/*------------------------------------------------------------------------- * drawElements Quality Program OpenGL ES 3.1 Module * ------------------------------------------------- * * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Integer built-in function tests. *//*--------------------------------------------------------------------*/ #include "es31fShaderIntegerFunctionTests.hpp" #include "glsShaderExecUtil.hpp" #include "tcuTestLog.hpp" #include "tcuFormatUtil.hpp" #include "tcuFloat.hpp" #include "deRandom.hpp" #include "deMath.h" #include "deString.h" #include "deDefs.hpp" namespace deqp { namespace gles31 { namespace Functional { using std::vector; using std::string; using tcu::TestLog; using namespace gls::ShaderExecUtil; using tcu::IVec2; using tcu::IVec3; using tcu::IVec4; using tcu::UVec2; using tcu::UVec3; using tcu::UVec4; // Utilities namespace { struct HexFloat { const float value; HexFloat (const float value_) : value(value_) {} }; std::ostream& operator<< (std::ostream& str, const HexFloat& v) { return str << v.value << " / " << tcu::toHex(tcu::Float32(v.value).bits()); } struct VarValue { const glu::VarType& type; const void* value; VarValue (const glu::VarType& type_, const void* value_) : type(type_), value(value_) {} }; std::ostream& operator<< (std::ostream& str, const VarValue& varValue) { DE_ASSERT(varValue.type.isBasicType()); const glu::DataType basicType = varValue.type.getBasicType(); const glu::DataType scalarType = glu::getDataTypeScalarType(basicType); const int numComponents = glu::getDataTypeScalarSize(basicType); if (numComponents > 1) str << glu::getDataTypeName(basicType) << "("; for (int compNdx = 0; compNdx < numComponents; compNdx++) { if (compNdx != 0) str << ", "; switch (scalarType) { case glu::TYPE_FLOAT: str << HexFloat(((const float*)varValue.value)[compNdx]); break; case glu::TYPE_INT: str << ((const deInt32*)varValue.value)[compNdx]; break; case glu::TYPE_UINT: str << tcu::toHex(((const deUint32*)varValue.value)[compNdx]); break; case glu::TYPE_BOOL: str << (((const deUint32*)varValue.value)[compNdx] != 0 ? "true" : "false"); break; default: DE_ASSERT(false); } } if (numComponents > 1) str << ")"; return str; } inline int getShaderUintBitCount (glu::ShaderType shaderType, glu::Precision precision) { // \todo [2013-10-31 pyry] Query from GL for vertex and fragment shaders. DE_UNREF(shaderType); const int bitCounts[] = { 9, 16, 32 }; DE_STATIC_ASSERT(DE_LENGTH_OF_ARRAY(bitCounts) == glu::PRECISION_LAST); return bitCounts[precision]; } static inline deUint32 extendSignTo32 (deUint32 integer, deUint32 integerLength) { DE_ASSERT(integerLength > 0 && integerLength <= 32); return deUint32(0 - deInt32((integer & (1 << (integerLength - 1))) << 1)) | integer; } static inline deUint32 getLowBitMask (int integerLength) { DE_ASSERT(integerLength >= 0 && integerLength <= 32); // \note: shifting more or equal to 32 => undefined behavior. Avoid it by shifting in two parts (1 << (num-1) << 1) if (integerLength == 0u) return 0u; return ((1u << ((deUint32)integerLength - 1u)) << 1u) - 1u; } static void generateRandomInputData (de::Random& rnd, glu::ShaderType shaderType, glu::DataType dataType, glu::Precision precision, deUint32* dst, int numValues) { const int scalarSize = glu::getDataTypeScalarSize(dataType); const deUint32 integerLength = (deUint32)getShaderUintBitCount(shaderType, precision); const deUint32 integerMask = getLowBitMask(integerLength); const bool isUnsigned = glu::isDataTypeUintOrUVec(dataType); if (isUnsigned) { for (int valueNdx = 0; valueNdx < numValues; ++valueNdx) for (int compNdx = 0; compNdx < scalarSize; compNdx++) dst[valueNdx*scalarSize + compNdx] = rnd.getUint32() & integerMask; } else { for (int valueNdx = 0; valueNdx < numValues; ++valueNdx) for (int compNdx = 0; compNdx < scalarSize; compNdx++) dst[valueNdx*scalarSize + compNdx] = extendSignTo32(rnd.getUint32() & integerMask, integerLength); } } } // anonymous // IntegerFunctionCase class IntegerFunctionCase : public TestCase { public: IntegerFunctionCase (Context& context, const char* name, const char* description, glu::ShaderType shaderType); ~IntegerFunctionCase (void); void init (void); void deinit (void); IterateResult iterate (void); protected: IntegerFunctionCase (const IntegerFunctionCase& other); IntegerFunctionCase& operator= (const IntegerFunctionCase& other); virtual void getInputValues (int numValues, void* const* values) const = 0; virtual bool compare (const void* const* inputs, const void* const* outputs) = 0; glu::ShaderType m_shaderType; ShaderSpec m_spec; int m_numValues; std::ostringstream m_failMsg; //!< Comparison failure help message. private: ShaderExecutor* m_executor; }; IntegerFunctionCase::IntegerFunctionCase (Context& context, const char* name, const char* description, glu::ShaderType shaderType) : TestCase (context, name, description) , m_shaderType (shaderType) , m_numValues (100) , m_executor (DE_NULL) { m_spec.version = glu::getContextTypeGLSLVersion(context.getRenderContext().getType()); } IntegerFunctionCase::~IntegerFunctionCase (void) { IntegerFunctionCase::deinit(); } void IntegerFunctionCase::init (void) { DE_ASSERT(!m_executor); m_executor = createExecutor(m_context.getRenderContext(), m_shaderType, m_spec); m_testCtx.getLog() << m_executor; if (!m_executor->isOk()) throw tcu::TestError("Compile failed"); } void IntegerFunctionCase::deinit (void) { delete m_executor; m_executor = DE_NULL; } static vector getScalarSizes (const vector& symbols) { vector sizes(symbols.size()); for (int ndx = 0; ndx < (int)symbols.size(); ++ndx) sizes[ndx] = symbols[ndx].varType.getScalarSize(); return sizes; } static int computeTotalScalarSize (const vector& symbols) { int totalSize = 0; for (vector::const_iterator sym = symbols.begin(); sym != symbols.end(); ++sym) totalSize += sym->varType.getScalarSize(); return totalSize; } static vector getInputOutputPointers (const vector& symbols, vector& data, const int numValues) { vector pointers (symbols.size()); int curScalarOffset = 0; for (int varNdx = 0; varNdx < (int)symbols.size(); ++varNdx) { const Symbol& var = symbols[varNdx]; const int scalarSize = var.varType.getScalarSize(); // Uses planar layout as input/output specs do not support strides. pointers[varNdx] = &data[curScalarOffset]; curScalarOffset += scalarSize*numValues; } DE_ASSERT(curScalarOffset == (int)data.size()); return pointers; } IntegerFunctionCase::IterateResult IntegerFunctionCase::iterate (void) { const int numInputScalars = computeTotalScalarSize(m_spec.inputs); const int numOutputScalars = computeTotalScalarSize(m_spec.outputs); vector inputData (numInputScalars * m_numValues); vector outputData (numOutputScalars * m_numValues); const vector inputPointers = getInputOutputPointers(m_spec.inputs, inputData, m_numValues); const vector outputPointers = getInputOutputPointers(m_spec.outputs, outputData, m_numValues); // Initialize input data. getInputValues(m_numValues, &inputPointers[0]); // Execute shader. m_executor->useProgram(); m_executor->execute(m_numValues, &inputPointers[0], &outputPointers[0]); // Compare