• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  Copyright (C) Intel Corp.  2006.  All Rights Reserved.
3  Intel funded Tungsten Graphics to
4  develop this 3D driver.
5 
6  Permission is hereby granted, free of charge, to any person obtaining
7  a copy of this software and associated documentation files (the
8  "Software"), to deal in the Software without restriction, including
9  without limitation the rights to use, copy, modify, merge, publish,
10  distribute, sublicense, and/or sell copies of the Software, and to
11  permit persons to whom the Software is furnished to do so, subject to
12  the following conditions:
13 
14  The above copyright notice and this permission notice (including the
15  next paragraph) shall be included in all copies or substantial
16  portions of the Software.
17 
18  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21  IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 
26  **********************************************************************/
27  /*
28   * Authors:
29   *   Keith Whitwell <keithw@vmware.com>
30   */
31 
32 #ifndef BRW_EU_DEFINES_H
33 #define BRW_EU_DEFINES_H
34 
35 #include <stdint.h>
36 #include <stdlib.h>
37 #include "util/macros.h"
38 #include "dev/intel_device_info.h"
39 
40 /* The following hunk, up-to "Execution Unit" is used by both the
41  * intel/compiler and i965 codebase. */
42 
43 #define INTEL_MASK(high, low) (((1u<<((high)-(low)+1))-1)<<(low))
44 /* Using the GNU statement expression extension */
45 #define SET_FIELD(value, field)                                         \
46    ({                                                                   \
47       uint32_t fieldval = (uint32_t)(value) << field ## _SHIFT;         \
48       assert((fieldval & ~ field ## _MASK) == 0);                       \
49       fieldval & field ## _MASK;                                        \
50    })
51 
52 #define SET_BITS(value, high, low)                                      \
53    ({                                                                   \
54       const uint32_t fieldval = (uint32_t)(value) << (low);             \
55       assert((fieldval & ~INTEL_MASK(high, low)) == 0);                 \
56       fieldval & INTEL_MASK(high, low);                                 \
57    })
58 
59 #define GET_BITS(data, high, low) ((data & INTEL_MASK((high), (low))) >> (low))
60 #define GET_FIELD(word, field) (((word)  & field ## _MASK) >> field ## _SHIFT)
61 
62 #define _3DPRIM_POINTLIST         0x01
63 #define _3DPRIM_LINELIST          0x02
64 #define _3DPRIM_LINESTRIP         0x03
65 #define _3DPRIM_TRILIST           0x04
66 #define _3DPRIM_TRISTRIP          0x05
67 #define _3DPRIM_TRIFAN            0x06
68 #define _3DPRIM_QUADLIST          0x07
69 #define _3DPRIM_QUADSTRIP         0x08
70 #define _3DPRIM_LINELIST_ADJ      0x09 /* G45+ */
71 #define _3DPRIM_LINESTRIP_ADJ     0x0A /* G45+ */
72 #define _3DPRIM_TRILIST_ADJ       0x0B /* G45+ */
73 #define _3DPRIM_TRISTRIP_ADJ      0x0C /* G45+ */
74 #define _3DPRIM_TRISTRIP_REVERSE  0x0D
75 #define _3DPRIM_POLYGON           0x0E
76 #define _3DPRIM_RECTLIST          0x0F
77 #define _3DPRIM_LINELOOP          0x10
78 #define _3DPRIM_POINTLIST_BF      0x11
79 #define _3DPRIM_LINESTRIP_CONT    0x12
80 #define _3DPRIM_LINESTRIP_BF      0x13
81 #define _3DPRIM_LINESTRIP_CONT_BF 0x14
82 #define _3DPRIM_TRIFAN_NOSTIPPLE  0x16
83 #define _3DPRIM_PATCHLIST(n) ({ assert(n > 0 && n <= 32); 0x20 + (n - 1); })
84 
85 /* Bitfields for the URB_WRITE message, DW2 of message header: */
86 #define URB_WRITE_PRIM_END		0x1
87 #define URB_WRITE_PRIM_START		0x2
88 #define URB_WRITE_PRIM_TYPE_SHIFT	2
89 
90 #define BRW_SPRITE_POINT_ENABLE  16
91 
92 # define GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT		0
93 # define GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_SID		1
94 
95 /* Execution Unit (EU) defines
96  */
97 
98 #define BRW_ALIGN_1   0
99 #define BRW_ALIGN_16  1
100 
101 #define BRW_ADDRESS_DIRECT                        0
102 #define BRW_ADDRESS_REGISTER_INDIRECT_REGISTER    1
103 
104 #define BRW_CHANNEL_X     0
105 #define BRW_CHANNEL_Y     1
106 #define BRW_CHANNEL_Z     2
107 #define BRW_CHANNEL_W     3
108 
109 enum brw_compression {
110    BRW_COMPRESSION_NONE       = 0,
111    BRW_COMPRESSION_2NDHALF    = 1,
112    BRW_COMPRESSION_COMPRESSED = 2,
113 };
114 
115 #define GFX6_COMPRESSION_1Q		0
116 #define GFX6_COMPRESSION_2Q		1
117 #define GFX6_COMPRESSION_3Q		2
118 #define GFX6_COMPRESSION_4Q		3
119 #define GFX6_COMPRESSION_1H		0
120 #define GFX6_COMPRESSION_2H		2
121 
122 enum PACKED brw_conditional_mod {
123    BRW_CONDITIONAL_NONE = 0,
124    BRW_CONDITIONAL_Z    = 1,
125    BRW_CONDITIONAL_NZ   = 2,
126    BRW_CONDITIONAL_EQ   = 1,	/* Z */
127    BRW_CONDITIONAL_NEQ  = 2,	/* NZ */
128    BRW_CONDITIONAL_G    = 3,
129    BRW_CONDITIONAL_GE   = 4,
130    BRW_CONDITIONAL_L    = 5,
131    BRW_CONDITIONAL_LE   = 6,
132    BRW_CONDITIONAL_R    = 7,    /* Gen <= 5 */
133    BRW_CONDITIONAL_O    = 8,
134    BRW_CONDITIONAL_U    = 9,
135 };
136 
137 #define BRW_DEBUG_NONE        0
138 #define BRW_DEBUG_BREAKPOINT  1
139 
140 #define BRW_DEPENDENCY_NORMAL         0
141 #define BRW_DEPENDENCY_NOTCLEARED     1
142 #define BRW_DEPENDENCY_NOTCHECKED     2
143 #define BRW_DEPENDENCY_DISABLE        3
144 
145 enum PACKED brw_execution_size {
146    BRW_EXECUTE_1  = 0,
147    BRW_EXECUTE_2  = 1,
148    BRW_EXECUTE_4  = 2,
149    BRW_EXECUTE_8  = 3,
150    BRW_EXECUTE_16 = 4,
151    BRW_EXECUTE_32 = 5,
152 };
153 
154 enum PACKED brw_horizontal_stride {
155    BRW_HORIZONTAL_STRIDE_0 = 0,
156    BRW_HORIZONTAL_STRIDE_1 = 1,
157    BRW_HORIZONTAL_STRIDE_2 = 2,
158    BRW_HORIZONTAL_STRIDE_4 = 3,
159 };
160 
161 enum PACKED gfx10_align1_3src_src_horizontal_stride {
162    BRW_ALIGN1_3SRC_SRC_HORIZONTAL_STRIDE_0 = 0,
163    BRW_ALIGN1_3SRC_SRC_HORIZONTAL_STRIDE_1 = 1,
164    BRW_ALIGN1_3SRC_SRC_HORIZONTAL_STRIDE_2 = 2,
165    BRW_ALIGN1_3SRC_SRC_HORIZONTAL_STRIDE_4 = 3,
166 };
167 
168 enum PACKED gfx10_align1_3src_dst_horizontal_stride {
169    BRW_ALIGN1_3SRC_DST_HORIZONTAL_STRIDE_1 = 0,
170    BRW_ALIGN1_3SRC_DST_HORIZONTAL_STRIDE_2 = 1,
171 };
172 
173 #define BRW_INSTRUCTION_NORMAL    0
174 #define BRW_INSTRUCTION_SATURATE  1
175 
176 #define BRW_MASK_ENABLE   0
177 #define BRW_MASK_DISABLE  1
178 
179 /** @{
180  *
181  * Gfx6 has replaced "mask enable/disable" with WECtrl, which is
182  * effectively the same but much simpler to think about.  Now, there
183  * are two contributors ANDed together to whether channels are
184  * executed: The predication on the instruction, and the channel write
185  * enable.
186  */
187 /**
188  * This is the default value.  It means that a channel's write enable is set
189  * if the per-channel IP is pointing at this instruction.
190  */
191 #define BRW_WE_NORMAL		0
192 /**
193  * This is used like BRW_MASK_DISABLE, and causes all channels to have
194  * their write enable set.  Note that predication still contributes to
195  * whether the channel actually gets written.
196  */
197 #define BRW_WE_ALL		1
198 /** @} */
199 
200 enum opcode {
201    /* These are the actual hardware instructions. */
202    BRW_OPCODE_ILLEGAL,
203    BRW_OPCODE_SYNC,
204    BRW_OPCODE_MOV,
205    BRW_OPCODE_SEL,
206    BRW_OPCODE_MOVI, /**< G45+ */
207    BRW_OPCODE_NOT,
208    BRW_OPCODE_AND,
209    BRW_OPCODE_OR,
210    BRW_OPCODE_XOR,
211    BRW_OPCODE_SHR,
212    BRW_OPCODE_SHL,
213    BRW_OPCODE_DIM, /**< Gfx7.5 only */
214    BRW_OPCODE_SMOV, /**< Gfx8+ */
215    BRW_OPCODE_ASR,
216    BRW_OPCODE_ROR,  /**< Gfx11+ */
217    BRW_OPCODE_ROL,  /**< Gfx11+ */
218    BRW_OPCODE_CMP,
219    BRW_OPCODE_CMPN,
220    BRW_OPCODE_CSEL, /**< Gfx8+ */
221    BRW_OPCODE_F32TO16, /**< Gfx7 only */
222    BRW_OPCODE_F16TO32, /**< Gfx7 only */
223    BRW_OPCODE_BFREV, /**< Gfx7+ */
224    BRW_OPCODE_BFE, /**< Gfx7+ */
225    BRW_OPCODE_BFI1, /**< Gfx7+ */
226    BRW_OPCODE_BFI2, /**< Gfx7+ */
227    BRW_OPCODE_JMPI,
228    BRW_OPCODE_BRD, /**< Gfx7+ */
229    BRW_OPCODE_IF,
230    BRW_OPCODE_IFF, /**< Pre-Gfx6 */
231    BRW_OPCODE_BRC, /**< Gfx7+ */
232    BRW_OPCODE_ELSE,
233    BRW_OPCODE_ENDIF,
234    BRW_OPCODE_DO, /**< Pre-Gfx6 */
235    BRW_OPCODE_CASE, /**< Gfx6 only */
236    BRW_OPCODE_WHILE,
237    BRW_OPCODE_BREAK,
238    BRW_OPCODE_CONTINUE,
239    BRW_OPCODE_HALT,
240    BRW_OPCODE_CALLA, /**< Gfx7.5+ */
241    BRW_OPCODE_MSAVE, /**< Pre-Gfx6 */
242    BRW_OPCODE_CALL, /**< Gfx6+ */
243    BRW_OPCODE_MREST, /**< Pre-Gfx6 */
244    BRW_OPCODE_RET, /**< Gfx6+ */
245    BRW_OPCODE_PUSH, /**< Pre-Gfx6 */
246    BRW_OPCODE_FORK, /**< Gfx6 only */
247    BRW_OPCODE_GOTO, /**< Gfx8+ */
248    BRW_OPCODE_POP, /**< Pre-Gfx6 */
249    BRW_OPCODE_WAIT,
250    BRW_OPCODE_SEND,
251    BRW_OPCODE_SENDC,
252    BRW_OPCODE_SENDS, /**< Gfx9+ */
253    BRW_OPCODE_SENDSC, /**< Gfx9+ */
254    BRW_OPCODE_MATH, /**< Gfx6+ */
255    BRW_OPCODE_ADD,
256    BRW_OPCODE_MUL,
257    BRW_OPCODE_AVG,
258    BRW_OPCODE_FRC,
259    BRW_OPCODE_RNDU,
260    BRW_OPCODE_RNDD,
261    BRW_OPCODE_RNDE,
262    BRW_OPCODE_RNDZ,
263    BRW_OPCODE_MAC,
264    BRW_OPCODE_MACH,
265    BRW_OPCODE_LZD,
266    BRW_OPCODE_FBH, /**< Gfx7+ */
267    BRW_OPCODE_FBL, /**< Gfx7+ */
268    BRW_OPCODE_CBIT, /**< Gfx7+ */
269    BRW_OPCODE_ADDC, /**< Gfx7+ */
270    BRW_OPCODE_SUBB, /**< Gfx7+ */
271    BRW_OPCODE_SAD2,
272    BRW_OPCODE_SADA2,
273    BRW_OPCODE_ADD3, /* Gen12+ only */
274    BRW_OPCODE_DP4,
275    BRW_OPCODE_DPH,
276    BRW_OPCODE_DP3,
277    BRW_OPCODE_DP2,
278    BRW_OPCODE_DP4A, /**< Gfx12+ */
279    BRW_OPCODE_LINE,
280    BRW_OPCODE_PLN, /**< G45+ */
281    BRW_OPCODE_MAD, /**< Gfx6+ */
282    BRW_OPCODE_LRP, /**< Gfx6+ */
283    BRW_OPCODE_MADM, /**< Gfx8+ */
284    BRW_OPCODE_NENOP, /**< G45 only */
285    BRW_OPCODE_NOP,
286 
287    NUM_BRW_OPCODES,
288 
289    /* These are compiler backend opcodes that get translated into other
290     * instructions.
