1# SPDX-License-Identifier: GPL-2.0-only 2config ARM64 3 def_bool y 4 select ACPI_CCA_REQUIRED if ACPI 5 select ACPI_GENERIC_GSI if ACPI 6 select ACPI_GTDT if ACPI 7 select ACPI_IORT if ACPI 8 select ACPI_REDUCED_HARDWARE_ONLY if ACPI 9 select ACPI_MCFG if (ACPI && PCI) 10 select ACPI_SPCR_TABLE if ACPI 11 select ACPI_PPTT if ACPI 12 select ARCH_HAS_DEBUG_WX 13 select ARCH_BINFMT_ELF_STATE 14 select ARCH_HAS_DEBUG_VIRTUAL 15 select ARCH_HAS_DEBUG_VM_PGTABLE 16 select ARCH_HAS_DEVMEM_IS_ALLOWED 17 select ARCH_HAS_DMA_PREP_COHERENT 18 select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI 19 select ARCH_HAS_FAST_MULTIPLIER 20 select ARCH_HAS_FORTIFY_SOURCE 21 select ARCH_HAS_GCOV_PROFILE_ALL 22 select ARCH_HAS_GIGANTIC_PAGE 23 select ARCH_HAS_KCOV 24 select ARCH_HAS_KEEPINITRD 25 select ARCH_HAS_MEMBARRIER_SYNC_CORE 26 select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 27 select ARCH_HAS_PTE_DEVMAP 28 select ARCH_HAS_PTE_SPECIAL 29 select ARCH_HAS_SETUP_DMA_OPS 30 select ARCH_HAS_SET_DIRECT_MAP 31 select ARCH_HAS_SET_MEMORY 32 select ARCH_STACKWALK 33 select ARCH_HAS_STRICT_KERNEL_RWX 34 select ARCH_HAS_STRICT_MODULE_RWX 35 select ARCH_HAS_SYNC_DMA_FOR_DEVICE 36 select ARCH_HAS_SYNC_DMA_FOR_CPU 37 select ARCH_HAS_SYSCALL_WRAPPER 38 select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT 39 select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST 40 select ARCH_HAVE_ELF_PROT 41 select ARCH_HAVE_NMI_SAFE_CMPXCHG 42 select ARCH_INLINE_READ_LOCK if !PREEMPTION 43 select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION 44 select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION 45 select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION 46 select ARCH_INLINE_READ_UNLOCK if !PREEMPTION 47 select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION 48 select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION 49 select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION 50 select ARCH_INLINE_WRITE_LOCK if !PREEMPTION 51 select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION 52 select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION 53 select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION 54 select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION 55 select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION 56 select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION 57 select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION 58 select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION 59 select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION 60 select ARCH_INLINE_SPIN_LOCK if !PREEMPTION 61 select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION 62 select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION 63 select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION 64 select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION 65 select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION 66 select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION 67 select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION 68 select ARCH_KEEP_MEMBLOCK 69 select ARCH_USE_CMPXCHG_LOCKREF 70 select ARCH_USE_GNU_PROPERTY 71 select ARCH_USE_QUEUED_RWLOCKS 72 select ARCH_USE_QUEUED_SPINLOCKS 73 select ARCH_USE_SYM_ANNOTATIONS 74 select ARCH_SUPPORTS_MEMORY_FAILURE 75 select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK 76 select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN 77 select ARCH_SUPPORTS_LTO_CLANG_THIN 78 select ARCH_SUPPORTS_CFI_CLANG 79 select ARCH_SUPPORTS_ATOMIC_RMW 80 select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 && (GCC_VERSION >= 50000 || CC_IS_CLANG) 81 select ARCH_SUPPORTS_NUMA_BALANCING 82 select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT 83 select ARCH_WANT_DEFAULT_BPF_JIT 84 select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 85 select ARCH_WANT_FRAME_POINTERS 86 select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36) 87 select ARCH_WANT_LD_ORPHAN_WARN 88 select ARCH_HAS_UBSAN_SANITIZE_ALL 89 select ARM_AMBA 90 select ARM_ARCH_TIMER 91 select ARM_GIC 92 select AUDIT_ARCH_COMPAT_GENERIC 93 select ARM_GIC_V2M if PCI 94 select ARM_GIC_V3 95 select ARM_GIC_V3_ITS if PCI 96 select ARM_PSCI_FW 97 select BUILDTIME_TABLE_SORT 98 select CLONE_BACKWARDS 99 select COMMON_CLK 100 select CPU_PM if (SUSPEND || CPU_IDLE) 101 select CRC32 102 select DCACHE_WORD_ACCESS 103 select DMA_DIRECT_REMAP 104 select EDAC_SUPPORT 105 select FRAME_POINTER 106 select GENERIC_ALLOCATOR 107 select GENERIC_ARCH_TOPOLOGY 108 select GENERIC_CLOCKEVENTS 109 select GENERIC_CLOCKEVENTS_BROADCAST 110 select GENERIC_CPU_AUTOPROBE 111 select GENERIC_CPU_VULNERABILITIES 112 select GENERIC_EARLY_IOREMAP 113 select GENERIC_IDLE_POLL_SETUP 114 select GENERIC_IRQ_IPI 115 select GENERIC_IRQ_MULTI_HANDLER 116 select GENERIC_IRQ_PROBE 117 select GENERIC_IRQ_SHOW 118 select GENERIC_IRQ_SHOW_LEVEL 119 select GENERIC_PCI_IOMAP 120 select GENERIC_PTDUMP 121 select GENERIC_SCHED_CLOCK 122 select GENERIC_SMP_IDLE_THREAD 123 select GENERIC_STRNCPY_FROM_USER 124 select GENERIC_STRNLEN_USER 125 select GENERIC_TIME_VSYSCALL 126 select GENERIC_GETTIMEOFDAY 127 select GENERIC_VDSO_TIME_NS 128 select HANDLE_DOMAIN_IRQ 129 select HARDIRQS_SW_RESEND 130 select HAVE_MOVE_PMD 131 select HAVE_PCI 132 select HAVE_ACPI_APEI if (ACPI && EFI) 133 select HAVE_ALIGNED_STRUCT_PAGE if SLUB 134 select HAVE_ARCH_AUDITSYSCALL 135 select HAVE_ARCH_BITREVERSE 136 select HAVE_ARCH_COMPILER_H 137 select HAVE_ARCH_HUGE_VMAP 138 select HAVE_ARCH_JUMP_LABEL 139 select HAVE_ARCH_JUMP_LABEL_RELATIVE 140 select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48) 141 select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN 142 select HAVE_ARCH_KGDB 143 select HAVE_ARCH_MMAP_RND_BITS 144 