results. { const vector inScalarSizes = getScalarSizes(m_spec.inputs); const vector outScalarSizes = getScalarSizes(m_spec.outputs); vector curInputPtr (inputPointers.size()); vector curOutputPtr (outputPointers.size()); int numFailed = 0; for (int valNdx = 0; valNdx < m_numValues; valNdx++) { // Set up pointers for comparison. for (int inNdx = 0; inNdx < (int)curInputPtr.size(); ++inNdx) curInputPtr[inNdx] = (deUint32*)inputPointers[inNdx] + inScalarSizes[inNdx]*valNdx; for (int outNdx = 0; outNdx < (int)curOutputPtr.size(); ++outNdx) curOutputPtr[outNdx] = (deUint32*)outputPointers[outNdx] + outScalarSizes[outNdx]*valNdx; if (!compare(&curInputPtr[0], &curOutputPtr[0])) { // \todo [2013-08-08 pyry] We probably want to log reference value as well? m_testCtx.getLog() << TestLog::Message << "ERROR: comparison failed for value " << valNdx << ":\n " << m_failMsg.str() << TestLog::EndMessage; m_testCtx.getLog() << TestLog::Message << " inputs:" << TestLog::EndMessage; for (int inNdx = 0; inNdx < (int)curInputPtr.size(); inNdx++) m_testCtx.getLog() << TestLog::Message << " " << m_spec.inputs[inNdx].name << " = " << VarValue(m_spec.inputs[inNdx].varType, curInputPtr[inNdx]) << TestLog::EndMessage; m_testCtx.getLog() << TestLog::Message << " outputs:" << TestLog::EndMessage; for (int outNdx = 0; outNdx < (int)curOutputPtr.size(); outNdx++) m_testCtx.getLog() << TestLog::Message << " " << m_spec.outputs[outNdx].name << " = " << VarValue(m_spec.outputs[outNdx].varType, curOutputPtr[outNdx]) << TestLog::EndMessage; m_failMsg.str(""); m_failMsg.clear(); numFailed += 1; } } m_testCtx.getLog() << TestLog::Message << (m_numValues - numFailed) << " / " << m_numValues << " values passed" << TestLog::EndMessage; m_testCtx.setTestResult(numFailed == 0 ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL, numFailed == 0 ? "Pass" : "Result comparison failed"); } return STOP; } static std::string getIntegerFuncCaseName (glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType) { return string(glu::getDataTypeName(baseType)) + getPrecisionPostfix(precision) + getShaderTypePostfix(shaderType); } class UaddCarryCase : public IntegerFunctionCase { public: UaddCarryCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType) : IntegerFunctionCase(context, getIntegerFuncCaseName(baseType, precision, shaderType).c_str(), "uaddCarry", shaderType) { m_spec.inputs.push_back(Symbol("x", glu::VarType(baseType, precision))); m_spec.inputs.push_back(Symbol("y", glu::VarType(baseType, precision))); m_spec.outputs.push_back(Symbol("sum", glu::VarType(baseType, precision))); m_spec.outputs.push_back(Symbol("carry", glu::VarType(baseType, glu::PRECISION_LOWP))); m_spec.source = "sum = uaddCarry(x, y, carry);"; } void getInputValues (int numValues, void* const* values) const { de::Random rnd (deStringHash(getName()) ^ 0x235facu); const glu::DataType type = m_spec.inputs[0].varType.getBasicType(); const glu::Precision precision = m_spec.inputs[0].varType.getPrecision(); const int scalarSize = glu::getDataTypeScalarSize(type); const int integerLength = getShaderUintBitCount(m_shaderType, precision); const deUint32 integerMask = getLowBitMask(integerLength); const bool isSigned = glu::isDataTypeIntOrIVec(type); deUint32* in0 = (deUint32*)values[0]; deUint32* in1 = (deUint32*)values[1]; const struct { deUint32 x; deUint32 y; } easyCases[] = { { 0x00000000u, 0x00000000u }, { 0xfffffffeu, 0x00000001u }, { 0x00000001u, 0xfffffffeu }, { 0xffffffffu, 