291     */
292    FS_OPCODE_FB_WRITE = NUM_BRW_OPCODES,
293 
294    /**
295     * Same as FS_OPCODE_FB_WRITE but expects its arguments separately as
296     * individual sources instead of as a single payload blob. The
297     * position/ordering of the arguments are defined by the enum
298     * fb_write_logical_srcs.
299     */
300    FS_OPCODE_FB_WRITE_LOGICAL,
301 
302    FS_OPCODE_REP_FB_WRITE,
303 
304    FS_OPCODE_FB_READ,
305    FS_OPCODE_FB_READ_LOGICAL,
306 
307    SHADER_OPCODE_RCP,
308    SHADER_OPCODE_RSQ,
309    SHADER_OPCODE_SQRT,
310    SHADER_OPCODE_EXP2,
311    SHADER_OPCODE_LOG2,
312    SHADER_OPCODE_POW,
313    SHADER_OPCODE_INT_QUOTIENT,
314    SHADER_OPCODE_INT_REMAINDER,
315    SHADER_OPCODE_SIN,
316    SHADER_OPCODE_COS,
317 
318    /**
319     * A generic "send" opcode.  The first two sources are the message
320     * descriptor and extended message descriptor respectively.  The third
321     * and optional fourth sources are the message payload
322     */
323    SHADER_OPCODE_SEND,
324 
325    /**
326     * An "undefined" write which does nothing but indicates to liveness that
327     * we don't care about any values in the register which predate this
328     * instruction.  Used to prevent partial writes from causing issues with
329     * live ranges.
330     */
331    SHADER_OPCODE_UNDEF,
332 
333    /**
334     * Texture sampling opcodes.
335     *
336     * LOGICAL opcodes are eventually translated to the matching non-LOGICAL
337     * opcode but instead of taking a single payload blob they expect their
338     * arguments separately as individual sources. The position/ordering of the
339     * arguments are defined by the enum tex_logical_srcs.
340     */
341    SHADER_OPCODE_TEX,
342    SHADER_OPCODE_TEX_LOGICAL,
343    SHADER_OPCODE_TXD,
344    SHADER_OPCODE_TXD_LOGICAL,
345    SHADER_OPCODE_TXF,
346    SHADER_OPCODE_TXF_LOGICAL,
347    SHADER_OPCODE_TXF_LZ,
348    SHADER_OPCODE_TXL,
349    SHADER_OPCODE_TXL_LOGICAL,
350    SHADER_OPCODE_TXL_LZ,
351    SHADER_OPCODE_TXS,
352    SHADER_OPCODE_TXS_LOGICAL,
353    FS_OPCODE_TXB,
354    FS_OPCODE_TXB_LOGICAL,
355    SHADER_OPCODE_TXF_CMS,
356    SHADER_OPCODE_TXF_CMS_LOGICAL,
357    SHADER_OPCODE_TXF_CMS_W,
358    SHADER_OPCODE_TXF_CMS_W_LOGICAL,
359    SHADER_OPCODE_TXF_UMS,
360    SHADER_OPCODE_TXF_UMS_LOGICAL,
361    SHADER_OPCODE_TXF_MCS,
362    SHADER_OPCODE_TXF_MCS_LOGICAL,
363    SHADER_OPCODE_LOD,
364    SHADER_OPCODE_LOD_LOGICAL,
365    SHADER_OPCODE_TG4,
366    SHADER_OPCODE_TG4_LOGICAL,
367    SHADER_OPCODE_TG4_OFFSET,
368    SHADER_OPCODE_TG4_OFFSET_LOGICAL,
369    SHADER_OPCODE_SAMPLEINFO,
370    SHADER_OPCODE_SAMPLEINFO_LOGICAL,
371 
372    SHADER_OPCODE_IMAGE_SIZE_LOGICAL,
373 
374    /**
375     * Combines multiple sources of size 1 into a larger virtual GRF.
376     * For example, parameters for a send-from-GRF message.  Or, updating
377     * channels of a size 4 VGRF used to store vec4s such as texturing results.
378     *
379     * This will be lowered into MOVs from each source to consecutive offsets
380     * of the destination VGRF.
381     *
382     * src[0] may be BAD_FILE.  If so, the lowering pass skips emitting the MOV,
383     * but still reserves the first channel of the destination VGRF.  This can be
384     * used to reserve space for, say, a message header set up by the generators.
385     */
386    SHADER_OPCODE_LOAD_PAYLOAD,
387 
388    /**
389     * Packs a number of sources into a single value. Unlike LOAD_PAYLOAD, this
390     * acts intra-channel, obtaining the final value for each channel by
391     * combining the sources values for the same channel, the first source
392     * occupying the lowest bits and the last source occupying the highest
393     * bits.
394     */
395    FS_OPCODE_PACK,
396 
397    SHADER_OPCODE_SHADER_TIME_ADD,
398 
399    /**
400     * Typed and untyped surface access opcodes.
401     *
402     * LOGICAL opcodes are eventually translated to the matching non-LOGICAL
403     * opcode but instead of taking a single payload blob they expect their
404     * arguments separately as individual sources:
405     *
406     * Source 0: [required] Surface coordinates.
407     * Source 1: [optional] Operation source.
408     * Source 2: [required] Surface index.
409     * Source 3: [required] Number of coordinate components (as UD immediate).
410     * Source 4: [required] Opcode-specific control immediate, same as source 2
411     *                      of the matching non-LOGICAL opcode.
412     */
413    VEC4_OPCODE_UNTYPED_ATOMIC,
414    SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
415    SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
416    VEC4_OPCODE_UNTYPED_SURFACE_READ,
417    SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
418    VEC4_OPCODE_UNTYPED_SURFACE_WRITE,
419    SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
420 
421    SHADER_OPCODE_OWORD_BLOCK_READ_LOGICAL,
422    SHADER_OPCODE_UNALIGNED_OWORD_BLOCK_READ_LOGICAL,
423    SHADER_OPCODE_OWORD_BLOCK_WRITE_LOGICAL,
424 
425    /**
426     * Untyped A64 surface access opcodes.
427     *
428     * Source 0: 64-bit address
429     * Source 1: Operational source
430     * Source 2: [required] Opcode-specific control immediate, same as source 2
431     *                      of the matching non-LOGICAL opcode.
432     */
433    SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL,
434    SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL,
435    SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL,
436    SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL,
437    SHADER_OPCODE_A64_OWORD_BLOCK_READ_LOGICAL,
438    SHADER_OPCODE_A64_UNALIGNED_OWORD_BLOCK_READ_LOGICAL,
439    SHADER_OPCODE_A64_OWORD_BLOCK_WRITE_LOGICAL,
440    SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
441    SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT16_LOGICAL,
442    SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL,
443    SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT16_LOGICAL,
444    SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT32_LOGICAL,
445    SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT64_LOGICAL,
446 
447    SHADER_OPCODE_TYPED_ATOMIC_LOGICAL,
448    SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL,
449    SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL,
450 
451    SHADER_OPCODE_RND_MODE,
452    SHADER_OPCODE_FLOAT_CONTROL_MODE,
453 
454    /**
455     * Byte scattered write/read opcodes.
456     *
457     * LOGICAL opcodes are eventually translated to the matching non-LOGICAL
458     * opcode, but instead of taking a single payload blog they expect their
459     * arguments separately as individual sources, like untyped write/read.
460     */
461    SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
462    SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
463    SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL,
464    SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL,
465 
466    /**
467     * Memory fence messages.
468     *
469     * Source 0: Must be register g0, used as header.
470     * Source 1: Immediate bool to indicate whether control is returned to the
471     *           thread only after the fence has been honored.
472     * Source 2: Immediate byte indicating which memory to fence.  Zero means
473     *           global memory; GFX7_BTI_SLM means SLM (for Gfx11+ only).
474     *
475     * Vec4 backend only uses Source 0.
476     */
477    SHADER_OPCODE_MEMORY_FENCE,
478 
479    /**
480     * Scheduling-only fence.
481     *
482     * Sources can be used to force a stall until the registers in those are
483     * available.  This might generate MOVs or SYNC_NOPs (Gfx12+).
484     */
485    FS_OPCODE_SCHEDULING_FENCE,
486 
487    SHADER_OPCODE_GFX4_SCRATCH_READ,
488    SHADER_OPCODE_GFX4_SCRATCH_WRITE,
489    SHADER_OPCODE_GFX7_SCRATCH_READ,
490 
491    SHADER_OPCODE_SCRATCH_HEADER,
492 
493    /**
494     * Gfx8+ SIMD8 URB Read messages.
495     */
496    SHADER_OPCODE_URB_READ_SIMD8,
497    SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT,
498 
499    SHADER_OPCODE_URB_WRITE_SIMD8,
500    SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT,
501    SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
502    SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT,
503 
504    /**
505     * Return the index of an arbitrary live channel (i.e. one of the channels
506     * enabled in the current execution mask) and assign it to the first
507     * component of the destination.  Expected to be used as input for the
508     * BROADCAST pseudo-opcode.
509     */
510    SHADER_OPCODE_FIND_LIVE_CHANNEL,
511 
512    /**
513     * Return the current execution mask in the specified flag subregister.
514     * Can be CSE'ed more easily than a plain MOV from the ce0 ARF register.
515     */
516    FS_OPCODE_LOAD_LIVE_CHANNELS,
517 
518    /**
519     * Pick the channel from its first source register given by the index
520     * specified as second source.  Useful for variable indexing of surfaces.
521     *
522     * Note that because the result of this instruction is by definition
523     * uniform and it can always be splatted to multiple channels using a
524     * scalar regioning mode, only the first channel of the destination region
525     * is guaranteed to be updated, which implies that BROADCAST instructions
526     * should usually be marked force_writemask_all.
527     */
528    SHADER_OPCODE_BROADCAST,
529 
530    /* Pick the channel from its first source register given by the index
531     * specified as second source.
532     *
533     * This is similar to the BROADCAST instruction except that it takes a
534     * dynamic index and potentially puts a different value in each output
535     * channel.
536     */
537    SHADER_OPCODE_SHUFFLE,
538 
539    /* Select between src0 and src1 based on channel enables.
540     *
541     * This instruction copies src0 into the enabled channels of the
542     * destination and copies src1 into the disabled channels.
543     */
544    SHADER_OPCODE_SEL_EXEC,
545 
546    /* This turns into an align16 mov from src0 to dst with a swizzle
547     * provided as an immediate in src1.
548     */
549    SHADER_OPCODE_QUAD_SWIZZLE,
550 
551    /* Take every Nth element in src0 and broadcast it to the group of N
552     * channels in which it lives in the destination.  The offset within the
553     * cluster is given by src1 and the cluster size is given by src2.
554     */
555    SHADER_OPCODE_CLUSTER_BROADCAST,
556 
557    SHADER_OPCODE_GET_BUFFER_SIZE,
558 
559    SHADER_OPCODE_INTERLOCK,
560 
561    /** Target for a HALT
562     *
563     * All HALT instructions in a shader must target the same jump point and
564     * that point is denoted by a HALT_TARGET instruction.
