1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef BLK_INTERNAL_H
3 #define BLK_INTERNAL_H
4
5 #include <linux/idr.h>
6 #include <linux/blk-mq.h>
7 #include <linux/part_stat.h>
8 #include <linux/blk-crypto.h>
9 #include <xen/xen.h>
10 #include "blk-crypto-internal.h"
11 #include "blk-mq.h"
12 #include "blk-mq-sched.h"
13
14 /* Max future timer expiry for timeouts */
15 #define BLK_MAX_TIMEOUT (5 * HZ)
16
17 extern struct dentry *blk_debugfs_root;
18
19 struct blk_flush_queue {
20 unsigned int flush_pending_idx:1;
21 unsigned int flush_running_idx:1;
22 blk_status_t rq_status;
23 unsigned long flush_pending_since;
24 struct list_head flush_queue[2];
25 struct list_head flush_data_in_flight;
26 struct request *flush_rq;
27
28 spinlock_t mq_flush_lock;
29 };
30
31 extern struct kmem_cache *blk_requestq_cachep;
32 extern struct kobj_type blk_queue_ktype;
33 extern struct ida blk_queue_ida;
34
35 static inline struct blk_flush_queue *
blk_get_flush_queue(struct request_queue * q,struct blk_mq_ctx * ctx)36 blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx)
37 {
38 return blk_mq_map_queue(q, REQ_OP_FLUSH, ctx)->fq;
39 }
40
__blk_get_queue(struct request_queue * q)41 static inline void __blk_get_queue(struct request_queue *q)
42 {
43 kobject_get(&q->kobj);
44 }
45
46 bool is_flush_rq(struct request *req);
47
48 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
49 gfp_t flags);
50 void blk_free_flush_queue(struct blk_flush_queue *q);
51
52 void blk_freeze_queue(struct request_queue *q);
53
biovec_phys_mergeable(struct request_queue * q,struct bio_vec * vec1,struct bio_vec * vec2)54 static inline bool biovec_phys_mergeable(struct request_queue *q,
55 struct bio_vec *vec1, struct bio_vec *vec2)
56 {
57 unsigned long mask = queue_segment_boundary(q);
58 phys_addr_t addr1 = page_to_phys(vec1->bv_page) + vec1->bv_offset;
59 phys_addr_t addr2 = page_to_phys(vec2->bv_page) + vec2->bv_offset;
60
61 if (addr1 + vec1->bv_len != addr2)
62 return false;
63 if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page))
64 return false;
65 if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask))
66 return false;
67 return true;
68 }
69
__bvec_gap_to_prev(struct request_queue * q,struct bio_vec * bprv,unsigned int offset)70 static inline bool __bvec_gap_to_prev(struct request_queue *q,
71 struct bio_vec *bprv, unsigned int offset)
72 {
73 return (offset & queue_virt_boundary(q)) ||
74 ((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q));
75 }
76
77 /*
78 * Check if adding a bio_vec after bprv with offset would create a gap in
79 * the SG list. Most drivers don't care about this, but some do.
80 */
bvec_gap_to_prev(struct request_queue * q,struct bio_vec * bprv,unsigned int offset)81 static inline bool bvec_gap_to_prev(struct request_queue *q,
82 struct bio_vec *bprv, unsigned int offset)
83 {
84 if (!queue_virt_boundary(q))
85 return false;
86 return __bvec_gap_to_prev(q, bprv, offset);
87 }
88
blk_rq_bio_prep(struct request * rq,struct bio * bio,unsigned int nr_segs)89 static inline void blk_rq_bio_prep(struct request *rq, struct bio *bio,
90 unsigned int nr_segs)
91 {
92 rq->nr_phys_segments = nr_segs;
93 rq->__data_len = bio->bi_iter.bi_size;
94 rq->bio = rq->biotail = bio;
95 rq->ioprio = bio_prio(bio);
96
97 if (bio->bi_disk)
98 rq->rq_disk = bio->bi_disk;
99 }
100
101 #ifdef CONFIG_BLK_DEV_INTEGRITY
102 void blk_flush_integrity(void);
103 bool __bio_integrity_endio(struct bio *);
104 void bio_integrity_free(struct bio *bio);
bio_integrity_endio(struct bio * bio)105 static inline bool bio_integrity_endio(struct bio *bio)
106 {
107 if (bio_integrity(bio))
108 return __bio_integrity_endio(bio);
109 return true;
110 }
111
112 bool blk_integrity_merge_rq(struct request_queue *, struct request *,
113 struct request *);
114 bool blk_integrity_merge_bio(struct request_queue *, struct request *,
115 struct bio *);
116
integrity_req_gap_back_merge(struct request * req,struct bio * next)117 static inline bool integrity_req_gap_back_merge(struct request *req,
118 struct bio *next)
119 {
120 struct bio_integrity_payload *bip = bio_integrity(req->bio);
121 struct bio_integrity_payload *bip_next = bio_integrity(next);
122
123 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
124 bip_next->bip_vec[0].bv_offset);
125 }
126
integrity_req_gap_front_merge(struct request * req,struct bio * bio)127 static inline bool integrity_req_gap_front_merge(struct request *req,
128 struct bio *bio)
129 {
130 struct bio_integrity_payload *bip = bio_integrity(bio);
131 struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
132
133 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
134 bip_next->bip_vec[0].bv_offset);
135 }
136
137 void blk_integrity_add(struct gendisk *);
138 void blk_integrity_del(struct gendisk *);
139 #else /* CONFIG_BLK_DEV_INTEGRITY */