0x00000001u }, { 0x00000001u, 0xffffffffu }, { 0xfffffffeu, 0x00000002u }, { 0x00000002u, 0xfffffffeu }, { 0xffffffffu, 0xffffffffu } }; // generate integers with proper bit count for (int easyCaseNdx = 0; easyCaseNdx < DE_LENGTH_OF_ARRAY(easyCases); easyCaseNdx++) { for (int compNdx = 0; compNdx < scalarSize; compNdx++) { in0[easyCaseNdx*scalarSize + compNdx] = easyCases[easyCaseNdx].x & integerMask; in1[easyCaseNdx*scalarSize + compNdx] = easyCases[easyCaseNdx].y & integerMask; } } // convert to signed if (isSigned) { for (int easyCaseNdx = 0; easyCaseNdx < DE_LENGTH_OF_ARRAY(easyCases); easyCaseNdx++) { for (int compNdx = 0; compNdx < scalarSize; compNdx++) { in0[easyCaseNdx*scalarSize + compNdx] = extendSignTo32(in0[easyCaseNdx*scalarSize + compNdx], integerLength); in1[easyCaseNdx*scalarSize + compNdx] = extendSignTo32(in1[easyCaseNdx*scalarSize + compNdx], integerLength); } } } generateRandomInputData(rnd, m_shaderType, type, precision, in0, numValues - DE_LENGTH_OF_ARRAY(easyCases)); generateRandomInputData(rnd, m_shaderType, type, precision, in1, numValues - DE_LENGTH_OF_ARRAY(easyCases)); } bool compare (const void* const* inputs, const void* const* outputs) { const glu::DataType type = m_spec.inputs[0].varType.getBasicType(); const glu::Precision precision = m_spec.inputs[0].varType.getPrecision(); const int scalarSize = glu::getDataTypeScalarSize(type); const int integerLength = getShaderUintBitCount(m_shaderType, precision); const deUint32 mask0 = getLowBitMask(integerLength); for (int compNdx = 0; compNdx < scalarSize; compNdx++) { const deUint32 in0 = ((const deUint32*)inputs[0])[compNdx]; const deUint32 in1 = ((const deUint32*)inputs[1])[compNdx]; const deUint32 out0 = ((const deUint32*)outputs[0])[compNdx]; const deUint32 out1 = ((const deUint32*)outputs[1])[compNdx]; const deUint32 ref0 = in0+in1; const deUint32 ref1 = (deUint64(in0)+deUint64(in1)) > 0xffffffffu ? 1u : 0u; if (((out0&mask0) != (ref0&mask0)) || out1 != ref1) { m_failMsg << "Expected [" << compNdx << "] = " << tcu::toHex(ref0) << ", " << tcu::toHex(ref1); return false; } } return true; } }; class UsubBorrowCase : public IntegerFunctionCase { public: UsubBorrowCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType) : IntegerFunctionCase(context, getIntegerFuncCaseName(baseType, precision, shaderType).c_str(), "usubBorrow", shaderType) { m_spec.inputs.push_back(Symbol("x", glu::VarType(baseType, precision))); m_spec.inputs.push_back(Symbol("y", glu::VarType(baseType, precision))); m_spec.outputs.push_back(Symbol("diff", glu::VarType(baseType, precision))); m_spec.outputs.push_back(Symbol("carry", glu::VarType(baseType, glu::PRECISION_LOWP))); m_spec.source = "diff = usubBorrow(x, y, carry);"; } void getInputValues (int numValues, void* const* values) const { de::Random rnd (deStringHash(getName()) ^ 0x235facu); const glu::DataType type = m_spec.inputs[0].varType.getBasicType(); const glu::Precision precision = m_spec.inputs[0].varType.getPrecision(); const int scalarSize = glu::getDataTypeScalarSize(type); const int integerLength = getShaderUintBitCount(m_shaderType, precision); const deUint32 integerMask = getLowBitMask(integerLength); const bool isSigned = glu::isDataTypeIntOrIVec(type); deUint32* in0 = (deUint32*)values[0]; deUint32* in1 = (deUint32*)values[1]; const struct { deUint32 x; deUint32 y; } easyCases[] = { { 0x00000000u, 0x00000000u }, { 0x00000001u, 0x00000001u }, { 0x00000001u, 0x00000002u }, { 0x00000001u, 0xffffffffu }, { 0xfffffffeu, 0xffffffffu }, { 0xffffffffu, 