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT 145 select HAVE_ARCH_PREL32_RELOCATIONS 146 select HAVE_ARCH_SECCOMP_FILTER 147 select HAVE_ARCH_STACKLEAK 148 select HAVE_ARCH_THREAD_STRUCT_WHITELIST 149 select HAVE_ARCH_TRACEHOOK 150 select HAVE_ARCH_TRANSPARENT_HUGEPAGE 151 select HAVE_ARCH_VMAP_STACK 152 select HAVE_ARM_SMCCC 153 select HAVE_ASM_MODVERSIONS 154 select HAVE_EBPF_JIT 155 select HAVE_C_RECORDMCOUNT 156 select HAVE_CMPXCHG_DOUBLE 157 select HAVE_CMPXCHG_LOCAL 158 select HAVE_CONTEXT_TRACKING 159 select HAVE_DEBUG_BUGVERBOSE 160 select HAVE_DEBUG_KMEMLEAK 161 select HAVE_DMA_CONTIGUOUS 162 select HAVE_DYNAMIC_FTRACE 163 select HAVE_DYNAMIC_FTRACE_WITH_REGS \ 164 if $(cc-option,-fpatchable-function-entry=2) 165 select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \ 166 if DYNAMIC_FTRACE_WITH_REGS 167 select HAVE_EFFICIENT_UNALIGNED_ACCESS 168 select HAVE_FAST_GUP 169 select HAVE_FTRACE_MCOUNT_RECORD 170 select HAVE_FUNCTION_TRACER 171 select HAVE_FUNCTION_ERROR_INJECTION 172 select HAVE_FUNCTION_GRAPH_TRACER 173 select HAVE_GCC_PLUGINS 174 select HAVE_HW_BREAKPOINT if PERF_EVENTS 175 select HAVE_IRQ_TIME_ACCOUNTING 176 select HAVE_NMI 177 select HAVE_PATA_PLATFORM 178 select HAVE_PERF_EVENTS 179 select HAVE_PERF_REGS 180 select HAVE_PERF_USER_STACK_DUMP 181 select HAVE_REGS_AND_STACK_ACCESS_API 182 select HAVE_FUNCTION_ARG_ACCESS_API 183 select HAVE_FUTEX_CMPXCHG if FUTEX 184 select MMU_GATHER_RCU_TABLE_FREE 185 select HAVE_RSEQ 186 select HAVE_STACKPROTECTOR 187 select HAVE_SYSCALL_TRACEPOINTS 188 select HAVE_KPROBES 189 select HAVE_KRETPROBES 190 select HAVE_GENERIC_VDSO 191 select HOLES_IN_ZONE 192 select IOMMU_DMA if IOMMU_SUPPORT 193 select IRQ_DOMAIN 194 select IRQ_FORCED_THREADING 195 select MODULES_USE_ELF_RELA 196 select NEED_DMA_MAP_STATE 197 select NEED_SG_DMA_LENGTH 198 select OF 199 select OF_EARLY_FLATTREE 200 select PCI_DOMAINS_GENERIC if PCI 201 select PCI_ECAM if (ACPI && PCI) 202 select PCI_SYSCALL if PCI 203 select POWER_RESET 204 select POWER_SUPPLY 205 select SET_FS 206 select SPARSE_IRQ 207 select SWIOTLB 208 select SYSCTL_EXCEPTION_TRACE 209 select THREAD_INFO_IN_TASK 210 help 211 ARM 64-bit (AArch64) Linux support. 212 213config 64BIT 214 def_bool y 215 216config MMU 217 def_bool y 218 219config ARM64_PAGE_SHIFT 220 int 221 default 16 if ARM64_64K_PAGES 222 default 14 if ARM64_16K_PAGES 223 default 12 224 225config ARM64_CONT_PTE_SHIFT 226 int 227 default 5 if ARM64_64K_PAGES 228 default 7 if ARM64_16K_PAGES 229 default 4 230 231config ARM64_CONT_PMD_SHIFT 232 int 233 default 5 if ARM64_64K_PAGES 234 default 5 if ARM64_16K_PAGES 235 default 4 236 237config ARCH_MMAP_RND_BITS_MIN 238 default 14 if ARM64_64K_PAGES 239 default 16 if ARM64_16K_PAGES 240 default 18 241 242# max bits determined by the following formula: 243# VA_BITS - PAGE_SHIFT - 3 244config ARCH_MMAP_RND_BITS_MAX 245 default 19 if ARM64_VA_BITS=36 246 default 24 if ARM64_VA_BITS=39 247 default 27 if ARM64_VA_BITS=42 248 default 30 if ARM64_VA_BITS=47 249 default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES 250 default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES 251 default 33 if ARM64_VA_BITS=48 252 default 14 if ARM64_64K_PAGES 253 default 16 if ARM64_16K_PAGES 254 default 18 255 256config ARCH_MMAP_RND_COMPAT_BITS_MIN 257 default 7 if ARM64_64K_PAGES 258 default 9 if ARM64_16K_PAGES 259 default 11 260 261config ARCH_MMAP_RND_COMPAT_BITS_MAX 262 default 16 263 264config NO_IOPORT_MAP 265 def_bool y if !PCI 266 267config STACKTRACE_SUPPORT 268 def_bool y 269 270config ILLEGAL_POINTER_VALUE 271 hex 272 default 0xdead000000000000 273 274config LOCKDEP_SUPPORT 275 def_bool y 276 277config TRACE_IRQFLAGS_SUPPORT 278 def_bool y 279 280config GENERIC_BUG 281 def_bool y 282 depends on BUG 283 284config GENERIC_BUG_RELATIVE_POINTERS 285 def_bool y 286 depends on GENERIC_BUG 287 288config GENERIC_HWEIGHT 289 def_bool y 290 291config GENERIC_CSUM 292 def_bool y 293 294config GENERIC_CALIBRATE_DELAY 295 def_bool y 296 297config ZONE_DMA 298 bool "Support DMA zone" if EXPERT 299 default y 300 301config ZONE_DMA32 302 bool "Support DMA32 zone" if EXPERT 303 default y 304 305config ARCH_ENABLE_MEMORY_HOTPLUG 306 def_bool y 307 308config ARCH_ENABLE_MEMORY_HOTREMOVE 309 def_bool y 310 311config SMP 312 def_bool y 313 314config KERNEL_MODE_NEON 315 def_bool y 316 317config FIX_EARLYCON_MEM 318 def_bool y 319 320config PGTABLE_LEVELS 321 int 322 default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36 323 default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42 324 default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) 325 default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39 326 default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47 327 default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48 328 329config ARCH_SUPPORTS_UPROBES 330 def_bool y 331 332config ARCH_PROC_KCORE_TEXT 333 def_bool y 334 335config BROKEN_GAS_INST 336 def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n) 337 338config KASAN_SHADOW_OFFSET 339 hex 340 depends on KASAN 341 default 0xdfffa00000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS 342 default 0xdfffd00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS 343 default 0xdffffe8000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS 344 default 0xdfffffd000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS 345 default 0xdffffffa00000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS 346 default 0xefff900000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS 347 default 0xefffc80000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS 348 default 0xeffffe4000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS 349 default 0xefffffc800000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS 350 default 0xeffffff900000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS 351 default 0xffffffffffffffff 352 353source "arch/arm64/Kconfig.platforms" 354 355menu "Kernel Features" 356 357menu "ARM errata workarounds via the alternatives framework" 358 359config ARM64_WORKAROUND_CLEAN_CACHE 360 bool 361 362config ARM64_ERRATUM_826319 363 bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted" 364 default y 365 select ARM64_WORKAROUND_CLEAN_CACHE 366 help 367 This option adds an alternative code sequence to work around ARM 368 erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or 369 AXI master interface and an L2 cache. 