blk_integrity_merge_rq(struct request_queue * rq,struct request * r1,struct request * r2)140 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
141 struct request *r1, struct request *r2)
142 {
143 return true;
144 }
blk_integrity_merge_bio(struct request_queue * rq,struct request * r,struct bio * b)145 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
146 struct request *r, struct bio *b)
147 {
148 return true;
149 }
integrity_req_gap_back_merge(struct request * req,struct bio * next)150 static inline bool integrity_req_gap_back_merge(struct request *req,
151 struct bio *next)
152 {
153 return false;
154 }
integrity_req_gap_front_merge(struct request * req,struct bio * bio)155 static inline bool integrity_req_gap_front_merge(struct request *req,
156 struct bio *bio)
157 {
158 return false;
159 }
160
blk_flush_integrity(void)161 static inline void blk_flush_integrity(void)
162 {
163 }
bio_integrity_endio(struct bio * bio)164 static inline bool bio_integrity_endio(struct bio *bio)
165 {
166 return true;
167 }
bio_integrity_free(struct bio * bio)168 static inline void bio_integrity_free(struct bio *bio)
169 {
170 }
blk_integrity_add(struct gendisk * disk)171 static inline void blk_integrity_add(struct gendisk *disk)
172 {
173 }
blk_integrity_del(struct gendisk * disk)174 static inline void blk_integrity_del(struct gendisk *disk)
175 {
176 }
177 #endif /* CONFIG_BLK_DEV_INTEGRITY */
178
179 unsigned long blk_rq_timeout(unsigned long timeout);
180 void blk_add_timer(struct request *req);
181
182 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
183 unsigned int nr_segs, struct request **same_queue_rq);
184 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
185 struct bio *bio, unsigned int nr_segs);
186
187 void blk_account_io_start(struct request *req);
188 void blk_account_io_done(struct request *req, u64 now);
189
190 /*
191 * Plug flush limits
192 */
193 #define BLK_MAX_REQUEST_COUNT 32
194 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
195
196 /*
197 * Internal elevator interface
198 */
199 #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED)
200
201 void blk_insert_flush(struct request *rq);
202
203 void elevator_init_mq(struct request_queue *q);
204 int elevator_switch_mq(struct request_queue *q,
205 struct elevator_type *new_e);
206 void __elevator_exit(struct request_queue *, struct elevator_queue *);
207 int elv_register_queue(struct request_queue *q, bool uevent);
208 void elv_unregister_queue(struct request_queue *q);
209
elevator_exit(struct request_queue * q,struct elevator_queue * e)210 static inline void elevator_exit(struct request_queue *q,
211 struct elevator_queue *e)
212 {
213 lockdep_assert_held(&q->sysfs_lock);
214
215 blk_mq_sched_free_requests(q);
216 __elevator_exit(q, e);
217 }
218
219 struct hd_struct *__disk_get_part(struct gendisk *disk, int partno);
220
221 ssize_t part_size_show(struct device *dev, struct device_attribute *attr,
222 char *buf);
223 ssize_t part_stat_show(struct device *dev, struct device_attribute *attr,
224 char *buf);
225 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
226 char *buf);
227 ssize_t part_fail_show(struct device *dev, struct device_attribute *attr,
228 char *buf);
229 ssize_t part_fail_store(struct device *dev, struct device_attribute *attr,
230 const char *buf, size_t count);
231 ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
232 ssize_t part_timeout_store(struct device *, struct device_attribute *,
233 const char *, size_t);
234
235 void __blk_queue_split(struct bio **bio, unsigned int *nr_segs);
236 int ll_back_merge_fn(struct request *req, struct bio *bio,
237 unsigned int nr_segs);
238 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
239 struct request *next);
240 unsigned int blk_recalc_rq_segments(struct request *rq);
241 void blk_rq_set_mixed_merge(struct request *rq);
242 bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
243 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio);
244
245 int blk_dev_init(void);
246
247 /*
248 * Contribute to IO statistics IFF:
249 *
250 * a) it's attached to a gendisk, and
251 * b) the queue had IO stats enabled when this request was started
252 */
blk_do_io_stat(struct request * rq)253 static inline bool blk_do_io_stat(struct request *rq)
254 {
255 return rq->rq_disk && (rq->rq_flags & RQF_IO_STAT);
256 }
257
req_set_nomerge(struct request_queue * q,struct request * req)258 static inline void req_set_nomerge(struct request_queue *q, struct request *req)
259 {
260 req->cmd_flags |= REQ_NOMERGE;
261 if (req == q->last_merge)
262 q->last_merge = NULL;
263 }
264
265 /*
266 * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
267 * is defined as 'unsigned int', meantime it has to aligned to with logical
268 * block size which is the minimum accepted unit by hardware.