0xffffffffu }, }; // generate integers with proper bit count for (int easyCaseNdx = 0; easyCaseNdx < DE_LENGTH_OF_ARRAY(easyCases); easyCaseNdx++) { for (int compNdx = 0; compNdx < scalarSize; compNdx++) { in0[easyCaseNdx*scalarSize + compNdx] = easyCases[easyCaseNdx].x & integerMask; in1[easyCaseNdx*scalarSize + compNdx] = easyCases[easyCaseNdx].y & integerMask; } } // convert to signed if (isSigned) { for (int easyCaseNdx = 0; easyCaseNdx < DE_LENGTH_OF_ARRAY(easyCases); easyCaseNdx++) { for (int compNdx = 0; compNdx < scalarSize; compNdx++) { in0[easyCaseNdx*scalarSize + compNdx] = extendSignTo32(in0[easyCaseNdx*scalarSize + compNdx], integerLength); in1[easyCaseNdx*scalarSize + compNdx] = extendSignTo32(in1[easyCaseNdx*scalarSize + compNdx], integerLength); } } } generateRandomInputData(rnd, m_shaderType, type, precision, in0, numValues - DE_LENGTH_OF_ARRAY(easyCases)); generateRandomInputData(rnd, m_shaderType, type, precision, in1, numValues - DE_LENGTH_OF_ARRAY(easyCases)); } bool compare (const void* const* inputs, const void* const* outputs) { const glu::DataType type = m_spec.inputs[0].varType.getBasicType(); const glu::Precision precision = m_spec.inputs[0].varType.getPrecision(); const int scalarSize = glu::getDataTypeScalarSize(type); const int integerLength = getShaderUintBitCount(m_shaderType, precision); const deUint32 mask0 = getLowBitMask(integerLength); for (int compNdx = 0; compNdx < scalarSize; compNdx++) { const deUint32 in0 = ((const deUint32*)inputs[0])[compNdx]; const deUint32 in1 = ((const deUint32*)inputs[1])[compNdx]; const deUint32 out0 = ((const deUint32*)outputs[0])[compNdx]; const deUint32 out1 = ((const deUint32*)outputs[1])[compNdx]; const deUint32 ref0 = in0-in1; const deUint32 ref1 = in0 >= in1 ? 0u : 1u; if (((out0&mask0) != (ref0&mask0)) || out1 != ref1) { m_failMsg << "Expected [" << compNdx << "] = " << tcu::toHex(ref0) << ", " << tcu::toHex(ref1); return false; } } return true; } }; class UmulExtendedCase : public IntegerFunctionCase { public: UmulExtendedCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType) : IntegerFunctionCase(context, getIntegerFuncCaseName(baseType, precision, shaderType).c_str(), "umulExtended", shaderType) { m_spec.inputs.push_back(Symbol("x", glu::VarType(baseType, precision))); m_spec.inputs.push_back(Symbol("y", glu::VarType(baseType, precision))); m_spec.outputs.push_back(Symbol("msb", glu::VarType(baseType, precision))); m_spec.outputs.push_back(Symbol("lsb", glu::VarType(baseType, precision))); m_spec.source = "umulExtended(x, y, msb, lsb);"; } void getInputValues (int numValues, void* const* values) const { de::Random rnd (deStringHash(getName()) ^ 0x235facu); const glu::DataType type = m_spec.inputs[0].varType.getBasicType(); // const glu::Precision precision = m_spec.inputs[0].varType.getPrecision(); const int scalarSize = glu::getDataTypeScalarSize(type); deUint32* in0 = (deUint32*)values[0]; deUint32* in1 = (deUint32*)values[1]; int valueNdx = 0; const struct { deUint32 x; deUint32 y; } easyCases[] = { { 0x00000000u, 0x00000000u }, { 0xffffffffu, 0x00000001u }, { 0xffffffffu, 0x00000002u }, { 0x00000001u, 0xffffffffu }, { 0x00000002u, 0xffffffffu }, { 0xffffffffu, 0xffffffffu }, }; for (int easyCaseNdx = 0; easyCaseNdx < DE_LENGTH_OF_ARRAY(easyCases); easyCaseNdx++) { for (int compNdx = 0; compNdx < scalarSize; compNdx++) { in0[valueNdx*scalarSize + compNdx] = easyCases[easyCaseNdx].x; in1[valueNdx*scalarSize + compNdx] = easyCases[easyCaseNdx].y; } valueNdx += 1; } while (valueNdx < numValues) { for (int compNdx = 0; compNdx < scalarSize; compNdx++) { const deUint32 base0 = rnd.getUint32(); const deUint32 base1 = rnd.getUint32(); const int adj0 = rnd.getInt(0, 20); const int adj1 = rnd.getInt(0, 20); in0[valueNdx*scalarSize + compNdx] = base0 >> adj0; in1[valueNdx*scalarSize + compNdx] = base1 >> adj1; } valueNdx += 1; } } bool compare (const void* const* inputs, const void* const* outputs) { const glu::DataType type = m_spec.inputs[0].varType.getBasicType(); const int scalarSize = glu::getDataTypeScalarSize(type); for (int compNdx = 0; compNdx < scalarSize; compNdx++) { const deUint32 in0 = ((const deUint32*)inputs[0])[compNdx]; const deUint32 in1 = ((const deUint32*)inputs[1])[compNdx]; const deUint32 out0 = ((const deUint32*)outputs[0])[compNdx]; const deUint32 out1 = ((const deUint32*)outputs[1])[compNdx]; const deUint64 mul64 = deUint64(in0)*deUint64(in1); const deUint32 ref0 = deUint32(mul64 >> 32); const deUint32 ref1 = deUint32(mul64 & 0xffffffffu); if (out0 != ref0 || out1 != ref1) { m_failMsg << "Expected [" << compNdx << "] = " << tcu::toHex(ref0) << ", " << tcu::toHex(ref1); return false; } } return true; } }; class ImulExtendedCase : public IntegerFunctionCase { public: ImulExtendedCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType) : IntegerFunctionCase(context, getIntegerFuncCaseName(baseType, precision, shaderType).c_str(), "imulExtended", shaderType) { m_spec.inputs.push_back(Symbol("x", glu::VarType(baseType, precision))); m_spec.inputs.push_back(Symbol("y", glu::VarType(baseType, precision))); m_spec.outputs.push_back(Symbol("msb", glu::VarType(baseType, precision))); m_spec.outputs.push_back(Symbol("lsb", glu::VarType(baseType, precision))); m_spec.source = "imulExtended(x, y, msb, lsb);"; } void getInputValues (int numValues, void* const* values) const { de::Random rnd (deStringHash(getName()) ^ 0x224fa1u); const glu::DataType type = m_spec.inputs[0].varType.getBasicType(); // const glu::Precision precision = m_spec.inputs[0].varType.getPrecision(); const int scalarSize = glu::getDataTypeScalarSize(type); deUint32* in0 = (deUint32*)values[0]; deUint32* in1 = (deUint32*)values[1]; int valueNdx = 0; const struct { deUint32 x; deUint32 y; } easyCases[] = { { 0x00000000u, 0x00000000u }, { 0xffffffffu, 0x00000002u }, { 0x7fffffffu, 0x00000001u }, { 0x7fffffffu, 0x00000002u }, { 0x7fffffffu, 0x7fffffffu }, { 0xffffffffu, 0xffffffffu }, { 0x7fffffffu, 0xfffffffeu }, }; for (int easyCaseNdx = 0; easyCaseNdx < DE_LENGTH_OF_ARRAY(easyCases); easyCaseNdx++) { for (int compNdx = 0; compNdx < scalarSize; compNdx++) { in0[valueNdx*scalarSize + compNdx] = (deInt32)easyCases[easyCaseNdx].x; in1[valueNdx*scalarSize + compNdx] = (deInt32)easyCases[easyCaseNdx].y; } valueNdx += 1; } while (valueNdx < numValues) { for (int compNdx = 0; compNdx < scalarSize; compNdx++) { const deInt32 base0 = (deInt32)rnd.getUint32(); const deInt32 base1 = (deInt32)rnd.getUint32(); const int adj0 = rnd.getInt(0, 20); const int adj1 = rnd.getInt(0, 20); in0[valueNdx*scalarSize + compNdx] = base0 >> adj0; in1[valueNdx*scalarSize + compNdx] = base1 >> adj1; } valueNdx += 1; } } bool compare (const void* const* inputs, const void* const* outputs) { const glu::DataType type = m_spec.inputs[0].varType.getBasicType(); const int scalarSize = glu::getDataTypeScalarSize(type); for (int compNdx = 0; compNdx < scalarSize; compNdx++) { const deInt32 in0 = ((const deInt32*)inputs[0])[compNdx]; const deInt32 in1 = ((const deInt32*)inputs[1])[compNdx]; const deInt32 