565     */
566    SHADER_OPCODE_HALT_TARGET,
567 
568    VEC4_OPCODE_MOV_BYTES,
569    VEC4_OPCODE_PACK_BYTES,
570    VEC4_OPCODE_UNPACK_UNIFORM,
571    VEC4_OPCODE_DOUBLE_TO_F32,
572    VEC4_OPCODE_DOUBLE_TO_D32,
573    VEC4_OPCODE_DOUBLE_TO_U32,
574    VEC4_OPCODE_TO_DOUBLE,
575    VEC4_OPCODE_PICK_LOW_32BIT,
576    VEC4_OPCODE_PICK_HIGH_32BIT,
577    VEC4_OPCODE_SET_LOW_32BIT,
578    VEC4_OPCODE_SET_HIGH_32BIT,
579    VEC4_OPCODE_MOV_FOR_SCRATCH,
580    VEC4_OPCODE_ZERO_OOB_PUSH_REGS,
581 
582    FS_OPCODE_DDX_COARSE,
583    FS_OPCODE_DDX_FINE,
584    /**
585     * Compute dFdy(), dFdyCoarse(), or dFdyFine().
586     */
587    FS_OPCODE_DDY_COARSE,
588    FS_OPCODE_DDY_FINE,
589    FS_OPCODE_LINTERP,
590    FS_OPCODE_PIXEL_X,
591    FS_OPCODE_PIXEL_Y,
592    FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
593    FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GFX7,
594    FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GFX4,
595    FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
596    FS_OPCODE_SET_SAMPLE_ID,
597    FS_OPCODE_PACK_HALF_2x16_SPLIT,
598    FS_OPCODE_INTERPOLATE_AT_SAMPLE,
599    FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
600    FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET,
601 
602    VS_OPCODE_URB_WRITE,
603    VS_OPCODE_PULL_CONSTANT_LOAD,
604    VS_OPCODE_PULL_CONSTANT_LOAD_GFX7,
605 
606    VS_OPCODE_UNPACK_FLAGS_SIMD4X2,
607 
608    /**
609     * Write geometry shader output data to the URB.
610     *
611     * Unlike VS_OPCODE_URB_WRITE, this opcode doesn't do an implied move from
612     * R0 to the first MRF.  This allows the geometry shader to override the
613     * "Slot {0,1} Offset" fields in the message header.
614     */
615    GS_OPCODE_URB_WRITE,
616 
617    /**
618     * Write geometry shader output data to the URB and request a new URB
619     * handle (gfx6).
620     *
621     * This opcode doesn't do an implied move from R0 to the first MRF.
622     */
623    GS_OPCODE_URB_WRITE_ALLOCATE,
624 
625    /**
626     * Terminate the geometry shader thread by doing an empty URB write.
627     *
628     * This opcode doesn't do an implied move from R0 to the first MRF.  This
629     * allows the geometry shader to override the "GS Number of Output Vertices
630     * for Slot {0,1}" fields in the message header.
631     */
632    GS_OPCODE_THREAD_END,
633 
634    /**
635     * Set the "Slot {0,1} Offset" fields of a URB_WRITE message header.
636     *
637     * - dst is the MRF containing the message header.
638     *
639     * - src0.x indicates which portion of the URB should be written to (e.g. a
640     *   vertex number)
641     *
642     * - src1 is an immediate multiplier which will be applied to src0
643     *   (e.g. the size of a single vertex in the URB).
644     *
645     * Note: the hardware will apply this offset *in addition to* the offset in
646     * vec4_instruction::offset.
647     */
648    GS_OPCODE_SET_WRITE_OFFSET,
649 
650    /**
651     * Set the "GS Number of Output Vertices for Slot {0,1}" fields of a
652     * URB_WRITE message header.
653     *
654     * - dst is the MRF containing the message header.
655     *
656     * - src0.x is the vertex count.  The upper 16 bits will be ignored.
657     */
658    GS_OPCODE_SET_VERTEX_COUNT,
659 
660    /**
661     * Set DWORD 2 of dst to the value in src.
662     */
663    GS_OPCODE_SET_DWORD_2,
664 
665    /**
666     * Prepare the dst register for storage in the "Channel Mask" fields of a
667     * URB_WRITE message header.
668     *
669     * DWORD 4 of dst is shifted left by 4 bits, so that later,
670     * GS_OPCODE_SET_CHANNEL_MASKS can OR DWORDs 0 and 4 together to form the
671     * final channel mask.
672     *
673     * Note: since GS_OPCODE_SET_CHANNEL_MASKS ORs DWORDs 0 and 4 together to
674     * form the final channel mask, DWORDs 0 and 4 of the dst register must not
675     * have any extraneous bits set prior to execution of this opcode (that is,
676     * they should be in the range 0x0 to 0xf).
677     */
678    GS_OPCODE_PREPARE_CHANNEL_MASKS,
679 
680    /**
681     * Set the "Channel Mask" fields of a URB_WRITE message header.
682     *
683     * - dst is the MRF containing the message header.
684     *
685     * - src.x is the channel mask, as prepared by
686     *   GS_OPCODE_PREPARE_CHANNEL_MASKS.  DWORDs 0 and 4 are OR'ed together to
687     *   form the final channel mask.
688     */
689    GS_OPCODE_SET_CHANNEL_MASKS,
690 
691    /**
692     * Get the "Instance ID" fields from the payload.
693     *
694     * - dst is the GRF for gl_InvocationID.
695     */
696    GS_OPCODE_GET_INSTANCE_ID,
697 
698    /**
699     * Send a FF_SYNC message to allocate initial URB handles (gfx6).
700     *
701     * - dst will be used as the writeback register for the FF_SYNC operation.
702     *
703     * - src0 is the number of primitives written.
704     *
705     * - src1 is the value to hold in M0.0: number of SO vertices to write
706     *   and number of SO primitives needed. Its value will be overwritten
707     *   with the SVBI values if transform feedback is enabled.
708     *
709     * Note: This opcode uses an implicit MRF register for the ff_sync message
710     * header, so the caller is expected to set inst->base_mrf and initialize
711     * that MRF register to r0. This opcode will also write to this MRF register
712     * to include the allocated URB handle so it can then be reused directly as
713     * the header in the URB write operation we are allocating the handle for.
714     */
715    GS_OPCODE_FF_SYNC,
716 
717    /**
718     * Move r0.1 (which holds PrimitiveID information in gfx6) to a separate
719     * register.
720     *
721     * - dst is the GRF where PrimitiveID information will be moved.
722     */
723    GS_OPCODE_SET_PRIMITIVE_ID,
724 
725    /**
726     * Write transform feedback data to the SVB by sending a SVB WRITE message.
727     * Used in gfx6.
728     *
729     * - dst is the MRF register containing the message header.
730     *
731     * - src0 is the register where the vertex data is going to be copied from.
732     *
733     * - src1 is the destination register when write commit occurs.
734     */
735    GS_OPCODE_SVB_WRITE,
736 
737    /**
738     * Set destination index in the SVB write message payload (M0.5). Used
739     * in gfx6 for transform feedback.
740     *
741     * - dst is the header to save the destination indices for SVB WRITE.
742     * - src is the register that holds the destination indices value.
743     */
744    GS_OPCODE_SVB_SET_DST_INDEX,
745 
746    /**
747     * Prepare Mx.0 subregister for being used in the FF_SYNC message header.
748     * Used in gfx6 for transform feedback.
749     *
750     * - dst will hold the register with the final Mx.0 value.
751     *
752     * - src0 has the number of vertices emitted in SO (NumSOVertsToWrite)
753     *
754     * - src1 has the number of needed primitives for SO (NumSOPrimsNeeded)
755     *
756     * - src2 is the value to hold in M0: number of SO vertices to write
757     *   and number of SO primitives needed.
758     */
759    GS_OPCODE_FF_SYNC_SET_PRIMITIVES,
760 
761    /**
762     * Terminate the compute shader.
763     */
764    CS_OPCODE_CS_TERMINATE,
765 
766    /**
767     * GLSL barrier()
768     */
769    SHADER_OPCODE_BARRIER,
770 
771    /**
772     * Calculate the high 32-bits of a 32x32 multiply.
773     */
774    SHADER_OPCODE_MULH,
775 
776    /** Signed subtraction with saturation. */
777    SHADER_OPCODE_ISUB_SAT,
778 
779    /** Unsigned subtraction with saturation. */
780    SHADER_OPCODE_USUB_SAT,
781 
782    /**
783     * A MOV that uses VxH indirect addressing.
784     *
785     * Source 0: A register to start from (HW_REG).
786     * Source 1: An indirect offset (in bytes, UD GRF).
787     * Source 2: The length of the region that could be accessed (in bytes,
788     *           UD immediate).
789     */
790    SHADER_OPCODE_MOV_INDIRECT,
791 
792    /** Fills out a relocatable immediate */
793    SHADER_OPCODE_MOV_RELOC_IMM,
794 
795    VEC4_OPCODE_URB_READ,
796    TCS_OPCODE_GET_INSTANCE_ID,
797    TCS_OPCODE_URB_WRITE,
798    TCS_OPCODE_SET_INPUT_URB_OFFSETS,
799    TCS_OPCODE_SET_OUTPUT_URB_OFFSETS,
800    TCS_OPCODE_GET_PRIMITIVE_ID,
801    TCS_OPCODE_CREATE_BARRIER_HEADER,
802    TCS_OPCODE_SRC0_010_IS_ZERO,
803    TCS_OPCODE_RELEASE_INPUT,
804    TCS_OPCODE_THREAD_END,
805 
806    TES_OPCODE_GET_PRIMITIVE_ID,
807    TES_OPCODE_CREATE_INPUT_READ_HEADER,
808    TES_OPCODE_ADD_INDIRECT_URB_OFFSET,
809 
810    SHADER_OPCODE_GET_DSS_ID,
811    SHADER_OPCODE_BTD_SPAWN_LOGICAL,
812    SHADER_OPCODE_BTD_RETIRE_LOGICAL,
813 
814    RT_OPCODE_TRACE_RAY_LOGICAL,
815 };
816 
817 enum brw_urb_write_flags {
818    BRW_URB_WRITE_NO_FLAGS = 0,
819 
820    /**
821     * Causes a new URB entry to be allocated, and its address stored in the
822     * destination register (gen < 7).
823     */
824    BRW_URB_WRITE_ALLOCATE = 0x1,
825 
826    /**
827     * Causes the current URB entry to be deallocated (gen < 7).
828     */
829    BRW_URB_WRITE_UNUSED = 0x2,
830 
831    /**
832     * Causes the thread to terminate.
833     */
834    BRW_URB_WRITE_EOT = 0x4,
835 
836    /**
837     * Indicates that the given URB entry is complete, and may be sent further
838     * down the 3D pipeline (gen < 7).
839     */
840    BRW_URB_WRITE_COMPLETE = 0x8,
841 
842    /**
843     * Indicates that an additional offset (which may be different for the two
844     * vec4 slots) is stored in the message header (gen == 7).
845     */
846    BRW_URB_WRITE_PER_SLOT_OFFSET = 0x10,
847 
848    /**
849     * Indicates that the channel masks in the URB_WRITE message header should
850     * not be overridden to 0xff (gen == 7).
851     */
852    BRW_URB_WRITE_USE_CHANNEL_MASKS = 0x20,
853 
854    /**
855     * Indicates that the data should be sent to the URB using the
856     * URB_WRITE_OWORD message rather than URB_WRITE_HWORD (gen == 7).  This
857     * causes offsets to be interpreted as multiples of an OWORD instead of an
858     * HWORD, and only allows one OWORD to be written.
859     */
860    BRW_URB_WRITE_OWORD = 0x40,
861 
862    /**
863     * Convenient combination of flags: end the thread while simultaneously
864     * marking the given URB entry as complete.
865     */
866    BRW_URB_WRITE_EOT_COMPLETE = BRW_URB_WRITE_EOT | BRW_URB_WRITE_COMPLETE,
867 
868    /**
869     * Convenient combination of flags: mark the given URB entry as complete
870     * and simultaneously allocate a new one.