370 371 If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors 372 and is unable to accept a certain write via this interface, it will 373 not progress on read data presented on the read data channel and the 374 system can deadlock. 375 376 The workaround promotes data cache clean instructions to 377 data cache clean-and-invalidate. 378 Please note that this does not necessarily enable the workaround, 379 as it depends on the alternative framework, which will only patch 380 the kernel if an affected CPU is detected. 381 382 If unsure, say Y. 383 384config ARM64_ERRATUM_827319 385 bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect" 386 default y 387 select ARM64_WORKAROUND_CLEAN_CACHE 388 help 389 This option adds an alternative code sequence to work around ARM 390 erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI 391 master interface and an L2 cache. 392 393 Under certain conditions this erratum can cause a clean line eviction 394 to occur at the same time as another transaction to the same address 395 on the AMBA 5 CHI interface, which can cause data corruption if the 396 interconnect reorders the two transactions. 397 398 The workaround promotes data cache clean instructions to 399 data cache clean-and-invalidate. 400 Please note that this does not necessarily enable the workaround, 401 as it depends on the alternative framework, which will only patch 402 the kernel if an affected CPU is detected. 403 404 If unsure, say Y. 405 406config ARM64_ERRATUM_824069 407 bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop" 408 default y 409 select ARM64_WORKAROUND_CLEAN_CACHE 410 help 411 This option adds an alternative code sequence to work around ARM 412 erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected 413 to a coherent interconnect. 414 415 If a Cortex-A53 processor is executing a store or prefetch for 416 write instruction at the same time as a processor in another 417 cluster is executing a cache maintenance operation to the same 418 address, then this erratum might cause a clean cache line to be 419 incorrectly marked as dirty. 420 421 The workaround promotes data cache clean instructions to 422 data cache clean-and-invalidate. 423 Please note that this option does not necessarily enable the 424 workaround, as it depends on the alternative framework, which will 425 only patch the kernel if an affected CPU is detected. 426 427 If unsure, say Y. 428 429config ARM64_ERRATUM_819472 430 bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption" 431 default y 432 select ARM64_WORKAROUND_CLEAN_CACHE 433 help 434 This option adds an alternative code sequence to work around ARM 435 erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache 436 present when it is connected to a coherent interconnect. 437 438 If the processor is executing a load and store exclusive sequence at 439 the same time as a processor in another cluster is executing a cache 440 maintenance operation to the same address, then this erratum might 441 cause data corruption. 442 443 The workaround promotes data cache clean instructions to 444 data cache clean-and-invalidate. 445 Please note that this does not necessarily enable the workaround, 446 as it depends on the alternative framework, which will only patch 447 the kernel if an affected CPU is detected. 448 449 If unsure, say Y. 450 451config ARM64_ERRATUM_832075 452 bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads" 453 default y 454 help 455 This option adds an alternative code sequence to work around ARM 456 erratum 832075 on Cortex-A57 parts up to r1p2. 457 458 Affected Cortex-A57 parts might deadlock when exclusive load/store 459 instructions to Write-Back memory are mixed with Device loads. 460 461 The workaround is to promote device loads to use Load-Acquire 462 semantics. 463 Please note that this does not necessarily enable the workaround, 464 as it depends on the alternative framework, which will only patch 465 the kernel if an affected CPU is detected. 466 467 If unsure, say Y. 468 469config ARM64_ERRATUM_834220 470 bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault" 471 depends on KVM 472 default y 473 help 474 This option adds an alternative code sequence to work around ARM 475 erratum 834220 on Cortex-A57 parts up to r1p2. 476 477 Affected Cortex-A57 parts might report a Stage 2 translation 478 fault as the result of a Stage 1 fault for load crossing a 479 page boundary when there is a permission or device memory 480 alignment fault at Stage 1 and a translation fault at Stage 2. 481 482 The workaround is to verify that the Stage 1 translation 483 doesn't generate a fault before handling the Stage 2 fault. 484 Please note that this does not necessarily enable the workaround, 485 as it depends on the alternative framework, which will only patch 486 the kernel if an affected CPU is detected. 487 488 If unsure, say Y. 489 490config ARM64_ERRATUM_845719 491 bool "Cortex-A53: 845719: a load might read incorrect data" 492 depends on COMPAT 493 default y 494 help 495 This option adds an alternative code sequence to work around ARM 496 erratum 845719 on Cortex-A53 parts up to r0p4. 