 1.0f); shaderSpec.inputs[1] = ShaderValue(curType, rangeMin, rangeMax); shaderSpec.inputs[2] = ShaderValue(curType, rangeMin, rangeMax); selectionGroup->addChild(new ShaderOperatorCase(m_context, name.c_str(), "", isVertexCase, evalFunc, "res = in0 ? in1 : in2;", shaderSpec)); } } } // The sequence operator (comma). TestCaseGroup* sequenceGroup = new TestCaseGroup(m_context, "sequence", "Sequence operator tests"); addChild(sequenceGroup); TestCaseGroup* sequenceNoSideEffGroup = new TestCaseGroup(m_context, "no_side_effects", "Sequence tests without side-effects"); TestCaseGroup* sequenceSideEffGroup = new TestCaseGroup(m_context, "side_effects", "Sequence tests with side-effects"); sequenceGroup->addChild(sequenceNoSideEffGroup); sequenceGroup->addChild(sequenceSideEffGroup); static const struct { bool containsSideEffects; const char* caseName; const char* expressionStr; int numInputs; DataType inputTypes[MAX_INPUTS]; DataType resultType; ShaderEvalFunc evalFunc; } s_sequenceCases[] = { { false, "vec4", "in0, in2 + in1, in1 + in0", 3, { TYPE_FLOAT_VEC4, TYPE_FLOAT_VEC4, TYPE_FLOAT_VEC4 }, TYPE_FLOAT_VEC4, evalSequenceNoSideEffCase0 }, { false, "float_uint", "in0 + in2, in1 + in1", 3, { TYPE_FLOAT, TYPE_UINT, TYPE_FLOAT }, TYPE_UINT, evalSequenceNoSideEffCase1 }, { false, "bool_vec2", "in0 && in1, in0, ivec2(vec2(in0) + in2)", 3, { TYPE_BOOL, TYPE_BOOL, TYPE_FLOAT_VEC2 }, TYPE_INT_VEC2, evalSequenceNoSideEffCase2 }, { false, "vec4_ivec4_bvec4", "in0 + vec4(in1), in2, in1", 3, { TYPE_FLOAT_VEC4, TYPE_INT_VEC4, TYPE_BOOL_VEC4 }, TYPE_INT_VEC4, evalSequenceNoSideEffCase3 }, { true, "vec4", "in0++, in1 = in0 + in2, in2 = in1", 3, { TYPE_FLOAT_VEC4, TYPE_FLOAT_VEC4, TYPE_FLOAT_VEC4 }, TYPE_FLOAT_VEC4, evalSequenceSideEffCase0 }, { true, "float_uint", "in1++, in0 = float(in1), in1 = uint(in0 + in2)", 3, { TYPE_FLOAT, TYPE_UINT, TYPE_FLOAT }, TYPE_UINT, evalSequenceSideEffCase1 }, { true, "bool_vec2", "in1 = in0, in2++, in2 = in2 + vec2(in1), ivec2(in2)", 3, { TYPE_BOOL, TYPE_BOOL, TYPE_FLOAT_VEC2 }, TYPE_INT_VEC2, evalSequenceSideEffCase2 }, { true, "vec4_ivec4_bvec4", "in0 = in0 + vec4(in2), in1 = in1 + ivec4(in0), in1++", 3, { TYPE_FLOAT_VEC4, TYPE_INT_VEC4, TYPE_BOOL_VEC4 }, TYPE_INT_VEC4, evalSequenceSideEffCase3 } }; for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(s_sequenceCases); caseNdx++) { for (int precision = 0; precision < (int)PRECISION_LAST; precision++) { for (int shaderTypeNdx = 0; shaderTypeNdx < DE_LENGTH_OF_ARRAY(s_shaderTypes); shaderTypeNdx++) { ShaderType shaderType = s_shaderTypes[shaderTypeNdx]; ShaderDataSpec shaderSpec; const char* shaderTypeName = getShaderTypeName(shaderType); bool isVertexCase = (ShaderType)shaderType == SHADERTYPE_VERTEX; string name = string("") + getPrecisionName((Precision)precision) + "_" + s_sequenceCases[caseNdx].caseName + "_" + shaderTypeName; shaderSpec.numInputs = s_sequenceCases[caseNdx].numInputs; shaderSpec.precision = (Precision)precision; shaderSpec.output = s_sequenceCases[caseNdx].resultType; shaderSpec.resultScale = 0.5f; shaderSpec.resultBias = 0.0f; shaderSpec.referenceScale = shaderSpec.resultScale; shaderSpec.referenceBias = shaderSpec.resultBias; for (int inputNdx = 0; inputNdx < s_sequenceCases[caseNdx].numInputs; inputNdx++) { DataType type = s_sequenceCases[caseNdx].inputTypes[inputNdx]; float rangeMin = isDataTypeFloatOrVec(type) ? -0.5f : isDataTypeIntOrIVec(type) ? -2.0f : isDataTypeUintOrUVec(type) ? 0.0f : -1.0f; float rangeMax = isDataTypeFloatOrVec(type) ? 0.5f : isDataTypeIntOrIVec(type) ? 2.0f : isDataTypeUintOrUVec(type) ? 2.0f : 1.0f; shaderSpec.inputs[inputNdx] = ShaderValue(type, rangeMin, rangeMax); } string expression = string("res = (") + s_sequenceCases[caseNdx].expressionStr + ");"; TestCaseGroup* group = s_sequenceCases[caseNdx].containsSideEffects ? sequenceSideEffGroup : sequenceNoSideEffGroup; group->addChild(new ShaderOperatorCase(m_context, name.c_str(), "", isVertexCase, s_sequenceCases[caseNdx].evalFunc, expression.c_str(), shaderSpec)); } } } } } // Functional } // gles3 } // deqp