871     */
872    BRW_URB_WRITE_ALLOCATE_COMPLETE =
873       BRW_URB_WRITE_ALLOCATE | BRW_URB_WRITE_COMPLETE,
874 };
875 
876 enum fb_write_logical_srcs {
877    FB_WRITE_LOGICAL_SRC_COLOR0,      /* REQUIRED */
878    FB_WRITE_LOGICAL_SRC_COLOR1,      /* for dual source blend messages */
879    FB_WRITE_LOGICAL_SRC_SRC0_ALPHA,
880    FB_WRITE_LOGICAL_SRC_SRC_DEPTH,   /* gl_FragDepth */
881    FB_WRITE_LOGICAL_SRC_DST_DEPTH,   /* GFX4-5: passthrough from thread */
882    FB_WRITE_LOGICAL_SRC_SRC_STENCIL, /* gl_FragStencilRefARB */
883    FB_WRITE_LOGICAL_SRC_OMASK,       /* Sample Mask (gl_SampleMask) */
884    FB_WRITE_LOGICAL_SRC_COMPONENTS,  /* REQUIRED */
885    FB_WRITE_LOGICAL_NUM_SRCS
886 };
887 
888 enum tex_logical_srcs {
889    /** Texture coordinates */
890    TEX_LOGICAL_SRC_COORDINATE,
891    /** Shadow comparator */
892    TEX_LOGICAL_SRC_SHADOW_C,
893    /** dPdx if the operation takes explicit derivatives, otherwise LOD value */
894    TEX_LOGICAL_SRC_LOD,
895    /** dPdy if the operation takes explicit derivatives */
896    TEX_LOGICAL_SRC_LOD2,
897    /** Min LOD */
898    TEX_LOGICAL_SRC_MIN_LOD,
899    /** Sample index */
900    TEX_LOGICAL_SRC_SAMPLE_INDEX,
901    /** MCS data */
902    TEX_LOGICAL_SRC_MCS,
903    /** REQUIRED: Texture surface index */
904    TEX_LOGICAL_SRC_SURFACE,
905    /** Texture sampler index */
906    TEX_LOGICAL_SRC_SAMPLER,
907    /** Texture surface bindless handle */
908    TEX_LOGICAL_SRC_SURFACE_HANDLE,
909    /** Texture sampler bindless handle */
910    TEX_LOGICAL_SRC_SAMPLER_HANDLE,
911    /** Texel offset for gathers */
912    TEX_LOGICAL_SRC_TG4_OFFSET,
913    /** REQUIRED: Number of coordinate components (as UD immediate) */
914    TEX_LOGICAL_SRC_COORD_COMPONENTS,
915    /** REQUIRED: Number of derivative components (as UD immediate) */
916    TEX_LOGICAL_SRC_GRAD_COMPONENTS,
917 
918    TEX_LOGICAL_NUM_SRCS,
919 };
920 
921 enum surface_logical_srcs {
922    /** Surface binding table index */
923    SURFACE_LOGICAL_SRC_SURFACE,
924    /** Surface bindless handle */
925    SURFACE_LOGICAL_SRC_SURFACE_HANDLE,
926    /** Surface address; could be multi-dimensional for typed opcodes */
927    SURFACE_LOGICAL_SRC_ADDRESS,
928    /** Data to be written or used in an atomic op */
929    SURFACE_LOGICAL_SRC_DATA,
930    /** Surface number of dimensions.  Affects the size of ADDRESS */
931    SURFACE_LOGICAL_SRC_IMM_DIMS,
932    /** Per-opcode immediate argument.  For atomics, this is the atomic opcode */
933    SURFACE_LOGICAL_SRC_IMM_ARG,
934    /**
935     * Some instructions with side-effects should not be predicated on
936     * sample mask, e.g. lowered stores to scratch.
937     */
938    SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK,
939 
940    SURFACE_LOGICAL_NUM_SRCS
941 };
942 
943 #ifdef __cplusplus
944 /**
945  * Allow brw_urb_write_flags enums to be ORed together.
946  */
947 inline brw_urb_write_flags
948 operator|(brw_urb_write_flags x, brw_urb_write_flags y)
949 {
950    return static_cast<brw_urb_write_flags>(static_cast<int>(x) |
951                                            static_cast<int>(y));
952 }
953 #endif
954 
955 enum PACKED brw_predicate {
956    BRW_PREDICATE_NONE                =  0,
957    BRW_PREDICATE_NORMAL              =  1,
958    BRW_PREDICATE_ALIGN1_ANYV         =  2,
959    BRW_PREDICATE_ALIGN1_ALLV         =  3,
960    BRW_PREDICATE_ALIGN1_ANY2H        =  4,
961    BRW_PREDICATE_ALIGN1_ALL2H        =  5,
962    BRW_PREDICATE_ALIGN1_ANY4H        =  6,
963    BRW_PREDICATE_ALIGN1_ALL4H        =  7,
964    BRW_PREDICATE_ALIGN1_ANY8H        =  8,
965    BRW_PREDICATE_ALIGN1_ALL8H        =  9,
966    BRW_PREDICATE_ALIGN1_ANY16H       = 10,
967    BRW_PREDICATE_ALIGN1_ALL16H       = 11,
968    BRW_PREDICATE_ALIGN1_ANY32H       = 12,
969    BRW_PREDICATE_ALIGN1_ALL32H       = 13,
970    BRW_PREDICATE_ALIGN16_REPLICATE_X =  2,
971    BRW_PREDICATE_ALIGN16_REPLICATE_Y =  3,
972    BRW_PREDICATE_ALIGN16_REPLICATE_Z =  4,
973    BRW_PREDICATE_ALIGN16_REPLICATE_W =  5,
974    BRW_PREDICATE_ALIGN16_ANY4H       =  6,
975    BRW_PREDICATE_ALIGN16_ALL4H       =  7,
976 };
977 
978 enum PACKED brw_reg_file {
979    BRW_ARCHITECTURE_REGISTER_FILE = 0,
980    BRW_GENERAL_REGISTER_FILE      = 1,
981    BRW_MESSAGE_REGISTER_FILE      = 2,
982    BRW_IMMEDIATE_VALUE            = 3,
983 
984    ARF = BRW_ARCHITECTURE_REGISTER_FILE,
985    FIXED_GRF = BRW_GENERAL_REGISTER_FILE,
986    MRF = BRW_MESSAGE_REGISTER_FILE,
987    IMM = BRW_IMMEDIATE_VALUE,
988 
989    /* These are not hardware values */
990    VGRF,
991    ATTR,
992    UNIFORM, /* prog_data->params[reg] */
993    BAD_FILE,
994 };
995 
996 enum PACKED gfx10_align1_3src_reg_file {
997    BRW_ALIGN1_3SRC_GENERAL_REGISTER_FILE = 0,
998    BRW_ALIGN1_3SRC_IMMEDIATE_VALUE       = 1, /* src0, src2 */
999    BRW_ALIGN1_3SRC_ACCUMULATOR           = 1, /* dest, src1 */
1000 };
1001 
1002 /* CNL adds Align1 support for 3-src instructions. Bit 35 of the instruction
1003  * word is "Execution Datatype" which controls whether the instruction operates
1004  * on float or integer types. The register arguments have fields that offer
1005  * more fine control their respective types.
1006  */
1007 enum PACKED gfx10_align1_3src_exec_type {
1008    BRW_ALIGN1_3SRC_EXEC_TYPE_INT   = 0,
1009    BRW_ALIGN1_3SRC_EXEC_TYPE_FLOAT = 1,
1010 };
1011 
1012 #define BRW_ARF_NULL                  0x00
1013 #define BRW_ARF_ADDRESS               0x10
1014 #define BRW_ARF_ACCUMULATOR           0x20
1015 #define BRW_ARF_FLAG                  0x30
1016 #define BRW_ARF_MASK                  0x40
1017 #define BRW_ARF_MASK_STACK            0x50
1018 #define BRW_ARF_MASK_STACK_DEPTH      0x60
1019 #define BRW_ARF_STATE                 0x70
1020 #define BRW_ARF_CONTROL               0x80
1021 #define BRW_ARF_NOTIFICATION_COUNT    0x90
1022 #define BRW_ARF_IP                    0xA0
1023 #define BRW_ARF_TDR                   0xB0
1024 #define BRW_ARF_TIMESTAMP             0xC0
1025 
1026 #define BRW_MRF_COMPR4			(1 << 7)
1027 
1028 #define BRW_AMASK   0
1029 #define BRW_IMASK   1
1030 #define BRW_LMASK   2
1031 #define BRW_CMASK   3
1032 
1033 
1034 
1035 #define BRW_THREAD_NORMAL     0
1036 #define BRW_THREAD_ATOMIC     1
1037 #define BRW_THREAD_SWITCH     2
1038 
1039 enum PACKED brw_vertical_stride {
1040    BRW_VERTICAL_STRIDE_0               = 0,
1041    BRW_VERTICAL_STRIDE_1               = 1,
1042    BRW_VERTICAL_STRIDE_2               = 2,
1043    BRW_VERTICAL_STRIDE_4               = 3,
1044    BRW_VERTICAL_STRIDE_8               = 4,
1045    BRW_VERTICAL_STRIDE_16              = 5,
1046    BRW_VERTICAL_STRIDE_32              = 6,
1047    BRW_VERTICAL_STRIDE_ONE_DIMENSIONAL = 0xF,
1048 };
1049 
1050 enum PACKED gfx10_align1_3src_vertical_stride {
1051    BRW_ALIGN1_3SRC_VERTICAL_STRIDE_0 = 0,
1052    BRW_ALIGN1_3SRC_VERTICAL_STRIDE_1 = 1,
1053    BRW_ALIGN1_3SRC_VERTICAL_STRIDE_2 = 1,
1054    BRW_ALIGN1_3SRC_VERTICAL_STRIDE_4 = 2,
1055    BRW_ALIGN1_3SRC_VERTICAL_STRIDE_8 = 3,
1056 };
1057 
1058 enum PACKED brw_width {
1059    BRW_WIDTH_1  = 0,
1060    BRW_WIDTH_2  = 1,
1061    BRW_WIDTH_4  = 2,
1062    BRW_WIDTH_8  = 3,
1063    BRW_WIDTH_16 = 4,
1064 };
1065 
1066 /**
1067  * Gfx12+ SWSB SBID synchronization mode.
1068  *
1069  * This is represented as a bitmask including any required SBID token
1070  * synchronization modes, used to synchronize out-of-order instructions.  Only
1071  * the strongest mode of the mask will be provided to the hardware in the SWSB
1072  * field of an actual hardware instruction, but virtual instructions may be
1073  * able to take into account multiple of them.
1074  */
1075 enum tgl_sbid_mode {
1076    TGL_SBID_NULL = 0,
1077    TGL_SBID_SRC = 1,
1078    TGL_SBID_DST = 2,
1079    TGL_SBID_SET = 4
1080 };
1081 
1082 #ifdef __cplusplus
1083 /**
1084  * Allow bitwise arithmetic of tgl_sbid_mode enums.
1085  */
1086 inline tgl_sbid_mode
1087 operator|(tgl_sbid_mode x, tgl_sbid_mode y)
1088 {
1089    return tgl_sbid_mode(unsigned(x) | unsigned(y));
1090 }
1091 
1092 inline tgl_sbid_mode
1093 operator&(tgl_sbid_mode x, tgl_sbid_mode y)
1094 {
1095    return tgl_sbid_mode(unsigned(x) & unsigned(y));
1096 }
1097 
1098 inline tgl_sbid_mode &
1099 operator|=(tgl_sbid_mode &x, tgl_sbid_mode y)
1100 {
1101    return x = x | y;
1102 }
1103 
1104 #endif
1105 
1106 /**
1107  * TGL+ SWSB RegDist synchronization pipeline.
1108  *
1109  * On TGL all instructions that use the RegDist synchronization mechanism are
1110  * considered to be executed as a single in-order pipeline, therefore only the
1111  * TGL_PIPE_FLOAT pipeline is applicable.  On XeHP+ platforms there are two
1112  * additional asynchronous ALU pipelines (which still execute instructions
1113  * in-order and use the RegDist synchronization mechanism).  TGL_PIPE_NONE
1114  * doesn't provide any RegDist pipeline synchronization information and allows
1115  * the hardware to infer the pipeline based on the source types of the
1116  * instruction.  TGL_PIPE_ALL can be used when synchronization with all ALU
1117  * pipelines is intended.
1118  */
1119 enum tgl_pipe {
1120    TGL_PIPE_NONE = 0,
1121    TGL_PIPE_FLOAT,
1122    TGL_PIPE_INT,
1123    TGL_PIPE_LONG,
1124    TGL_PIPE_ALL
1125 };
1126 
1127 /**
1128  * Logical representation of the SWSB scheduling information of a hardware
1129  * instruction.  The binary representation is slightly more compact.
1130  */
1131 struct tgl_swsb {
1132    unsigned regdist : 3;
1133    enum tgl_pipe pipe : 3;
1134    unsigned sbid : 4;
1135    enum tgl_sbid_mode mode : 3;
1136 };
1137 
1138 /**
1139  * Construct a scheduling annotation with a single RegDist dependency.  This
1140  * synchronizes with the completion of the d-th previous in-order instruction.