497 498 When running a compat (AArch32) userspace on an affected Cortex-A53 499 part, a load at EL0 from a virtual address that matches the bottom 32 500 bits of the virtual address used by a recent load at (AArch64) EL1 501 might return incorrect data. 502 503 The workaround is to write the contextidr_el1 register on exception 504 return to a 32-bit task. 505 Please note that this does not necessarily enable the workaround, 506 as it depends on the alternative framework, which will only patch 507 the kernel if an affected CPU is detected. 508 509 If unsure, say Y. 510 511config ARM64_ERRATUM_843419 512 bool "Cortex-A53: 843419: A load or store might access an incorrect address" 513 default y 514 select ARM64_MODULE_PLTS if MODULES 515 help 516 This option links the kernel with '--fix-cortex-a53-843419' and 517 enables PLT support to replace certain ADRP instructions, which can 518 cause subsequent memory accesses to use an incorrect address on 519 Cortex-A53 parts up to r0p4. 520 521 If unsure, say Y. 522 523config ARM64_ERRATUM_1024718 524 bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update" 525 default y 526 help 527 This option adds a workaround for ARM Cortex-A55 Erratum 1024718. 528 529 Affected Cortex-A55 cores (all revisions) could cause incorrect 530 update of the hardware dirty bit when the DBM/AP bits are updated 531 without a break-before-make. The workaround is to disable the usage 532 of hardware DBM locally on the affected cores. CPUs not affected by 533 this erratum will continue to use the feature. 534 535 If unsure, say Y. 536 537config ARM64_ERRATUM_1418040 538 bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result" 539 default y 540 depends on COMPAT 541 help 542 This option adds a workaround for ARM Cortex-A76/Neoverse-N1 543 errata 1188873 and 1418040. 544 545 Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could 546 cause register corruption when accessing the timer registers 547 from AArch32 userspace. 548 549 If unsure, say Y. 550 551config ARM64_WORKAROUND_SPECULATIVE_AT 552 bool 553 554config ARM64_ERRATUM_1165522 555 bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 556 default y 557 select ARM64_WORKAROUND_SPECULATIVE_AT 558 help 559 This option adds a workaround for ARM Cortex-A76 erratum 1165522. 560 561 Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with 562 corrupted TLBs by speculating an AT instruction during a guest 563 context switch. 564 565 If unsure, say Y. 566 567config ARM64_ERRATUM_1319367 568 bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 569 default y 570 select ARM64_WORKAROUND_SPECULATIVE_AT 571 help 572 This option adds work arounds for ARM Cortex-A57 erratum 1319537 573 and A72 erratum 1319367 574 575 Cortex-A57 and A72 cores could end-up with corrupted TLBs by 576 speculating an AT instruction during a guest context switch. 577 578 If unsure, say Y. 579 580config ARM64_ERRATUM_1530923 581 bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 582 default y 583 select ARM64_WORKAROUND_SPECULATIVE_AT 584 help 585 This option adds a workaround for ARM Cortex-A55 erratum 1530923. 586 587 Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with 588 corrupted TLBs by speculating an AT instruction during a guest 589 context switch. 590 591 If unsure, say Y. 592 593config ARM64_WORKAROUND_REPEAT_TLBI 594 bool 595 596config ARM64_ERRATUM_1286807 597 bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation" 598 default y 599 select ARM64_WORKAROUND_REPEAT_TLBI 600 help 601 This option adds a workaround for ARM Cortex-A76 erratum 1286807. 602 603 On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual 604 address for a cacheable mapping of a location is being 605 accessed by a core while another core is remapping the virtual 606 address to a new physical page using the recommended 607 break-before-make sequence, then under very rare circumstances 608 TLBI+DSB completes before a read using the translation being 609 invalidated has been observed by other observers. The 610 workaround repeats the TLBI+DSB operation. 611 612config ARM64_ERRATUM_1463225 613 bool "Cortex-A76: Software Step might prevent interrupt recognition" 614 default y 615 help 616 This option adds a workaround for Arm Cortex-A76 erratum 1463225. 617 618 On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping 619 of a system call instruction (SVC) can prevent recognition of 620 subsequent interrupts when software stepping is disabled in the 621 exception handler of the system call and either kernel debugging 622 is enabled or VHE is in use. 623 624 Work around the erratum by triggering a dummy step exception 625 when handling a system call from a task that is being stepped 626 in a VHE configuration of the kernel. 627 628 If unsure, say Y. 629 630config ARM64_ERRATUM_1542419 631 bool "Neoverse-N1: workaround mis-ordering of instruction fetches" 632 default y 633 help 634 This option adds a workaround for ARM Neoverse-N1 erratum 635 1542419. 636 637 Affected Neoverse-N1 cores could execute a stale instruction when 638 modified by another CPU. The workaround depends on a firmware 639 counterpart. 640 641 Workaround the issue by hiding the DIC feature from EL0. This 642 forces user-space to perform cache maintenance. 643 644 If unsure, say Y. 645 646config ARM64_ERRATUM_1508412 647 bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read" 648 default y 649 help 650 This option adds a workaround for Arm Cortex-A77 erratum 1508412. 651 652 Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence 653 of a store-exclusive or read of PAR_EL1 and a load with device or 654 non-cacheable memory attributes. The workaround depends on a firmware 655 counterpart. 656 657 KVM guests must also have the workaround implemented or they can 658 deadlock the system. 