• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2016-2019 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the OpenSSL license (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 /*
11  * Derived from the BLAKE2 reference implementation written by Samuel Neves.
12  * Copyright 2012, Samuel Neves <sneves@dei.uc.pt>
13  * More information about the BLAKE2 hash function and its implementations
14  * can be found at https://blake2.net.
15  */
16 
17 #include <assert.h>
18 #include <string.h>
19 #include <openssl/crypto.h>
20 
21 #include "blake2_local.h"
22 #include "blake2_impl.h"
23 
24 static const uint64_t blake2b_IV[8] =
25 {
26     0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL,
27     0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL,
28     0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL,
29     0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL
30 };
31 
32 static const uint8_t blake2b_sigma[12][16] =
33 {
34     {  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15 } ,
35     { 14, 10,  4,  8,  9, 15, 13,  6,  1, 12,  0,  2, 11,  7,  5,  3 } ,
36     { 11,  8, 12,  0,  5,  2, 15, 13, 10, 14,  3,  6,  7,  1,  9,  4 } ,
37     {  7,  9,  3,  1, 13, 12, 11, 14,  2,  6,  5, 10,  4,  0, 15,  8 } ,
38     {  9,  0,  5,  7,  2,  4, 10, 15, 14,  1, 11, 12,  6,  8,  3, 13 } ,
39     {  2, 12,  6, 10,  0, 11,  8,  3,  4, 13,  7,  5, 15, 14,  1,  9 } ,
40     { 12,  5,  1, 15, 14, 13,  4, 10,  0,  7,  6,  3,  9,  2,  8, 11 } ,
41     { 13, 11,  7, 14, 12,  1,  3,  9,  5,  0, 15,  4,  8,  6,  2, 10 } ,
42     {  6, 15, 14,  9, 11,  3,  0,  8, 12,  2, 13,  7,  1,  4, 10,  5 } ,
43     { 10,  2,  8,  4,  7,  6,  1,  5, 15, 11,  9, 14,  3, 12, 13 , 0 } ,
44     {  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15 } ,
45     { 14, 10,  4,  8,  9, 15, 13,  6,  1, 12,  0,  2, 11,  7,  5,  3 }
46 };
47 
48 /* Set that it's the last block we'll compress */
blake2b_set_lastblock(BLAKE2B_CTX * S)49 static ossl_inline void blake2b_set_lastblock(BLAKE2B_CTX *S)
50 {
51     S->f[0] = -1;
52 }
53 
54 /* Initialize the hashing state. */
blake2b_init0(BLAKE2B_CTX * S)55 static ossl_inline void blake2b_init0(BLAKE2B_CTX *S)
56 {
57     int i;
58 
59     memset(S, 0, sizeof(BLAKE2B_CTX));
60     for (i = 0; i < 8; ++i) {
61         S->h[i] = blake2b_IV[i];
62     }
63 }
64 
65 /* init xors IV with input parameter block */
blake2b_init_param(BLAKE2B_CTX * S,const BLAKE2B_PARAM * P)66 static void blake2b_init_param(BLAKE2B_CTX *S, const BLAKE2B_PARAM *P)
67 {
68     size_t i;
69     const uint8_t *p = (const uint8_t *)(P);
70     blake2b_init0(S);
71 
72     /* The param struct is carefully hand packed, and should be 64 bytes on
73      * every platform. */
74     assert(sizeof(BLAKE2B_PARAM) == 64);
75     /* IV XOR ParamBlock */
76     for (i = 0; i < 8; ++i) {
77         S->h[i] ^= load64(p + sizeof(S->h[i]) * i);
78     }
79 }
80 
81 /* Initialize the hashing context.  Always returns 1. */
BLAKE2b_Init(BLAKE2B_CTX * c)82 int BLAKE2b_Init(BLAKE2B_CTX *c)
83 {
84     BLAKE2B_PARAM P[1];
85     P->digest_length = BLAKE2B_DIGEST_LENGTH;
86     P->key_length    = 0;
87     P->fanout        = 1;
88     P->depth         = 1;
89     store32(P->leaf_length, 0);
90     store64(P->node_offset, 0);
91     P->node_depth    = 0;
92     P->inner_length  = 0;
93     memset(P->reserved, 0, sizeof(P->reserved));
94     memset(P->salt,     0, sizeof(P->salt));
95     memset(P->personal, 0, sizeof(P->personal));
96     blake2b_init_param(c, P);
97     return 1;
98 }
99 
100 /* Permute the state while xoring in the block of data. */
blake2b_compress(BLAKE2B_CTX * S,const uint8_t * blocks,size_t len)101 static void blake2b_compress(BLAKE2B_CTX *S,
102                             const uint8_t *blocks,
103                             size_t len)
104 {
105     uint64_t m[16];
106     uint64_t v[16];
107     int i;
108     size_t increment;
109 
110     /*
111      * There are two distinct usage vectors for this function:
112      *
113      * a) BLAKE2b_Update uses it to process complete blocks,
114      *    possibly more than one at a time;
115      *
116      * b) BLAK2b_Final uses it to process last block, always
117      *    single but possibly incomplete, in which case caller
118      *    pads input with zeros.
119      */
120     assert(len < BLAKE2B_BLOCKBYTES || len % BLAKE2B_BLOCKBYTES == 0);
121 
122     /*
123      * Since last block is always processed with separate call,
124      * |len| not being multiple of complete blocks can be observed
125      * only with |len| being less than BLAKE2B_BLOCKBYTES ("less"
126      * including even zero), which is why following assignment doesn't
127      * have to reside inside the main loop below.