1141  * The index is one-based, zero causes a no-op tgl_swsb to be constructed.
1142  */
1143 static inline struct tgl_swsb
tgl_swsb_regdist(unsigned d)1144 tgl_swsb_regdist(unsigned d)
1145 {
1146    const struct tgl_swsb swsb = { d, d ? TGL_PIPE_ALL : TGL_PIPE_NONE };
1147    assert(swsb.regdist == d);
1148    return swsb;
1149 }
1150 
1151 /**
1152  * Construct a scheduling annotation that synchronizes with the specified SBID
1153  * token.
1154  */
1155 static inline struct tgl_swsb
tgl_swsb_sbid(enum tgl_sbid_mode mode,unsigned sbid)1156 tgl_swsb_sbid(enum tgl_sbid_mode mode, unsigned sbid)
1157 {
1158    const struct tgl_swsb swsb = { 0, TGL_PIPE_NONE, sbid, mode };
1159    assert(swsb.sbid == sbid);
1160    return swsb;
1161 }
1162 
1163 /**
1164  * Construct a no-op scheduling annotation.
1165  */
1166 static inline struct tgl_swsb
tgl_swsb_null(void)1167 tgl_swsb_null(void)
1168 {
1169    return tgl_swsb_regdist(0);
1170 }
1171 
1172 /**
1173  * Return a scheduling annotation that allocates the same SBID synchronization
1174  * token as \p swsb.  In addition it will synchronize against a previous
1175  * in-order instruction if \p regdist is non-zero.
1176  */
1177 static inline struct tgl_swsb
tgl_swsb_dst_dep(struct tgl_swsb swsb,unsigned regdist)1178 tgl_swsb_dst_dep(struct tgl_swsb swsb, unsigned regdist)
1179 {
1180    swsb.regdist = regdist;
1181    swsb.mode = swsb.mode & TGL_SBID_SET;
1182    swsb.pipe = (regdist ? TGL_PIPE_ALL : TGL_PIPE_NONE);
1183    return swsb;
1184 }
1185 
1186 /**
1187  * Return a scheduling annotation that synchronizes against the same SBID and
1188  * RegDist dependencies as \p swsb, but doesn't allocate any SBID token.
1189  */
1190 static inline struct tgl_swsb
tgl_swsb_src_dep(struct tgl_swsb swsb)1191 tgl_swsb_src_dep(struct tgl_swsb swsb)
1192 {
1193    swsb.mode = swsb.mode & (TGL_SBID_SRC | TGL_SBID_DST);
1194    return swsb;
1195 }
1196 
1197 /**
1198  * Convert the provided tgl_swsb to the hardware's binary representation of an
1199  * SWSB annotation.
1200  */
1201 static inline uint8_t
tgl_swsb_encode(const struct intel_device_info * devinfo,struct tgl_swsb swsb)1202 tgl_swsb_encode(const struct intel_device_info *devinfo, struct tgl_swsb swsb)
1203 {
1204    if (!swsb.mode) {
1205       const unsigned pipe = devinfo->verx10 < 125 ? 0 :
1206          swsb.pipe == TGL_PIPE_FLOAT ? 0x10 :
1207          swsb.pipe == TGL_PIPE_INT ? 0x18 :
1208          swsb.pipe == TGL_PIPE_LONG ? 0x50 :
1209          swsb.pipe == TGL_PIPE_ALL ? 0x8 : 0;
1210       return pipe | swsb.regdist;
1211    } else if (swsb.regdist) {
1212       return 0x80 | swsb.regdist << 4 | swsb.sbid;
1213    } else {
1214       return swsb.sbid | (swsb.mode & TGL_SBID_SET ? 0x40 :
1215                           swsb.mode & TGL_SBID_DST ? 0x20 : 0x30);
1216    }
1217 }
1218 
1219 /**
1220  * Convert the provided binary representation of an SWSB annotation to a
1221  * tgl_swsb.
1222  */
1223 static inline struct tgl_swsb
tgl_swsb_decode(const struct intel_device_info * devinfo,const enum opcode opcode,const uint8_t x)1224 tgl_swsb_decode(const struct intel_device_info *devinfo, const enum opcode opcode,
1225                 const uint8_t x)
1226 {
1227    if (x & 0x80) {
1228       const struct tgl_swsb swsb = { (x & 0x70u) >> 4, TGL_PIPE_NONE,
1229                                      x & 0xfu,
1230                                      (opcode == BRW_OPCODE_SEND ||
1231                                       opcode == BRW_OPCODE_SENDC ||
1232                                       opcode == BRW_OPCODE_MATH) ?
1233                                      TGL_SBID_SET : TGL_SBID_DST };
1234       return swsb;
1235    } else if ((x & 0x70) == 0x20) {
1236       return tgl_swsb_sbid(TGL_SBID_DST, x & 0xfu);
1237    } else if ((x & 0x70) == 0x30) {
1238       return tgl_swsb_sbid(TGL_SBID_SRC, x & 0xfu);
1239    } else if ((x & 0x70) == 0x40) {
1240       return tgl_swsb_sbid(TGL_SBID_SET, x & 0xfu);
1241    } else {
1242       const struct tgl_swsb swsb = { x & 0x7u,
1243                                      ((x & 0x78) == 0x10 ? TGL_PIPE_FLOAT :
1244                                       (x & 0x78) == 0x18 ? TGL_PIPE_INT :
1245                                       (x & 0x78) == 0x50 ? TGL_PIPE_LONG :
1246                                       (x & 0x78) == 0x8 ? TGL_PIPE_ALL :
1247                                       TGL_PIPE_NONE) };
1248       assert(devinfo->verx10 >= 125 || swsb.pipe == TGL_PIPE_NONE);
1249       return swsb;
1250    }
1251 }
1252 
1253 enum tgl_sync_function {
1254    TGL_SYNC_NOP = 0x0,
1255    TGL_SYNC_ALLRD = 0x2,
1256    TGL_SYNC_ALLWR = 0x3,
1257    TGL_SYNC_BAR = 0xe,
1258    TGL_SYNC_HOST = 0xf
1259 };
1260 
1261 /**
1262  * Message target: Shared Function ID for where to SEND a message.
1263  *
1264  * These are enumerated in the ISA reference under "send - Send Message".
1265  * In particular, see the following tables:
1266  * - G45 PRM, Volume 4, Table 14-15 "Message Descriptor Definition"
1267  * - Sandybridge PRM, Volume 4 Part 2, Table 8-16 "Extended Message Descriptor"
1268  * - Ivybridge PRM, Volume 1 Part 1, section 3.2.7 "GPE Function IDs"
1269  */
1270 enum brw_message_target {
1271    BRW_SFID_NULL                     = 0,
1272    BRW_SFID_MATH                     = 1, /* Only valid on Gfx4-5 */
1273    BRW_SFID_SAMPLER                  = 2,
1274    BRW_SFID_MESSAGE_GATEWAY          = 3,
1275    BRW_SFID_DATAPORT_READ            = 4,
1276    BRW_SFID_DATAPORT_WRITE           = 5,
1277    BRW_SFID_URB                      = 6,
1278    BRW_SFID_THREAD_SPAWNER           = 7,
1279    BRW_SFID_VME                      = 8,
1280 
1281    GFX6_SFID_DATAPORT_SAMPLER_CACHE  = 4,
1282    GFX6_SFID_DATAPORT_RENDER_CACHE   = 5,
1283    GFX6_SFID_DATAPORT_CONSTANT_CACHE = 9,
1284 
1285    GFX7_SFID_DATAPORT_DATA_CACHE     = 10,
1286    GFX7_SFID_PIXEL_INTERPOLATOR      = 11,
1287    HSW_SFID_DATAPORT_DATA_CACHE_1    = 12,
1288    HSW_SFID_CRE                      = 13,
1289 
1290    GFX12_SFID_TGM                      = 13, /* Typed Global Memory */
1291    GFX12_SFID_SLM                      = 14, /* Shared Local Memory */
1292    GFX12_SFID_UGM                      = 15, /* Untyped Global Memory */
1293 
1294    GEN_RT_SFID_BINDLESS_THREAD_DISPATCH = 7,
1295    GEN_RT_SFID_RAY_TRACE_ACCELERATOR = 8,
1296 };
1297 
1298 #define GFX7_MESSAGE_TARGET_DP_DATA_CACHE     10
1299 
1300 #define BRW_SAMPLER_RETURN_FORMAT_FLOAT32     0
1301 #define BRW_SAMPLER_RETURN_FORMAT_UINT32      2
1302 #define BRW_SAMPLER_RETURN_FORMAT_SINT32      3
1303 
1304 #define BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE              0
1305 #define BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE             0
1306 #define BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS        0
1307 #define BRW_SAMPLER_MESSAGE_SIMD8_KILLPIX             1
1308 #define BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_LOD        1
1309 #define BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_LOD         1
1310 #define BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_GRADIENTS  2
1311 #define BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_GRADIENTS    2
1312 #define BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_COMPARE    0
1313 #define BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_COMPARE     2
1314 #define BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_BIAS_COMPARE 0
1315 #define BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_LOD_COMPARE 1
1316 #define BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_LOD_COMPARE  1
1317 #define BRW_SAMPLER_MESSAGE_SIMD4X2_RESINFO           2
1318 #define BRW_SAMPLER_MESSAGE_SIMD16_RESINFO            2
1319 #define BRW_SAMPLER_MESSAGE_SIMD4X2_LD                3
1320 #define BRW_SAMPLER_MESSAGE_SIMD8_LD                  3
1321 #define BRW_SAMPLER_MESSAGE_SIMD16_LD                 3
1322 
1323 #define GFX5_SAMPLER_MESSAGE_SAMPLE              0
1324 #define GFX5_SAMPLER_MESSAGE_SAMPLE_BIAS         1
1325 #define GFX5_SAMPLER_MESSAGE_SAMPLE_LOD          2
1326 #define GFX5_SAMPLER_MESSAGE_SAMPLE_COMPARE      3
1327 #define GFX5_SAMPLER_MESSAGE_SAMPLE_DERIVS       4
1328 #define GFX5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE 5
1329 #define GFX5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE  6
1330 #define GFX5_SAMPLER_MESSAGE_SAMPLE_LD           7
1331 #define GFX7_SAMPLER_MESSAGE_SAMPLE_GATHER4      8
1332 #define GFX5_SAMPLER_MESSAGE_LOD                 9
1333 #define GFX5_SAMPLER_MESSAGE_SAMPLE_RESINFO      10
1334 #define GFX6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO   11
1335 #define GFX7_SAMPLER_MESSAGE_SAMPLE_GATHER4_C    16
1336 #define GFX7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO   17
1337 #define GFX7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_C 18
1338 #define HSW_SAMPLER_MESSAGE_SAMPLE_DERIV_COMPARE 20
1339 #define GFX9_SAMPLER_MESSAGE_SAMPLE_LZ           24
1340 #define GFX9_SAMPLER_MESSAGE_SAMPLE_C_LZ         25
1341 #define GFX9_SAMPLER_MESSAGE_SAMPLE_LD_LZ        26
1342 #define GFX9_SAMPLER_MESSAGE_SAMPLE_LD2DMS_W     28
1343 #define GFX7_SAMPLER_MESSAGE_SAMPLE_LD_MCS       29
1344 #define GFX7_SAMPLER_MESSAGE_SAMPLE_LD2DMS       30
1345 #define GFX7_SAMPLER_MESSAGE_SAMPLE_LD2DSS       31
1346 
1347 /* for GFX5 only */
1348 #define BRW_SAMPLER_SIMD_MODE_SIMD4X2                   0
1349 #define BRW_SAMPLER_SIMD_MODE_SIMD8                     1
1350 #define BRW_SAMPLER_SIMD_MODE_SIMD16                    2
1351 #define BRW_SAMPLER_SIMD_MODE_SIMD32_64                 3
1352 
1353 /* GFX9 changes SIMD mode 0 to mean SIMD8D, but lets us get the SIMD4x2
1354  * behavior by setting bit 22 of dword 2 in the message header. */
1355 #define GFX9_SAMPLER_SIMD_MODE_SIMD8D                   0
1356 #define GFX9_SAMPLER_SIMD_MODE_EXTENSION_SIMD4X2        (1 << 22)
1357 
1358 #define BRW_DATAPORT_OWORD_BLOCK_1_OWORDLOW   0
1359 #define BRW_DATAPORT_OWORD_BLOCK_1_OWORDHIGH  1
1360 #define BRW_DATAPORT_OWORD_BLOCK_2_OWORDS     2
1361 #define BRW_DATAPORT_OWORD_BLOCK_4_OWORDS     3