659 660 Work around the issue by inserting DMB SY barriers around PAR_EL1 661 register reads and warning KVM users. The DMB barrier is sufficient 662 to prevent a speculative PAR_EL1 read. 663 664 If unsure, say Y. 665 666config CAVIUM_ERRATUM_22375 667 bool "Cavium erratum 22375, 24313" 668 default y 669 help 670 Enable workaround for errata 22375 and 24313. 671 672 This implements two gicv3-its errata workarounds for ThunderX. Both 673 with a small impact affecting only ITS table allocation. 674 675 erratum 22375: only alloc 8MB table size 676 erratum 24313: ignore memory access type 677 678 The fixes are in ITS initialization and basically ignore memory access 679 type and table size provided by the TYPER and BASER registers. 680 681 If unsure, say Y. 682 683config CAVIUM_ERRATUM_23144 684 bool "Cavium erratum 23144: ITS SYNC hang on dual socket system" 685 depends on NUMA 686 default y 687 help 688 ITS SYNC command hang for cross node io and collections/cpu mapping. 689 690 If unsure, say Y. 691 692config CAVIUM_ERRATUM_23154 693 bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed" 694 default y 695 help 696 The gicv3 of ThunderX requires a modified version for 697 reading the IAR status to ensure data synchronization 698 (access to icc_iar1_el1 is not sync'ed before and after). 699 700 If unsure, say Y. 701 702config CAVIUM_ERRATUM_27456 703 bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption" 704 default y 705 help 706 On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI 707 instructions may cause the icache to become corrupted if it 708 contains data for a non-current ASID. The fix is to 709 invalidate the icache when changing the mm context. 710 711 If unsure, say Y. 712 713config CAVIUM_ERRATUM_30115 714 bool "Cavium erratum 30115: Guest may disable interrupts in host" 715 default y 716 help 717 On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through 718 1.2, and T83 Pass 1.0, KVM guest execution may disable 719 interrupts in host. Trapping both GICv3 group-0 and group-1 720 accesses sidesteps the issue. 721 722 If unsure, say Y. 723 724config CAVIUM_TX2_ERRATUM_219 725 bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails" 726 default y 727 help 728 On Cavium ThunderX2, a load, store or prefetch instruction between a 729 TTBR update and the corresponding context synchronizing operation can 730 cause a spurious Data Abort to be delivered to any hardware thread in 731 the CPU core. 732 733 Work around the issue by avoiding the problematic code sequence and 734 trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The 735 trap handler performs the corresponding register access, skips the 736 instruction and ensures context synchronization by virtue of the 737 exception return. 738 739 If unsure, say Y. 740 741config FUJITSU_ERRATUM_010001 742 bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly" 743 default y 744 help 745 This option adds a workaround for Fujitsu-A64FX erratum E#010001. 746 On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory 747 accesses may cause undefined fault (Data abort, DFSC=0b111111). 748 This fault occurs under a specific hardware condition when a 749 load/store instruction performs an address translation using: 750 case-1 TTBR0_EL1 with TCR_EL1.NFD0 == 1. 751 case-2 TTBR0_EL2 with TCR_EL2.NFD0 == 1. 752 case-3 TTBR1_EL1 with TCR_EL1.NFD1 == 1. 753 case-4 TTBR1_EL2 with TCR_EL2.NFD1 == 1. 754 755 The workaround is to ensure these bits are clear in TCR_ELx. 756 The workaround only affects the Fujitsu-A64FX. 757 758 If unsure, say Y. 759 760config HISILICON_ERRATUM_161600802 761 bool "Hip07 161600802: Erroneous redistributor VLPI base" 762 default y 763 help 764 The HiSilicon Hip07 SoC uses the wrong redistributor base 765 when issued ITS commands such as VMOVP and VMAPP, and requires 766 a 128kB offset to be applied to the target address in this commands. 767 768 If unsure, say Y. 769 770config QCOM_FALKOR_ERRATUM_1003 771 bool "Falkor E1003: Incorrect translation due to ASID change" 772 default y 773 help 774 On Falkor v1, an incorrect ASID may be cached in the TLB when ASID 775 and BADDR are changed together in TTBRx_EL1. Since we keep the ASID 776 in TTBR1_EL1, this situation only occurs in the entry trampoline and 777 then only for entries in the walk cache, since the leaf translation 778 is unchanged. Work around the erratum by invalidating the walk cache 779 entries for the trampoline before entering the kernel proper. 780 781config QCOM_FALKOR_ERRATUM_1009 782 bool "Falkor E1009: Prematurely complete a DSB after a TLBI" 783 default y 784 select ARM64_WORKAROUND_REPEAT_TLBI 785 help 786 On Falkor v1, the CPU may prematurely complete a DSB following a 787 TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation 788 one more time to fix the issue. 789 790 If unsure, say Y. 791 792config QCOM_QDF2400_ERRATUM_0065 793 bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size" 794 default y 795 help 796 On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports 797 ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have 798 been indicated as 16Bytes (0xf), not 8Bytes (0x7). 799 800 If unsure, say Y. 801 802config QCOM_FALKOR_ERRATUM_E1041 803 bool "Falkor E1041: Speculative instruction fetches might cause errant memory access" 804 default y 805 help 806 Falkor CPU may speculatively fetch instructions from an improper 807 memory location when MMU translation is changed from SCTLR_ELn[M]=1 808 to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem. 809 810 If unsure, say Y. 811 812config SOCIONEXT_SYNQUACER_PREITS 813 bool "Socionext Synquacer: Workaround for GICv3 pre-ITS" 814 default y 815 help 816 Socionext Synquacer SoCs implement a separate h/w block to generate 817 MSI doorbell writes with non-zero values for the device ID. 818 819 If unsure, say Y. 820 821endmenu 822 823 824choice 825 prompt "Page size" 826 default ARM64_4K_PAGES 827 help 828 Page size (translation granule) configuration. 