269 */
bio_allowed_max_sectors(struct request_queue * q)270 static inline unsigned int bio_allowed_max_sectors(struct request_queue *q)
271 {
272 return round_down(UINT_MAX, queue_logical_block_size(q)) >> 9;
273 }
274
275 /*
276 * The max bio size which is aligned to q->limits.discard_granularity. This
277 * is a hint to split large discard bio in generic block layer, then if device
278 * driver needs to split the discard bio into smaller ones, their bi_size can
279 * be very probably and easily aligned to discard_granularity of the device's
280 * queue.
281 */
bio_aligned_discard_max_sectors(struct request_queue * q)282 static inline unsigned int bio_aligned_discard_max_sectors(
283 struct request_queue *q)
284 {
285 return round_down(UINT_MAX, q->limits.discard_granularity) >>
286 SECTOR_SHIFT;
287 }
288
289 /*
290 * Internal io_context interface
291 */
292 void get_io_context(struct io_context *ioc);
293 struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q);
294 struct io_cq *ioc_create_icq(struct io_context *ioc, struct request_queue *q,
295 gfp_t gfp_mask);
296 void ioc_clear_queue(struct request_queue *q);
297
298 int create_task_io_context(struct task_struct *task, gfp_t gfp_mask, int node);
299
300 /*
301 * Internal throttling interface
302 */
303 #ifdef CONFIG_BLK_DEV_THROTTLING
304 extern int blk_throtl_init(struct request_queue *q);
305 extern void blk_throtl_exit(struct request_queue *q);
306 extern void blk_throtl_register_queue(struct request_queue *q);
307 extern void blk_throtl_charge_bio_split(struct bio *bio);
308 bool blk_throtl_bio(struct bio *bio);
309 #else /* CONFIG_BLK_DEV_THROTTLING */
blk_throtl_init(struct request_queue * q)310 static inline int blk_throtl_init(struct request_queue *q) { return 0; }
blk_throtl_exit(struct request_queue * q)311 static inline void blk_throtl_exit(struct request_queue *q) { }
blk_throtl_register_queue(struct request_queue * q)312 static inline void blk_throtl_register_queue(struct request_queue *q) { }
blk_throtl_charge_bio_split(struct bio * bio)313 static inline void blk_throtl_charge_bio_split(struct bio *bio) { }
blk_throtl_bio(struct bio * bio)314 static inline bool blk_throtl_bio(struct bio *bio) { return false; }
315 #endif /* CONFIG_BLK_DEV_THROTTLING */
316 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
317 extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page);
318 extern ssize_t blk_throtl_sample_time_store(struct request_queue *q,
319 const char *page, size_t count);
320 extern void blk_throtl_bio_endio(struct bio *bio);
321 extern void blk_throtl_stat_add(struct request *rq, u64 time);
322 #else
blk_throtl_bio_endio(struct bio * bio)323 static inline void blk_throtl_bio_endio(struct bio *bio) { }
blk_throtl_stat_add(struct request * rq,u64 time)324 static inline void blk_throtl_stat_add(struct request *rq, u64 time) { }
325 #endif
326
327 #ifdef CONFIG_BOUNCE
328 extern int init_emergency_isa_pool(void);
329 extern void blk_queue_bounce(struct request_queue *q, struct bio **bio);
330 #else
init_emergency_isa_pool(void)331 static inline int init_emergency_isa_pool(void)
332 {
333 return 0;
334 }
blk_queue_bounce(struct request_queue * q,struct bio ** bio)335 static inline void blk_queue_bounce(struct request_queue *q, struct bio **bio)
336 {
337 }
338 #endif /* CONFIG_BOUNCE */
339
340 #ifdef CONFIG_BLK_CGROUP_IOLATENCY
341 extern int blk_iolatency_init(struct request_queue *q);
342 #else
blk_iolatency_init(struct request_queue * q)343 static inline int blk_iolatency_init(struct request_queue *q) { return 0; }
344 #endif
345
346 struct bio *blk_next_bio(struct bio *bio, unsigned int nr_pages, gfp_t gfp);