1362 #define BRW_DATAPORT_OWORD_BLOCK_8_OWORDS     4
1363 #define GFX12_DATAPORT_OWORD_BLOCK_16_OWORDS  5
1364 #define BRW_DATAPORT_OWORD_BLOCK_OWORDS(n)              \
1365    ((n) == 1 ? BRW_DATAPORT_OWORD_BLOCK_1_OWORDLOW :    \
1366     (n) == 2 ? BRW_DATAPORT_OWORD_BLOCK_2_OWORDS :      \
1367     (n) == 4 ? BRW_DATAPORT_OWORD_BLOCK_4_OWORDS :      \
1368     (n) == 8 ? BRW_DATAPORT_OWORD_BLOCK_8_OWORDS :      \
1369     (n) == 16 ? GFX12_DATAPORT_OWORD_BLOCK_16_OWORDS :  \
1370     (abort(), ~0))
1371 #define BRW_DATAPORT_OWORD_BLOCK_DWORDS(n)              \
1372    ((n) == 4 ? BRW_DATAPORT_OWORD_BLOCK_1_OWORDLOW :    \
1373     (n) == 8 ? BRW_DATAPORT_OWORD_BLOCK_2_OWORDS :      \
1374     (n) == 16 ? BRW_DATAPORT_OWORD_BLOCK_4_OWORDS :     \
1375     (n) == 32 ? BRW_DATAPORT_OWORD_BLOCK_8_OWORDS :     \
1376     (abort(), ~0))
1377 
1378 #define BRW_DATAPORT_OWORD_DUAL_BLOCK_1OWORD     0
1379 #define BRW_DATAPORT_OWORD_DUAL_BLOCK_4OWORDS    2
1380 
1381 #define BRW_DATAPORT_DWORD_SCATTERED_BLOCK_8DWORDS   2
1382 #define BRW_DATAPORT_DWORD_SCATTERED_BLOCK_16DWORDS  3
1383 
1384 /* This one stays the same across generations. */
1385 #define BRW_DATAPORT_READ_MESSAGE_OWORD_BLOCK_READ          0
1386 /* GFX4 */
1387 #define BRW_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ     1
1388 #define BRW_DATAPORT_READ_MESSAGE_MEDIA_BLOCK_READ          2
1389 #define BRW_DATAPORT_READ_MESSAGE_DWORD_SCATTERED_READ      3
1390 /* G45, GFX5 */
1391 #define G45_DATAPORT_READ_MESSAGE_RENDER_UNORM_READ	    1
1392 #define G45_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ     2
1393 #define G45_DATAPORT_READ_MESSAGE_AVC_LOOP_FILTER_READ	    3
1394 #define G45_DATAPORT_READ_MESSAGE_MEDIA_BLOCK_READ          4
1395 #define G45_DATAPORT_READ_MESSAGE_DWORD_SCATTERED_READ      6
1396 /* GFX6 */
1397 #define GFX6_DATAPORT_READ_MESSAGE_RENDER_UNORM_READ	    1
1398 #define GFX6_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ     2
1399 #define GFX6_DATAPORT_READ_MESSAGE_MEDIA_BLOCK_READ          4
1400 #define GFX6_DATAPORT_READ_MESSAGE_OWORD_UNALIGN_BLOCK_READ  5
1401 #define GFX6_DATAPORT_READ_MESSAGE_DWORD_SCATTERED_READ      6
1402 
1403 #define BRW_DATAPORT_READ_TARGET_DATA_CACHE      0
1404 #define BRW_DATAPORT_READ_TARGET_RENDER_CACHE    1
1405 #define BRW_DATAPORT_READ_TARGET_SAMPLER_CACHE   2
1406 
1407 #define BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE                0
1408 #define BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED     1
1409 #define BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN01         2
1410 #define BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN23         3
1411 #define BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_SINGLE_SOURCE_SUBSPAN01       4
1412 
1413 #define BRW_DATAPORT_WRITE_MESSAGE_OWORD_BLOCK_WRITE                0
1414 #define BRW_DATAPORT_WRITE_MESSAGE_OWORD_DUAL_BLOCK_WRITE           1
1415 #define BRW_DATAPORT_WRITE_MESSAGE_MEDIA_BLOCK_WRITE                2
1416 #define BRW_DATAPORT_WRITE_MESSAGE_DWORD_SCATTERED_WRITE            3
1417 #define BRW_DATAPORT_WRITE_MESSAGE_RENDER_TARGET_WRITE              4
1418 #define BRW_DATAPORT_WRITE_MESSAGE_STREAMED_VERTEX_BUFFER_WRITE     5
1419 #define BRW_DATAPORT_WRITE_MESSAGE_FLUSH_RENDER_CACHE               7
1420 
1421 /* GFX6 */
1422 #define GFX6_DATAPORT_WRITE_MESSAGE_DWORD_ATOMIC_WRITE              7
1423 #define GFX6_DATAPORT_WRITE_MESSAGE_OWORD_BLOCK_WRITE               8
1424 #define GFX6_DATAPORT_WRITE_MESSAGE_OWORD_DUAL_BLOCK_WRITE          9
1425 #define GFX6_DATAPORT_WRITE_MESSAGE_MEDIA_BLOCK_WRITE               10
1426 #define GFX6_DATAPORT_WRITE_MESSAGE_DWORD_SCATTERED_WRITE           11
1427 #define GFX6_DATAPORT_WRITE_MESSAGE_RENDER_TARGET_WRITE             12
1428 #define GFX6_DATAPORT_WRITE_MESSAGE_STREAMED_VB_WRITE               13
1429 #define GFX6_DATAPORT_WRITE_MESSAGE_RENDER_TARGET_UNORM_WRITE       14
1430 
1431 /* GFX7 */
1432 #define GFX7_DATAPORT_RC_MEDIA_BLOCK_READ                           4
1433 #define GFX7_DATAPORT_RC_TYPED_SURFACE_READ                         5
1434 #define GFX7_DATAPORT_RC_TYPED_ATOMIC_OP                            6
1435 #define GFX7_DATAPORT_RC_MEMORY_FENCE                               7
1436 #define GFX7_DATAPORT_RC_MEDIA_BLOCK_WRITE                          10
1437 #define GFX7_DATAPORT_RC_RENDER_TARGET_WRITE                        12
1438 #define GFX7_DATAPORT_RC_TYPED_SURFACE_WRITE                        13
1439 #define GFX7_DATAPORT_DC_OWORD_BLOCK_READ                           0
1440 #define GFX7_DATAPORT_DC_UNALIGNED_OWORD_BLOCK_READ                 1
1441 #define GFX7_DATAPORT_DC_OWORD_DUAL_BLOCK_READ                      2
1442 #define GFX7_DATAPORT_DC_DWORD_SCATTERED_READ                       3
1443 #define GFX7_DATAPORT_DC_BYTE_SCATTERED_READ                        4
1444 #define GFX7_DATAPORT_DC_UNTYPED_SURFACE_READ                       5
1445 #define GFX7_DATAPORT_DC_UNTYPED_ATOMIC_OP                          6
1446 #define GFX7_DATAPORT_DC_MEMORY_FENCE                               7
1447 #define GFX7_DATAPORT_DC_OWORD_BLOCK_WRITE                          8
1448 #define GFX7_DATAPORT_DC_OWORD_DUAL_BLOCK_WRITE                     10
1449 #define GFX7_DATAPORT_DC_DWORD_SCATTERED_WRITE                      11
1450 #define GFX7_DATAPORT_DC_BYTE_SCATTERED_WRITE                       12
1451 #define GFX7_DATAPORT_DC_UNTYPED_SURFACE_WRITE                      13
1452 
1453 #define GFX7_DATAPORT_SCRATCH_READ                            ((1 << 18) | \
1454                                                                (0 << 17))
1455 #define GFX7_DATAPORT_SCRATCH_WRITE                           ((1 << 18) | \
1456                                                                (1 << 17))
1457 #define GFX7_DATAPORT_SCRATCH_NUM_REGS_SHIFT                        12
1458 
1459 #define GFX7_PIXEL_INTERPOLATOR_LOC_SHARED_OFFSET     0
1460 #define GFX7_PIXEL_INTERPOLATOR_LOC_SAMPLE            1
1461 #define GFX7_PIXEL_INTERPOLATOR_LOC_CENTROID          2
1462 #define GFX7_PIXEL_INTERPOLATOR_LOC_PER_SLOT_OFFSET   3
1463 
1464 /* HSW */
1465 #define HSW_DATAPORT_DC_PORT0_OWORD_BLOCK_READ                      0
1466 #define HSW_DATAPORT_DC_PORT0_UNALIGNED_OWORD_BLOCK_READ            1
1467 #define HSW_DATAPORT_DC_PORT0_OWORD_DUAL_BLOCK_READ                 2
1468 #define HSW_DATAPORT_DC_PORT0_DWORD_SCATTERED_READ                  3
1469 #define HSW_DATAPORT_DC_PORT0_BYTE_SCATTERED_READ                   4
1470 #define HSW_DATAPORT_DC_PORT0_MEMORY_FENCE                          7
1471 #define HSW_DATAPORT_DC_PORT0_OWORD_BLOCK_WRITE                     8
1472 #define HSW_DATAPORT_DC_PORT0_OWORD_DUAL_BLOCK_WRITE                10
1473 #define HSW_DATAPORT_DC_PORT0_DWORD_SCATTERED_WRITE                 11
1474 #define HSW_DATAPORT_DC_PORT0_BYTE_SCATTERED_WRITE                  12
1475 
1476 #define HSW_DATAPORT_DC_PORT1_UNTYPED_SURFACE_READ                  1
1477 #define HSW_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_OP                     2
1478 #define HSW_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_OP_SIMD4X2             3
1479 #define HSW_DATAPORT_DC_PORT1_MEDIA_BLOCK_READ                      4
1480 #define HSW_DATAPORT_DC_PORT1_TYPED_SURFACE_READ                    5
1481 #define HSW_DATAPORT_DC_PORT1_TYPED_ATOMIC_OP                       6
1482 #define HSW_DATAPORT_DC_PORT1_TYPED_ATOMIC_OP_SIMD4X2               7
1483 #define HSW_DATAPORT_DC_PORT1_UNTYPED_SURFACE_WRITE                 9
1484 #define HSW_DATAPORT_DC_PORT1_MEDIA_BLOCK_WRITE                     10
1485 #define HSW_DATAPORT_DC_PORT1_ATOMIC_COUNTER_OP                     11
1486 #define HSW_DATAPORT_DC_PORT1_ATOMIC_COUNTER_OP_SIMD4X2             12
1487 #define HSW_DATAPORT_DC_PORT1_TYPED_SURFACE_WRITE                   13
1488 #define GFX9_DATAPORT_DC_PORT1_A64_SCATTERED_READ                   0x10
1489 #define GFX8_DATAPORT_DC_PORT1_A64_UNTYPED_SURFACE_READ             0x11
1490 #define GFX8_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_OP                0x12
1491 #define GFX12_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_HALF_INT_OP      0x13
1492 #define GFX9_DATAPORT_DC_PORT1_A64_OWORD_BLOCK_READ                 0x14
1493 #define GFX9_DATAPORT_DC_PORT1_A64_OWORD_BLOCK_WRITE                0x15
1494 #define GFX8_DATAPORT_DC_PORT1_A64_UNTYPED_SURFACE_WRITE            0x19
1495 #define GFX8_DATAPORT_DC_PORT1_A64_SCATTERED_WRITE                  0x1a
1496 #define GFX9_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_FLOAT_OP              0x1b
1497 #define GFX9_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_FLOAT_OP          0x1d
1498 #define GFX12_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_HALF_FLOAT_OP    0x1e
1499 
1500 /* GFX9 */
1501 #define GFX9_DATAPORT_RC_RENDER_TARGET_WRITE                        12
1502 #define GFX9_DATAPORT_RC_RENDER_TARGET_READ                         13
1503 
1504 /* A64 scattered message subtype */
1505 #define GFX8_A64_SCATTERED_SUBTYPE_BYTE                             0
1506 #define GFX8_A64_SCATTERED_SUBTYPE_DWORD                            1
1507 #define GFX8_A64_SCATTERED_SUBTYPE_QWORD                            2
1508 #define GFX8_A64_SCATTERED_SUBTYPE_HWORD                            3
1509 
1510 /* Dataport special binding table indices: */
1511 #define BRW_BTI_STATELESS                255
1512 #define GFX7_BTI_SLM                     254
1513 
1514 #define HSW_BTI_STATELESS_LOCALLY_COHERENT 255
1515 #define HSW_BTI_STATELESS_NON_COHERENT 253
1516 #define HSW_BTI_STATELESS_GLOBALLY_COHERENT 252
1517 #define HSW_BTI_STATELESS_LLC_COHERENT 251
1518 #define HSW_BTI_STATELESS_L3_UNCACHED 250
1519 
1520 /* The hardware docs are a bit contradictory here.  On Haswell, where they
1521  * first added cache ability control, there were 5 different cache modes (see
1522  * HSW_BTI_STATELESS_* above).  On Broadwell, they reduced to two:
1523  *
1524  *  - IA-Coherent (BTI=255): Coherent within Gen and coherent within the
1525  *    entire IA cache memory hierarchy.