128      */
129     increment = len < BLAKE2B_BLOCKBYTES ? len : BLAKE2B_BLOCKBYTES;
130 
131     for (i = 0; i < 8; ++i) {
132         v[i] = S->h[i];
133     }
134 
135     do {
136         for (i = 0; i < 16; ++i) {
137             m[i] = load64(blocks + i * sizeof(m[i]));
138         }
139 
140         /* blake2b_increment_counter */
141         S->t[0] += increment;
142         S->t[1] += (S->t[0] < increment);
143 
144         v[8]  = blake2b_IV[0];
145         v[9]  = blake2b_IV[1];
146         v[10] = blake2b_IV[2];
147         v[11] = blake2b_IV[3];
148         v[12] = S->t[0] ^ blake2b_IV[4];
149         v[13] = S->t[1] ^ blake2b_IV[5];
150         v[14] = S->f[0] ^ blake2b_IV[6];
151         v[15] = S->f[1] ^ blake2b_IV[7];
152 #define G(r,i,a,b,c,d) \
153         do { \
154             a = a + b + m[blake2b_sigma[r][2*i+0]]; \
155             d = rotr64(d ^ a, 32); \
156             c = c + d; \
157             b = rotr64(b ^ c, 24); \
158             a = a + b + m[blake2b_sigma[r][2*i+1]]; \
159             d = rotr64(d ^ a, 16); \
160             c = c + d; \
161             b = rotr64(b ^ c, 63); \
162         } while (0)
163 #define ROUND(r)  \
164         do { \
165             G(r,0,v[ 0],v[ 4],v[ 8],v[12]); \
166             G(r,1,v[ 1],v[ 5],v[ 9],v[13]); \
167             G(r,2,v[ 2],v[ 6],v[10],v[14]); \
168             G(r,3,v[ 3],v[ 7],v[11],v[15]); \
169             G(r,4,v[ 0],v[ 5],v[10],v[15]); \
170             G(r,5,v[ 1],v[ 6],v[11],v[12]); \
171             G(r,6,v[ 2],v[ 7],v[ 8],v[13]); \
172             G(r,7,v[ 3],v[ 4],v[ 9],v[14]); \
173         } while (0)
174 #if defined(OPENSSL_SMALL_FOOTPRINT)
175         /* 3x size reduction on x86_64, almost 7x on ARMv8, 9x on ARMv4 */
176         for (i = 0; i < 12; i++) {
177             ROUND(i);
178         }
179 #else
180         ROUND(0);
181         ROUND(1);
182         ROUND(2);
183         ROUND(3);
184         ROUND(4);
185         ROUND(5);
186         ROUND(6);
187         ROUND(7);
188         ROUND(8);
189         ROUND(9);
190         ROUND(10);
191         ROUND(11);
192 #endif
193 
194         for (i = 0; i < 8; ++i) {
195             S->h[i] = v[i] ^= v[i + 8] ^ S->h[i];
196         }
197 #undef G
198 #undef ROUND
199         blocks += increment;
200         len -= increment;
201     } while (len);
202 }
203 
204 /* Absorb the input data into the hash state.  Always returns 1. */
BLAKE2b_Update(BLAKE2B_CTX * c,const void * data,size_t datalen)205 int BLAKE2b_Update(BLAKE2B_CTX *c, const void *data, size_t datalen)
206 {
207     const uint8_t *in = data;
208     size_t fill;
209 
210     /*
211      * Intuitively one would expect intermediate buffer, c->buf, to
212      * store incomplete blocks. But in this case we are interested to
213      * temporarily stash even complete blocks, because last one in the
214      * stream has to be treated in special way, and at this point we
215      * don't know if last block in *this* call is last one "ever". This
216      * is the reason for why |datalen| is compared as >, and not >=.
217      */
218     fill = sizeof(c->buf) - c->buflen;
219     if (datalen > fill) {
220         if (c->buflen) {
221             memcpy(c->buf + c->buflen, in, fill); /* Fill buffer */
222             blake2b_compress(c, c->buf, BLAKE2B_BLOCKBYTES);
223             c->buflen = 0;
224             in += fill;
225             datalen -= fill;
226         }
227         if (datalen > BLAKE2B_BLOCKBYTES) {
228             size_t stashlen = datalen % BLAKE2B_BLOCKBYTES;
229             /*
230              * If |datalen| is a multiple of the blocksize, stash
231              * last complete block, it can be final one...
232              */
233             stashlen = stashlen ? stashlen : BLAKE2B_BLOCKBYTES;
234             datalen -= stashlen;
235             blake2b_compress(c, in, datalen);
236             in += datalen;
237             datalen = stashlen;
238         }
239     }
240 
241     assert(datalen <= BLAKE2B_BLOCKBYTES);
242 
243     memcpy(c->buf + c->buflen, in, datalen);
244     c->buflen += datalen; /* Be lazy, do not compress */
245 
246     return 1;
247 }
248 
249 /*
250  * Calculate the final hash and save it in md.
251  * Always returns 1.
252  */
BLAKE2b_Final(unsigned char * md,BLAKE2B_CTX * c)253 int BLAKE2b_Final(unsigned char *md, BLAKE2B_CTX *c)
254 {
255     int i;
256 
257     blake2b_set_lastblock(c);
258     /* Padding */
259     memset(c->buf + c->buflen, 0, sizeof(c->buf) - c->buflen);
260     blake2b_compress(c, c->buf, c->buflen);
261 
262     /* Output full hash to message digest */
263     for (i = 0; i < 8; ++i) {
264         store64(md + sizeof(c->h[i]) * i, c->h[i]);
265     }
266 
267     OPENSSL_cleanse(c, sizeof(BLAKE2B_CTX));
268     return 1;
269 }
270