829 830config ARM64_4K_PAGES 831 bool "4KB" 832 help 833 This feature enables 4KB pages support. 834 835config ARM64_16K_PAGES 836 bool "16KB" 837 help 838 The system will use 16KB pages support. AArch32 emulation 839 requires applications compiled with 16K (or a multiple of 16K) 840 aligned segments. 841 842config ARM64_64K_PAGES 843 bool "64KB" 844 help 845 This feature enables 64KB pages support (4KB by default) 846 allowing only two levels of page tables and faster TLB 847 look-up. AArch32 emulation requires applications compiled 848 with 64K aligned segments. 849 850endchoice 851 852choice 853 prompt "Virtual address space size" 854 default ARM64_VA_BITS_39 if ARM64_4K_PAGES 855 default ARM64_VA_BITS_47 if ARM64_16K_PAGES 856 default ARM64_VA_BITS_42 if ARM64_64K_PAGES 857 help 858 Allows choosing one of multiple possible virtual address 859 space sizes. The level of translation table is determined by 860 a combination of page size and virtual address space size. 861 862config ARM64_VA_BITS_36 863 bool "36-bit" if EXPERT 864 depends on ARM64_16K_PAGES 865 866config ARM64_VA_BITS_39 867 bool "39-bit" 868 depends on ARM64_4K_PAGES 869 870config ARM64_VA_BITS_42 871 bool "42-bit" 872 depends on ARM64_64K_PAGES 873 874config ARM64_VA_BITS_47 875 bool "47-bit" 876 depends on ARM64_16K_PAGES 877 878config ARM64_VA_BITS_48 879 bool "48-bit" 880 881config ARM64_VA_BITS_52 882 bool "52-bit" 883 depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN) 884 help 885 Enable 52-bit virtual addressing for userspace when explicitly 886 requested via a hint to mmap(). The kernel will also use 52-bit 887 virtual addresses for its own mappings (provided HW support for 888 this feature is available, otherwise it reverts to 48-bit). 889 890 NOTE: Enabling 52-bit virtual addressing in conjunction with 891 ARMv8.3 Pointer Authentication will result in the PAC being 892 reduced from 7 bits to 3 bits, which may have a significant 893 impact on its susceptibility to brute-force attacks. 894 895 If unsure, select 48-bit virtual addressing instead. 896 897endchoice 898 899config ARM64_FORCE_52BIT 900 bool "Force 52-bit virtual addresses for userspace" 901 depends on ARM64_VA_BITS_52 && EXPERT 902 help 903 For systems with 52-bit userspace VAs enabled, the kernel will attempt 904 to maintain compatibility with older software by providing 48-bit VAs 905 unless a hint is supplied to mmap. 906 907 This configuration option disables the 48-bit compatibility logic, and 908 forces all userspace addresses to be 52-bit on HW that supports it. One 909 should only enable this configuration option for stress testing userspace 910 memory management code. If unsure say N here. 911 912config ARM64_VA_BITS 913 int 914 default 36 if ARM64_VA_BITS_36 915 default 39 if ARM64_VA_BITS_39 916 default 42 if ARM64_VA_BITS_42 917 default 47 if ARM64_VA_BITS_47 918 default 48 if ARM64_VA_BITS_48 919 default 52 if ARM64_VA_BITS_52 920 921choice 922 prompt "Physical address space size" 923 default ARM64_PA_BITS_48 924 help 925 Choose the maximum physical address range that the kernel will 926 support. 927 928config ARM64_PA_BITS_48 929 bool "48-bit" 930 931config ARM64_PA_BITS_52 932 bool "52-bit (ARMv8.2)" 933 depends on ARM64_64K_PAGES 934 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 935 help 936 Enable support for a 52-bit physical address space, introduced as 937 part of the ARMv8.2-LPA extension. 938 939 With this enabled, the kernel will also continue to work on CPUs that 940 do not support ARMv8.2-LPA, but with some added memory overhead (and 941 minor performance overhead). 942 943endchoice 944 945config ARM64_PA_BITS 946 int 947 default 48 if ARM64_PA_BITS_48 948 default 52 if ARM64_PA_BITS_52 949 950choice 951 prompt "Endianness" 952 default CPU_LITTLE_ENDIAN 953 help 954 Select the endianness of data accesses performed by the CPU. Userspace 955 applications will need to be compiled and linked for the endianness 956 that is selected here. 957 958config CPU_BIG_ENDIAN 959 bool "Build big-endian kernel" 960 depends on !LD_IS_LLD || LLD_VERSION >= 130000 961 help 962 Say Y if you plan on running a kernel with a big-endian userspace. 963 964config CPU_LITTLE_ENDIAN 965 bool "Build little-endian kernel" 966 help 967 Say Y if you plan on running a kernel with a little-endian userspace. 968 This is usually the case for distributions targeting arm64. 969 970endchoice 971 972config SCHED_MC 973 bool "Multi-core scheduler support" 974 help 975 Multi-core scheduler support improves the CPU scheduler's decision 976 making when dealing with multi-core CPU chips at a cost of slightly 977 increased overhead in some places. If unsure say N here. 978 979config SCHED_SMT 980 bool "SMT scheduler support" 981 help 982 Improves the CPU scheduler's decision making when dealing with 983 MultiThreading at a cost of slightly increased overhead in some 984 places. If unsure say N here. 985 986config NR_CPUS 987 int "Maximum number of CPUs (2-4096)" 988 range 2 4096 989 default "256" 990 991config HOTPLUG_CPU 992 bool "Support for hot-pluggable CPUs" 993 select GENERIC_IRQ_MIGRATION 994 help 995 Say Y here to experiment with turning CPUs off and on. CPUs 996 can be controlled through /sys/devices/system/cpu. 997 998# Common NUMA Features 999config NUMA 1000 bool "NUMA Memory Allocation and Scheduler Support" 1001 select ACPI_NUMA if ACPI 1002 select OF_NUMA 1003 help 1004 Enable NUMA (Non-Uniform Memory Access) support. 1005 1006 The kernel will try to allocate memory used by a CPU on the 1007 local memory of the CPU and add some more 1008 NUMA awareness to the kernel. 