1526  *
1527  *  - Non-Coherent (BTI=253): Coherent within Gen, same cache type.
1528  *
1529  * Information about stateless cache coherency can be found in the "A32
1530  * Stateless" section of the "3D Media GPGPU" volume of the PRM for each
1531  * hardware generation.
1532  *
1533  * Unfortunately, the docs for MDC_STATELESS appear to have been copied and
1534  * pasted from Haswell and give the Haswell definitions for the BTI values of
1535  * 255 and 253 including a warning about accessing 253 surfaces from multiple
1536  * threads.  This seems to be a copy+paste error and the definitions from the
1537  * "A32 Stateless" section should be trusted instead.
1538  *
1539  * Note that because the DRM sets bit 4 of HDC_CHICKEN0 on BDW, CHV and at
1540  * least some pre-production steppings of SKL due to WaForceEnableNonCoherent,
1541  * HDC memory access may have been overridden by the kernel to be non-coherent
1542  * (matching the behavior of the same BTI on pre-Gfx8 hardware) and BTI 255
1543  * may actually be an alias for BTI 253.
1544  */
1545 #define GFX8_BTI_STATELESS_IA_COHERENT   255
1546 #define GFX8_BTI_STATELESS_NON_COHERENT  253
1547 #define GFX9_BTI_BINDLESS                252
1548 
1549 /* Dataport atomic operations for Untyped Atomic Integer Operation message
1550  * (and others).
1551  */
1552 #define BRW_AOP_AND                   1
1553 #define BRW_AOP_OR                    2
1554 #define BRW_AOP_XOR                   3
1555 #define BRW_AOP_MOV                   4
1556 #define BRW_AOP_INC                   5
1557 #define BRW_AOP_DEC                   6
1558 #define BRW_AOP_ADD                   7
1559 #define BRW_AOP_SUB                   8
1560 #define BRW_AOP_REVSUB                9
1561 #define BRW_AOP_IMAX                  10
1562 #define BRW_AOP_IMIN                  11
1563 #define BRW_AOP_UMAX                  12
1564 #define BRW_AOP_UMIN                  13
1565 #define BRW_AOP_CMPWR                 14
1566 #define BRW_AOP_PREDEC                15
1567 
1568 /* Dataport atomic operations for Untyped Atomic Float Operation message. */
1569 #define BRW_AOP_FMAX                  1
1570 #define BRW_AOP_FMIN                  2
1571 #define BRW_AOP_FCMPWR                3
1572 #define BRW_AOP_FADD                  4
1573 
1574 #define BRW_MATH_FUNCTION_INV                              1
1575 #define BRW_MATH_FUNCTION_LOG                              2
1576 #define BRW_MATH_FUNCTION_EXP                              3
1577 #define BRW_MATH_FUNCTION_SQRT                             4
1578 #define BRW_MATH_FUNCTION_RSQ                              5
1579 #define BRW_MATH_FUNCTION_SIN                              6
1580 #define BRW_MATH_FUNCTION_COS                              7
1581 #define BRW_MATH_FUNCTION_SINCOS                           8 /* gfx4, gfx5 */
1582 #define BRW_MATH_FUNCTION_FDIV                             9 /* gfx6+ */
1583 #define BRW_MATH_FUNCTION_POW                              10
1584 #define BRW_MATH_FUNCTION_INT_DIV_QUOTIENT_AND_REMAINDER   11
1585 #define BRW_MATH_FUNCTION_INT_DIV_QUOTIENT                 12
1586 #define BRW_MATH_FUNCTION_INT_DIV_REMAINDER                13
1587 #define GFX8_MATH_FUNCTION_INVM                            14
1588 #define GFX8_MATH_FUNCTION_RSQRTM                          15
1589 
1590 #define BRW_MATH_INTEGER_UNSIGNED     0
1591 #define BRW_MATH_INTEGER_SIGNED       1
1592 
1593 #define BRW_MATH_PRECISION_FULL        0
1594 #define BRW_MATH_PRECISION_PARTIAL     1
1595 
1596 #define BRW_MATH_SATURATE_NONE         0
1597 #define BRW_MATH_SATURATE_SATURATE     1
1598 
1599 #define BRW_MATH_DATA_VECTOR  0
1600 #define BRW_MATH_DATA_SCALAR  1
1601 
1602 #define BRW_URB_OPCODE_WRITE_HWORD  0
1603 #define BRW_URB_OPCODE_WRITE_OWORD  1
1604 #define BRW_URB_OPCODE_READ_HWORD   2
1605 #define BRW_URB_OPCODE_READ_OWORD   3
1606 #define GFX7_URB_OPCODE_ATOMIC_MOV  4
1607 #define GFX7_URB_OPCODE_ATOMIC_INC  5
1608 #define GFX8_URB_OPCODE_ATOMIC_ADD  6
1609 #define GFX8_URB_OPCODE_SIMD8_WRITE 7
1610 #define GFX8_URB_OPCODE_SIMD8_READ  8
1611 #define GFX125_URB_OPCODE_FENCE     9
1612 
1613 #define BRW_URB_SWIZZLE_NONE          0
1614 #define BRW_URB_SWIZZLE_INTERLEAVE    1
1615 #define BRW_URB_SWIZZLE_TRANSPOSE     2
1616 
1617 #define BRW_SCRATCH_SPACE_SIZE_1K     0
1618 #define BRW_SCRATCH_SPACE_SIZE_2K     1
1619 #define BRW_SCRATCH_SPACE_SIZE_4K     2
1620 #define BRW_SCRATCH_SPACE_SIZE_8K     3
1621 #define BRW_SCRATCH_SPACE_SIZE_16K    4
1622 #define BRW_SCRATCH_SPACE_SIZE_32K    5
1623 #define BRW_SCRATCH_SPACE_SIZE_64K    6
1624 #define BRW_SCRATCH_SPACE_SIZE_128K   7
1625 #define BRW_SCRATCH_SPACE_SIZE_256K   8
1626 #define BRW_SCRATCH_SPACE_SIZE_512K   9
1627 #define BRW_SCRATCH_SPACE_SIZE_1M     10
1628 #define BRW_SCRATCH_SPACE_SIZE_2M     11
1629 
1630 #define BRW_MESSAGE_GATEWAY_SFID_OPEN_GATEWAY         0
1631 #define BRW_MESSAGE_GATEWAY_SFID_CLOSE_GATEWAY        1
1632 #define BRW_MESSAGE_GATEWAY_SFID_FORWARD_MSG          2
1633 #define BRW_MESSAGE_GATEWAY_SFID_GET_TIMESTAMP        3
1634 #define BRW_MESSAGE_GATEWAY_SFID_BARRIER_MSG          4
1635 #define BRW_MESSAGE_GATEWAY_SFID_UPDATE_GATEWAY_STATE 5
1636 #define BRW_MESSAGE_GATEWAY_SFID_MMIO_READ_WRITE      6
1637 
1638 
1639 /* Gfx7 "GS URB Entry Allocation Size" is a U9-1 field, so the maximum gs_size
1640  * is 2^9, or 512.  It's counted in multiples of 64 bytes.
1641  *
1642  * Identical for VS, DS, and HS.
1643  */
1644 #define GFX7_MAX_GS_URB_ENTRY_SIZE_BYTES                (512*64)
1645 #define GFX7_MAX_DS_URB_ENTRY_SIZE_BYTES                (512*64)
1646 #define GFX7_MAX_HS_URB_ENTRY_SIZE_BYTES                (512*64)
1647 #define GFX7_MAX_VS_URB_ENTRY_SIZE_BYTES                (512*64)
1648 
1649 #define BRW_GS_EDGE_INDICATOR_0			(1 << 8)
1650 #define BRW_GS_EDGE_INDICATOR_1			(1 << 9)
1651 
1652 /* Gfx6 "GS URB Entry Allocation Size" is defined as a number of 1024-bit
1653  * (128 bytes) URB rows and the maximum allowed value is 5 rows.
1654  */
1655 #define GFX6_MAX_GS_URB_ENTRY_SIZE_BYTES                (5*128)
1656 
1657 /* GS Thread Payload
1658  */
1659 
1660 /* 3DSTATE_GS "Output Vertex Size" has an effective maximum of 62. It's
1661  * counted in multiples of 16 bytes.
1662  */
1663 #define GFX7_MAX_GS_OUTPUT_VERTEX_SIZE_BYTES            (62*16)
1664 
1665 
1666 /* R0 */
1667 # define GFX7_GS_PAYLOAD_INSTANCE_ID_SHIFT		27
1668 
1669 /* CR0.0[5:4] Floating-Point Rounding Modes
1670  *  Skylake PRM, Volume 7 Part 1, "Control Register", page 756
1671  */
1672 
1673 #define BRW_CR0_RND_MODE_MASK     0x30
1674 #define BRW_CR0_RND_MODE_SHIFT    4
1675 
1676 enum PACKED brw_rnd_mode {
1677    BRW_RND_MODE_RTNE = 0,  /* Round to Nearest or Even */
1678    BRW_RND_MODE_RU = 1,    /* Round Up, toward +inf */
1679    BRW_RND_MODE_RD = 2,    /* Round Down, toward -inf */
1680    BRW_RND_MODE_RTZ = 3,   /* Round Toward Zero */
1681    BRW_RND_MODE_UNSPECIFIED,  /* Unspecified rounding mode */
1682 };
1683 
1684 #define BRW_CR0_FP64_DENORM_PRESERVE (1 << 6)
1685 #define BRW_CR0_FP32_DENORM_PRESERVE (1 << 7)
1686 #define BRW_CR0_FP16_DENORM_PRESERVE (1 << 10)
1687 
1688 #define BRW_CR0_FP_MODE_MASK (BRW_CR0_FP64_DENORM_PRESERVE | \
1689                               BRW_CR0_FP32_DENORM_PRESERVE | \
1690                               BRW_CR0_FP16_DENORM_PRESERVE | \
1691                               BRW_CR0_RND_MODE_MASK)
1692 
1693 /* MDC_DS - Data Size Message Descriptor Control Field
1694  * Skylake PRM, Volume 2d, page 129
1695  *
1696  * Specifies the number of Bytes to be read or written per Dword used at
1697  * byte_scattered read/write and byte_scaled read/write messages.
1698  */
1699 #define GFX7_BYTE_SCATTERED_DATA_ELEMENT_BYTE     0
1700 #define GFX7_BYTE_SCATTERED_DATA_ELEMENT_WORD     1
1701 #define GFX7_BYTE_SCATTERED_DATA_ELEMENT_DWORD    2
1702 
1703 #define GEN_RT_BTD_MESSAGE_SPAWN 1
1704 
1705 #define GEN_RT_TRACE_RAY_INITAL       0
1706 #define GEN_RT_TRACE_RAY_INSTANCE     1
1707 #define GEN_RT_TRACE_RAY_COMMIT       2
1708 #define GEN_RT_TRACE_RAY_CONTINUE     3
1709 
1710 #define GEN_RT_BTD_SHADER_TYPE_ANY_HIT        0
1711 #define GEN_RT_BTD_SHADER_TYPE_CLOSEST_HIT    1
1712 #define GEN_RT_BTD_SHADER_TYPE_MISS           2
1713 #define GEN_RT_BTD_SHADER_TYPE_INTERSECTION   3
1714 
1715 /* Starting with Xe-HPG, the old dataport was massively reworked dataport.
1716  * The new thing, called Load/Store Cache or LSC, has a significantly improved
1717  * interface.  Instead of bespoke messages for every case, there's basically
1718  * one or two messages with different bits to control things like address
1719  * size, how much data is read/written, etc.  It's way nicer but also means we
1720  * get to rewrite all our dataport encoding/decoding code.  This patch kicks
1721  * off the party with all of the new enums.