347
348 #ifdef CONFIG_BLK_DEV_ZONED
349 void blk_queue_free_zone_bitmaps(struct request_queue *q);
350 #else
blk_queue_free_zone_bitmaps(struct request_queue * q)351 static inline void blk_queue_free_zone_bitmaps(struct request_queue *q) {}
352 #endif
353
354 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector);
355
356 int blk_alloc_devt(struct hd_struct *part, dev_t *devt);
357 void blk_free_devt(dev_t devt);
358 void blk_invalidate_devt(dev_t devt);
359 char *disk_name(struct gendisk *hd, int partno, char *buf);
360 #define ADDPART_FLAG_NONE 0
361 #define ADDPART_FLAG_RAID 1
362 #define ADDPART_FLAG_WHOLEDISK 2
363 void delete_partition(struct hd_struct *part);
364 int bdev_add_partition(struct block_device *bdev, int partno,
365 sector_t start, sector_t length);
366 int bdev_del_partition(struct block_device *bdev, int partno);
367 int bdev_resize_partition(struct block_device *bdev, int partno,
368 sector_t start, sector_t length);
369 int disk_expand_part_tbl(struct gendisk *disk, int target);
370 int hd_ref_init(struct hd_struct *part);
371
372 /* no need to get/put refcount of part0 */
hd_struct_try_get(struct hd_struct * part)373 static inline int hd_struct_try_get(struct hd_struct *part)
374 {
375 if (part->partno)
376 return percpu_ref_tryget_live(&part->ref);
377 return 1;
378 }
379
hd_struct_put(struct hd_struct * part)380 static inline void hd_struct_put(struct hd_struct *part)
381 {
382 if (part->partno)
383 percpu_ref_put(&part->ref);
384 }
385
hd_free_part(struct hd_struct * part)386 static inline void hd_free_part(struct hd_struct *part)
387 {
388 free_percpu(part->dkstats);
389 kfree(part->info);
390 percpu_ref_exit(&part->ref);
391 }
392
393 /*
394 * Any access of part->nr_sects which is not protected by partition
395 * bd_mutex or gendisk bdev bd_mutex, should be done using this
396 * accessor function.
397 *
398 * Code written along the lines of i_size_read() and i_size_write().
399 * CONFIG_PREEMPTION case optimizes the case of UP kernel with preemption
400 * on.
401 */
part_nr_sects_read(struct hd_struct * part)402 static inline sector_t part_nr_sects_read(struct hd_struct *part)
403 {
404 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
405 sector_t nr_sects;
406 unsigned seq;
407 do {
408 seq = read_seqcount_begin(&part->nr_sects_seq);
409 nr_sects = part->nr_sects;
410 } while (read_seqcount_retry(&part->nr_sects_seq, seq));
411 return nr_sects;
412 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
413 sector_t nr_sects;
414
415 preempt_disable();
416 nr_sects = part->nr_sects;
417 preempt_enable();
418 return nr_sects;
419 #else
420 return part->nr_sects;
421 #endif
422 }
423
424 /*
425 * Should be called with mutex lock held (typically bd_mutex) of partition
426 * to provide mutual exlusion among writers otherwise seqcount might be
427 * left in wrong state leaving the readers spinning infinitely.
428 */
part_nr_sects_write(struct hd_struct * part,sector_t size)429 static inline void part_nr_sects_write(struct hd_struct *part, sector_t size)
430 {
431 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
432 preempt_disable();
433 write_seqcount_begin(&part->nr_sects_seq);
434 part->nr_sects = size;
435 write_seqcount_end(&part->nr_sects_seq);
436 preempt_enable();
437 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
438 preempt_disable();
439 part->nr_sects = size;
440 preempt_enable();
441 #else
442 part->nr_sects = size;
443 #endif
444 }
445
446 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
447 struct page *page, unsigned int len, unsigned int offset,
448 unsigned int max_sectors, bool *same_page);
449
450 #endif /* BLK_INTERNAL_H */
451