out0 = ((const deInt32*)outputs[0])[compNdx]; const deInt32 out1 = ((const deInt32*)outputs[1])[compNdx]; const deInt64 mul64 = deInt64(in0)*deInt64(in1); const deInt32 ref0 = deInt32(mul64 >> 32); const deInt32 ref1 = deInt32(mul64 & 0xffffffffu); if (out0 != ref0 || out1 != ref1) { m_failMsg << "Expected [" << compNdx << "] = " << tcu::toHex(ref0) << ", " << tcu::toHex(ref1); return false; } } return true; } }; class BitfieldExtractCase : public IntegerFunctionCase { public: BitfieldExtractCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType) : IntegerFunctionCase(context, getIntegerFuncCaseName(baseType, precision, shaderType).c_str(), "bitfieldExtract", shaderType) { m_spec.inputs.push_back(Symbol("value", glu::VarType(baseType, precision))); m_spec.inputs.push_back(Symbol("offset", glu::VarType(glu::TYPE_INT, precision))); m_spec.inputs.push_back(Symbol("bits", glu::VarType(glu::TYPE_INT, precision))); m_spec.outputs.push_back(Symbol("extracted", glu::VarType(baseType, precision))); m_spec.source = "extracted = bitfieldExtract(value, offset, bits);"; } void getInputValues (int numValues, void* const* values) const { de::Random rnd (deStringHash(getName()) ^ 0xa113fca2u); const glu::DataType type = m_spec.inputs[0].varType.getBasicType(); const glu::Precision precision = m_spec.inputs[0].varType.getPrecision(); const bool ignoreSign = precision != glu::PRECISION_HIGHP && glu::isDataTypeIntOrIVec(type); const int numBits = getShaderUintBitCount(m_shaderType, precision) - (ignoreSign ? 1 : 0); deUint32* inValue = (deUint32*)values[0]; int* inOffset = (int*)values[1]; int* inBits = (int*)values[2]; for (int valueNdx = 0; valueNdx < numValues; ++valueNdx) { const int bits = rnd.getInt(0, numBits); const int offset = rnd.getInt(0, numBits-bits); inOffset[valueNdx] = offset; inBits[valueNdx] = bits; } generateRandomInputData(rnd, m_shaderType, type, precision, inValue, numValues); } bool compare (const void* const* inputs, const void* const* outputs) { const glu::DataType type = m_spec.inputs[0].varType.getBasicType(); const bool isSigned = glu::isDataTypeIntOrIVec(type); const int scalarSize = glu::getDataTypeScalarSize(type); const int offset = *((const int*)inputs[1]); const int bits = *((const int*)inputs[2]); for (int compNdx = 0; compNdx < scalarSize; compNdx++) { const deUint32 out = ((const deUint32*)outputs[0])[compNdx]; deUint32 ref; // From the bitfieldExtract spec: "If bits is zero, the result will be zero.". if (bits == 0) { ref = 0u; } else { const deUint32 value = ((const deUint32*)inputs[0])[compNdx]; const deUint32 valMask = (bits == 32 ? ~0u : ((1u<> offset) & valMask); ref = baseVal | ((isSigned && (baseVal & (1 << (bits - 1)))) ? ~valMask : 0u); } if (out != ref) { m_failMsg << "Expected [" << compNdx << "] = " << tcu::toHex(ref); return false; } } return true; } }; class BitfieldInsertCase : public IntegerFunctionCase { public: BitfieldInsertCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType) : IntegerFunctionCase(context, getIntegerFuncCaseName(baseType, precision, shaderType).c_str(), "bitfieldInsert", shaderType) { m_spec.inputs.push_back(Symbol("base", glu::VarType(baseType, precision))); m_spec.inputs.push_back(Symbol("insert", glu::VarType(baseType, precision))); m_spec.inputs.push_back(Symbol("offset", glu::VarType(glu::TYPE_INT, precision))); m_spec.inputs.push_back(Symbol("bits", glu::VarType(glu::TYPE_INT, precision))); m_spec.outputs.push_back(Symbol("result", glu::VarType(baseType, precision))); m_spec.source = "result = bitfieldInsert(base, insert, offset, bits);"; } void getInputValues (int numValues, void* const* values) const { de::Random rnd (deStringHash(getName()) ^ 0x12c2acff); const glu::DataType type = m_spec.inputs[0].varType.getBasicType(); const glu::Precision precision = m_spec.inputs[0].varType.getPrecision(); const int numBits = getShaderUintBitCount(m_shaderType, precision); deUint32* inBase = (deUint32*)values[0]; deUint32* inInsert = (deUint32*)values[1]; int* inOffset = (int*)values[2]; int* inBits = (int*)values[3]; for (int valueNdx = 0; valueNdx < numValues; ++valueNdx) { const int bits = rnd.getInt(0, numBits); const int offset = rnd.getInt(0, numBits-bits); inOffset[valueNdx] = offset; inBits[valueNdx] = bits; } generateRandomInputData(rnd, m_shaderType, type, precision, inBase, numValues); generateRandomInputData(rnd, m_shaderType, type, precision, inInsert, numValues); } bool compare (const void* const* inputs, const void* const* outputs) { const glu::DataType type = m_spec.inputs[0].varType.getBasicType(); const glu::Precision precision = m_spec.inputs[0].varType.getPrecision(); const int scalarSize = glu::getDataTypeScalarSize(type); const int integerLength = getShaderUintBitCount(m_shaderType, precision); const deUint32 cmpMask = getLowBitMask(integerLength); const int offset = *((const int*)inputs[2]); const int bits = *((const int*)inputs[3]); for (int compNdx = 0; compNdx < scalarSize; compNdx++) { const deUint32 base = ((const deUint32*)inputs[0])[compNdx]; const deUint32 insert = ((const deUint32*)inputs[1])[compNdx]; const deInt32 out = ((const deUint32*)outputs[0])[compNdx]; const deUint32 mask = bits == 32 ? ~0u : (1u< static void addFunctionCases (TestCaseGroup* parent, const char* functionName, bool intTypes, bool uintTypes, bool allPrec, deUint32 shaderBits) { tcu::TestCaseGroup* group = new tcu::TestCaseGroup(parent->getTestContext(), functionName, functionName); parent->addChild(group); const glu::DataType scalarTypes[] = { glu::TYPE_INT, glu::TYPE_UINT }; for (int scalarTypeNdx = 0; scalarTypeNdx < DE_LENGTH_OF_ARRAY(scalarTypes); scalarTypeNdx++) { const glu::DataType scalarType = scalarTypes[scalarTypeNdx]; if ((!intTypes && scalarType == glu::TYPE_INT) || (!uintTypes && scalarType == glu::TYPE_UINT)) continue; for (int vecSize = 1; vecSize <= 4; vecSize++) { for (int prec = glu::PRECISION_LOWP; prec <= glu::PRECISION_HIGHP; prec++) { if (prec != glu::PRECISION_HIGHP && !allPrec) continue; for (int shaderTypeNdx = 0; shaderTypeNdx < glu::SHADERTYPE_LAST; shaderTypeNdx++) { if (shaderBits & (1<addChild(new TestClass(parent->getContext(), glu::DataType(scalarType + vecSize - 1), glu::Precision(prec), glu::ShaderType(shaderTypeNdx))); } } } } } void ShaderIntegerFunctionTests::init (void) { enum { VS = (1< (this, "uaddcarry", false, true, true, ALL_SHADERS); addFunctionCases (this, "usubborrow", false, true, true, ALL_SHADERS); addFunctionCases (this, "umulextended", false, true, false, ALL_SHADERS); addFunctionCases (this, "imulextended", true, false, false, ALL_SHADERS); addFunctionCases (this, "bitfieldextract", true, true, true, ALL_SHADERS); addFunctionCases (this, "bitfieldinsert", true, true, true, ALL_SHADERS); addFunctionCases (this, "bitfieldreverse", true, true, true, ALL_SHADERS); addFunctionCases (this, "bitcount", true, true, true, ALL_SHADERS); addFunctionCases (this, "findlsb", true, true, true, ALL_SHADERS); addFunctionCases (this, "findmsb", true, true, true, ALL_SHADERS); } } // Functional } // gles31 } // deqp