1009 1010config NODES_SHIFT 1011 int "Maximum NUMA Nodes (as a power of 2)" 1012 range 1 10 1013 default "4" 1014 depends on NEED_MULTIPLE_NODES 1015 help 1016 Specify the maximum number of NUMA Nodes available on the target 1017 system. Increases memory reserved to accommodate various tables. 1018 1019config USE_PERCPU_NUMA_NODE_ID 1020 def_bool y 1021 depends on NUMA 1022 1023config HAVE_SETUP_PER_CPU_AREA 1024 def_bool y 1025 depends on NUMA 1026 1027config NEED_PER_CPU_EMBED_FIRST_CHUNK 1028 def_bool y 1029 depends on NUMA 1030 1031source "kernel/Kconfig.hz" 1032 1033config ARCH_SUPPORTS_DEBUG_PAGEALLOC 1034 def_bool y 1035 1036config ARCH_SPARSEMEM_ENABLE 1037 def_bool y 1038 select SPARSEMEM_VMEMMAP_ENABLE 1039 1040config ARCH_SPARSEMEM_DEFAULT 1041 def_bool ARCH_SPARSEMEM_ENABLE 1042 1043config ARCH_SELECT_MEMORY_MODEL 1044 def_bool ARCH_SPARSEMEM_ENABLE 1045 1046config ARCH_FLATMEM_ENABLE 1047 def_bool !NUMA 1048 1049config HAVE_ARCH_PFN_VALID 1050 def_bool y 1051 1052config HW_PERF_EVENTS 1053 def_bool y 1054 depends on ARM_PMU 1055 1056config SYS_SUPPORTS_HUGETLBFS 1057 def_bool y 1058 1059config ARCH_WANT_HUGE_PMD_SHARE 1060 1061config ARCH_HAS_CACHE_LINE_SIZE 1062 def_bool y 1063 1064config ARCH_ENABLE_SPLIT_PMD_PTLOCK 1065 def_bool y if PGTABLE_LEVELS > 2 1066 1067# Supported by clang >= 7.0 1068config CC_HAVE_SHADOW_CALL_STACK 1069 def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18) 1070 1071config PARAVIRT 1072 bool "Enable paravirtualization code" 1073 help 1074 This changes the kernel so it can modify itself when it is run 1075 under a hypervisor, potentially improving performance significantly 1076 over full virtualization. 1077 1078config PARAVIRT_TIME_ACCOUNTING 1079 bool "Paravirtual steal time accounting" 1080 select PARAVIRT 1081 help 1082 Select this option to enable fine granularity task steal time 1083 accounting. Time spent executing other tasks in parallel with 1084 the current vCPU is discounted from the vCPU power. To account for 1085 that, there can be a small performance impact. 1086 1087 If in doubt, say N here. 1088 1089config KEXEC 1090 depends on PM_SLEEP_SMP 1091 select KEXEC_CORE 1092 bool "kexec system call" 1093 help 1094 kexec is a system call that implements the ability to shutdown your 1095 current kernel, and to start another kernel. It is like a reboot 1096 but it is independent of the system firmware. And like a reboot 1097 you can start any kernel with it, not just Linux. 1098 1099config KEXEC_FILE 1100 bool "kexec file based system call" 1101 select KEXEC_CORE 1102 help 1103 This is new version of kexec system call. This system call is 1104 file based and takes file descriptors as system call argument 1105 for kernel and initramfs as opposed to list of segments as 1106 accepted by previous system call. 1107 1108config KEXEC_SIG 1109 bool "Verify kernel signature during kexec_file_load() syscall" 1110 depends on KEXEC_FILE 1111 help 1112 Select this option to verify a signature with loaded kernel 1113 image. If configured, any attempt of loading a image without 1114 valid signature will fail. 1115 1116 In addition to that option, you need to enable signature 1117 verification for the corresponding kernel image type being 1118 loaded in order for this to work. 1119 1120config KEXEC_IMAGE_VERIFY_SIG 1121 bool "Enable Image signature verification support" 1122 default y 1123 depends on KEXEC_SIG 1124 depends on EFI && SIGNED_PE_FILE_VERIFICATION 1125 help 1126 Enable Image signature verification support. 1127 1128comment "Support for PE file signature verification disabled" 1129 depends on KEXEC_SIG 1130 depends on !EFI || !SIGNED_PE_FILE_VERIFICATION 1131 1132config CRASH_DUMP 1133 bool "Build kdump crash kernel" 1134 help 1135 Generate crash dump after being started by kexec. This should 1136 be normally only set in special crash dump kernels which are 1137 loaded in the main kernel with kexec-tools into a specially 1138 reserved region and then later executed after a crash by 1139 kdump/kexec. 1140 1141 For more details see Documentation/admin-guide/kdump/kdump.rst 1142 1143config XEN_DOM0 1144 def_bool y 1145 depends on XEN 1146 1147config XEN 1148 bool "Xen guest support on ARM64" 1149 depends on ARM64 && OF 1150 select SWIOTLB_XEN 1151 select PARAVIRT 1152 help 1153 Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64. 1154 1155config FORCE_MAX_ZONEORDER 1156 int 1157 default "14" if (ARM64_64K_PAGES && TRANSPARENT_HUGEPAGE) 1158 default "12" if (ARM64_16K_PAGES && TRANSPARENT_HUGEPAGE) 1159 default "11" 1160 help 1161 The kernel memory allocator divides physically contiguous memory 1162 blocks into "zones", where each zone is a power of two number of 1163 pages. This option selects the largest power of two that the kernel 1164 keeps in the memory allocator. If you need to allocate very large 1165 blocks of physically contiguous memory, then you may need to 1166 increase this value. 1167 1168 This config option is actually maximum order plus one. For example, 1169 a value of 11 means that the largest free memory block is 2^10 pages. 1170 1171 We make sure that we can allocate upto a HugePage size for each configuration. 1172 Hence we have : 1173 MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2 1174 1175 However for 4K, we choose a higher default value, 11 as opposed to 10, giving us 1176 4M allocations matching the default size used by generic code. 1177 1178config UNMAP_KERNEL_AT_EL0 1179 bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT 1180 default y 1181 help 1182 Speculation attacks against some high-performance processors can 1183 be used to bypass MMU permission checks and leak kernel data to 1184 userspace. This can be defended against by unmapping the kernel 1185 when running in userspace, mapping it back in on exception entry 1186 via a trampoline page in the vector table. 