1722  */
1723 enum lsc_opcode {
1724    LSC_OP_LOAD            = 0,
1725    LSC_OP_LOAD_CMASK      = 2,
1726    LSC_OP_STORE           = 4,
1727    LSC_OP_STORE_CMASK     = 6,
1728    LSC_OP_ATOMIC_INC      = 8,
1729    LSC_OP_ATOMIC_DEC      = 9,
1730    LSC_OP_ATOMIC_LOAD     = 10,
1731    LSC_OP_ATOMIC_STORE    = 11,
1732    LSC_OP_ATOMIC_ADD      = 12,
1733    LSC_OP_ATOMIC_SUB      = 13,
1734    LSC_OP_ATOMIC_MIN      = 14,
1735    LSC_OP_ATOMIC_MAX      = 15,
1736    LSC_OP_ATOMIC_UMIN     = 16,
1737    LSC_OP_ATOMIC_UMAX     = 17,
1738    LSC_OP_ATOMIC_CMPXCHG  = 18,
1739    LSC_OP_ATOMIC_FADD     = 19,
1740    LSC_OP_ATOMIC_FSUB     = 20,
1741    LSC_OP_ATOMIC_FMIN     = 21,
1742    LSC_OP_ATOMIC_FMAX     = 22,
1743    LSC_OP_ATOMIC_FCMPXCHG = 23,
1744    LSC_OP_ATOMIC_AND      = 24,
1745    LSC_OP_ATOMIC_OR       = 25,
1746    LSC_OP_ATOMIC_XOR      = 26,
1747    LSC_OP_FENCE           = 31
1748 };
1749 
1750 /*
1751  * Specifies the size of the dataport address payload in registers.
1752  */
1753 enum PACKED lsc_addr_reg_size {
1754    LSC_ADDR_REG_SIZE_1  = 1,
1755    LSC_ADDR_REG_SIZE_2  = 2,
1756    LSC_ADDR_REG_SIZE_3  = 3,
1757    LSC_ADDR_REG_SIZE_4  = 4,
1758    LSC_ADDR_REG_SIZE_6  = 6,
1759    LSC_ADDR_REG_SIZE_8  = 8,
1760 };
1761 
1762 /*
1763  * Specifies the size of the address payload item in a dataport message.
1764  */
1765 enum PACKED lsc_addr_size {
1766   LSC_ADDR_SIZE_A16 = 1,    /* 16-bit address offset */
1767   LSC_ADDR_SIZE_A32 = 2,    /* 32-bit address offset */
1768   LSC_ADDR_SIZE_A64 = 3,    /* 64-bit address offset */
1769 };
1770 
1771 /*
1772  * Specifies the type of the address payload item in a dataport message. The
1773  * address type specifies how the dataport message decodes the Extended
1774  * Descriptor for the surface attributes and address calculation.
1775  */
1776 enum PACKED lsc_addr_surface_type {
1777    LSC_ADDR_SURFTYPE_FLAT = 0, /* Flat */
1778    LSC_ADDR_SURFTYPE_BSS = 1,  /* Bindless surface state */
1779    LSC_ADDR_SURFTYPE_SS = 2,   /* Surface state */
1780    LSC_ADDR_SURFTYPE_BTI = 3,  /* Binding table index */
1781 };
1782 
1783 /*
1784  * Specifies the dataport message override to the default L1 and L3 memory
1785  * cache policies. Dataport L1 cache policies are uncached (UC), cached (C),
1786  * cache streaming (S) and invalidate-after-read (IAR). Dataport L3 cache
1787  * policies are uncached (UC) and cached (C).
1788  */
1789 enum lsc_cache_load {
1790    /* No override. Use the non-pipelined state or surface state cache settings
1791     * for L1 and L3.
1792     */
1793    LSC_CACHE_LOAD_L1STATE_L3MOCS = 0,
1794    /* Override to L1 uncached and L3 uncached */
1795    LSC_CACHE_LOAD_L1UC_L3UC      = 1,
1796    /* Override to L1 uncached and L3 cached */
1797    LSC_CACHE_LOAD_L1UC_L3C       = 2,
1798    /* Override to L1 cached and L3 uncached */
1799    LSC_CACHE_LOAD_L1C_L3UC       = 3,
1800    /* Override to cache at both L1 and L3 */
1801    LSC_CACHE_LOAD_L1C_L3C        = 4,
1802    /* Override to L1 streaming load and L3 uncached */
1803    LSC_CACHE_LOAD_L1S_L3UC       = 5,
1804    /* Override to L1 streaming load and L3 cached */
1805    LSC_CACHE_LOAD_L1S_L3C        = 6,
1806    /* For load messages, override to L1 invalidate-after-read, and L3 cached. */
1807    LSC_CACHE_LOAD_L1IAR_L3C      = 7,
1808 };
1809 
1810 /*
1811  * Specifies the dataport message override to the default L1 and L3 memory
1812  * cache policies. Dataport L1 cache policies are uncached (UC), write-through
1813  * (WT), write-back (WB) and streaming (S). Dataport L3 cache policies are
1814  * uncached (UC) and cached (WB).
1815  */
1816 enum PACKED lsc_cache_store {
1817    /* No override. Use the non-pipelined or surface state cache settings for L1
1818     * and L3.
1819     */
1820    LSC_CACHE_STORE_L1STATE_L3MOCS = 0,
1821    /* Override to L1 uncached and L3 uncached */
1822    LSC_CACHE_STORE_L1UC_L3UC = 1,
1823    /* Override to L1 uncached and L3 cached */
1824    LSC_CACHE_STORE_L1UC_L3WB = 2,
1825    /* Override to L1 write-through and L3 uncached */
1826    LSC_CACHE_STORE_L1WT_L3UC = 3,
1827    /* Override to L1 write-through and L3 cached */
1828    LSC_CACHE_STORE_L1WT_L3WB = 4,
1829    /* Override to L1 streaming and L3 uncached */
1830    LSC_CACHE_STORE_L1S_L3UC = 5,
1831    /* Override to L1 streaming and L3 cached */
1832    LSC_CACHE_STORE_L1S_L3WB = 6,
1833    /* Override to L1 write-back, and L3 cached */
1834    LSC_CACHE_STORE_L1WB_L3WB = 7,
1835 
1836 };
1837 
1838 /*
1839  * Specifies which components of the data payload 4-element vector (X,Y,Z,W) is
1840  * packed into the register payload.
1841  */
1842 enum PACKED lsc_cmask {
1843    LSC_CMASK_X = 0x1,
1844    LSC_CMASK_Y = 0x2,
1845    LSC_CMASK_XY = 0x3,
1846    LSC_CMASK_Z = 0x4,
1847    LSC_CMASK_XZ = 0x5,
1848    LSC_CMASK_YZ = 0x6,
1849    LSC_CMASK_XYZ = 0x7,
1850    LSC_CMASK_W = 0x8,
1851    LSC_CMASK_XW = 0x9,
1852    LSC_CMASK_YW = 0xa,
1853    LSC_CMASK_XYW = 0xb,
1854    LSC_CMASK_ZW = 0xc,
1855    LSC_CMASK_XZW = 0xd,
1856    LSC_CMASK_YZW = 0xe,
1857    LSC_CMASK_XYZW = 0xf,
1858 };
1859 
1860 /*
1861  * Specifies the size of the data payload item in a dataport message.
1862  */
1863 enum PACKED lsc_data_size {
1864    /* 8-bit scalar data value in memory, packed into a 8-bit data value in
1865     * register.
1866     */
1867    LSC_DATA_SIZE_D8 = 0,
1868    /* 16-bit scalar data value in memory, packed into a 16-bit data value in
1869     * register.
1870     */
1871    LSC_DATA_SIZE_D16 = 1,
1872    /* 32-bit scalar data value in memory, packed into 32-bit data value in
1873     * register.
1874     */
1875    LSC_DATA_SIZE_D32 = 2,
1876    /* 64-bit scalar data value in memory, packed into 64-bit data value in
1877     * register.
1878     */
1879    LSC_DATA_SIZE_D64 = 3,
1880    /* 8-bit scalar data value in memory, packed into 32-bit unsigned data value
1881     * in register.
1882     */
1883    LSC_DATA_SIZE_D8U32 = 4,
1884    /* 16-bit scalar data value in memory, packed into 32-bit unsigned data
1885     * value in register.
1886     */
1887    LSC_DATA_SIZE_D16U32 = 5,
1888    /* 16-bit scalar BigFloat data value in memory, packed into 32-bit float
1889     * value in register.
1890     */
1891    LSC_DATA_SIZE_D16BF32 = 6,
1892 };
1893 
1894 /*
1895  *  Enum specifies the scope of the fence.
1896  */
1897 enum PACKED lsc_fence_scope {
1898    /* Wait until all previous memory transactions from this thread are observed
1899     * within the local thread-group.
1900     */
1901    LSC_FENCE_THREADGROUP = 0,
1902    /* Wait until all previous memory transactions from this thread are observed
1903     * within the local sub-slice.
1904     */
1905    LSC_FENCE_LOCAL = 1,
1906    /* Wait until all previous memory transactions from this thread are observed
1907     * in the local tile.
1908     */
1909    LSC_FENCE_TILE = 2,
1910    /* Wait until all previous memory transactions from this thread are observed
1911     * in the local GPU.
1912     */
1913    LSC_FENCE_GPU = 3,
1914    /* Wait until all previous memory transactions from this thread are observed
1915     * across all GPUs in the system.
1916     */
1917    LSC_FENCE_ALL_GPU = 4,
1918    /* Wait until all previous memory transactions from this thread are observed
1919     * at the "system" level.
1920     */
1921    LSC_FENCE_SYSTEM_RELEASE = 5,
1922    /* For GPUs that do not follow PCIe Write ordering for downstream writes
1923     * targeting device memory, a fence message with scope=System_Acquire will
1924     * commit to device memory all downstream and peer writes that have reached
1925     * the device.
1926     */
1927    LSC_FENCE_SYSTEM_ACQUIRE = 6,
1928 };
1929 
1930 /*
1931  * Specifies the type of cache flush operation to perform after a fence is
1932  * complete.
1933  */
1934 enum PACKED lsc_flush_type {
1935    LSC_FLUSH_TYPE_NONE = 0,
1936    /*
1937     * For a R/W cache, evict dirty lines (M to I state) and invalidate clean
1938     * lines. For a RO cache, invalidate clean lines.
1939     */
1940    LSC_FLUSH_TYPE_EVICT = 1,
1941    /*
1942     * For both R/W and RO cache, invalidate clean lines in the cache.
1943     */
1944    LSC_FLUSH_TYPE_INVALIDATE = 2,
1945    /*
1946     * For a R/W cache, invalidate dirty lines (M to I state), without
1947     * write-back to next level. This opcode does nothing for a RO cache.
1948     */
1949    LSC_FLUSH_TYPE_DISCARD = 3,
1950    /*
1951     * For a R/W cache, write-back dirty lines to the next level, but kept in
1952     * the cache as "clean" (M to V state). This opcode does nothing for a RO
1953     * cache.
1954     */
1955    LSC_FLUSH_TYPE_CLEAN = 4,
1956    /*
1957     * Flush "RW" section of the L3 cache, but leave L1 and L2 caches untouched.
1958     */
1959    LSC_FLUSH_TYPE_L3ONLY = 5,
1960 };
1961 
1962 enum PACKED lsc_backup_fence_routing {
1963    /* Normal routing: UGM fence is routed to UGM pipeline. */
1964    LSC_NORMAL_ROUTING,
1965    /* Route UGM fence to LSC unit. */
1966    LSC_ROUTE_TO_LSC,
1967 };
1968 
1969 /*
1970  * Specifies the size of the vector in a dataport message.
1971  */
1972 enum PACKED lsc_vect_size {
1973    LSC_VECT_SIZE_V1 = 0,    /* vector length 1 */
1974    LSC_VECT_SIZE_V2 = 1,    /* vector length 2 */
1975    LSC_VECT_SIZE_V3 = 2,    /* Vector length 3 */
1976    LSC_VECT_SIZE_V4 = 3,    /* Vector length 4 */
1977    LSC_VECT_SIZE_V8 = 4,    /* Vector length 8 */
1978    LSC_VECT_SIZE_V16 = 5,   /* Vector length 16 */
1979    LSC_VECT_SIZE_V32 = 6,   /* Vector length 32 */
1980    LSC_VECT_SIZE_V64 = 7,   /* Vector length 64 */
1981 };
1982 
1983 #define LSC_ONE_ADDR_REG   1
1984 
1985 #endif /* BRW_EU_DEFINES_H */
1986