1187 1188 If unsure, say Y. 1189 1190config MITIGATE_SPECTRE_BRANCH_HISTORY 1191 bool "Mitigate Spectre style attacks against branch history" if EXPERT 1192 default y 1193 help 1194 Speculation attacks against some high-performance processors can 1195 make use of branch history to influence future speculation. 1196 When taking an exception from user-space, a sequence of branches 1197 or a firmware call overwrites the branch history. 1198 1199config RODATA_FULL_DEFAULT_ENABLED 1200 bool "Apply r/o permissions of VM areas also to their linear aliases" 1201 default y 1202 help 1203 Apply read-only attributes of VM areas to the linear alias of 1204 the backing pages as well. This prevents code or read-only data 1205 from being modified (inadvertently or intentionally) via another 1206 mapping of the same memory page. This additional enhancement can 1207 be turned off at runtime by passing rodata=[off|on] (and turned on 1208 with rodata=full if this option is set to 'n') 1209 1210 This requires the linear region to be mapped down to pages, 1211 which may adversely affect performance in some cases. 1212 1213config ARM64_SW_TTBR0_PAN 1214 bool "Emulate Privileged Access Never using TTBR0_EL1 switching" 1215 help 1216 Enabling this option prevents the kernel from accessing 1217 user-space memory directly by pointing TTBR0_EL1 to a reserved 1218 zeroed area and reserved ASID. The user access routines 1219 restore the valid TTBR0_EL1 temporarily. 1220 1221config ARM64_TAGGED_ADDR_ABI 1222 bool "Enable the tagged user addresses syscall ABI" 1223 default y 1224 help 1225 When this option is enabled, user applications can opt in to a 1226 relaxed ABI via prctl() allowing tagged addresses to be passed 1227 to system calls as pointer arguments. For details, see 1228 Documentation/arm64/tagged-address-abi.rst. 1229 1230menuconfig COMPAT 1231 bool "Kernel support for 32-bit EL0" 1232 depends on ARM64_4K_PAGES || EXPERT 1233 select COMPAT_BINFMT_ELF if BINFMT_ELF 1234 select HAVE_UID16 1235 select OLD_SIGSUSPEND3 1236 select COMPAT_OLD_SIGACTION 1237 help 1238 This option enables support for a 32-bit EL0 running under a 64-bit 1239 kernel at EL1. AArch32-specific components such as system calls, 1240 the user helper functions, VFP support and the ptrace interface are 1241 handled appropriately by the kernel. 1242 1243 If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware 1244 that you will only be able to execute AArch32 binaries that were compiled 1245 with page size aligned segments. 1246 1247 If you want to execute 32-bit userspace applications, say Y. 1248 1249if COMPAT 1250 1251config KUSER_HELPERS 1252 bool "Enable kuser helpers page for 32-bit applications" 1253 default y 1254 help 1255 Warning: disabling this option may break 32-bit user programs. 1256 1257 Provide kuser helpers to compat tasks. The kernel provides 1258 helper code to userspace in read only form at a fixed location 1259 to allow userspace to be independent of the CPU type fitted to 1260 the system. This permits binaries to be run on ARMv4 through 1261 to ARMv8 without modification. 1262 1263 See Documentation/arm/kernel_user_helpers.rst for details. 1264 1265 However, the fixed address nature of these helpers can be used 1266 by ROP (return orientated programming) authors when creating 1267 exploits. 1268 1269 If all of the binaries and libraries which run on your platform 1270 are built specifically for your platform, and make no use of 1271 these helpers, then you can turn this option off to hinder 1272 such exploits. However, in that case, if a binary or library 1273 relying on those helpers is run, it will not function correctly. 1274 1275 Say N here only if you are absolutely certain that you do not 1276 need these helpers; otherwise, the safe option is to say Y. 1277 1278config COMPAT_VDSO 1279 bool "Enable vDSO for 32-bit applications" 1280 depends on !CPU_BIG_ENDIAN 1281 depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != "" 1282 select GENERIC_COMPAT_VDSO 1283 default y 1284 help 1285 Place in the process address space of 32-bit applications an 1286 ELF shared object providing fast implementations of gettimeofday 1287 and clock_gettime. 1288 1289 You must have a 32-bit build of glibc 2.22 or later for programs 1290 to seamlessly take advantage of this. 1291 1292config THUMB2_COMPAT_VDSO 1293 bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT 1294 depends on COMPAT_VDSO 1295 default y 1296 help 1297 Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y, 1298 otherwise with '-marm'. 1299 1300menuconfig ARMV8_DEPRECATED 1301 bool "Emulate deprecated/obsolete ARMv8 instructions" 1302 depends on SYSCTL 1303 help 1304 Legacy software support may require certain instructions 1305 that have been deprecated or obsoleted in the architecture. 1306 1307 Enable this config to enable selective emulation of these 1308 features. 1309 1310 If unsure, say Y 1311 1312if ARMV8_DEPRECATED 1313 1314config SWP_EMULATION 1315 bool "Emulate SWP/SWPB instructions" 1316 help 1317 ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that 1318 they are always undefined. Say Y here to enable software 1319 emulation of these instructions for userspace using LDXR/STXR. 1320 This feature can be controlled at runtime with the abi.swp 1321 sysctl which is disabled by default. 1322 1323 In some older versions of glibc [<=2.8] SWP is used during futex 1324 trylock() operations with the assumption that the code will not 1325 be preempted. This invalid assumption may be more likely to fail 1326 with SWP emulation enabled, leading to deadlock of the user 1327 application. 1328 1329 NOTE: when accessing uncached shared regions, LDXR/STXR rely 1330 on an external transaction monitoring block called a global 1331 monitor to maintain update atomicity. If your system does not 1332 implement a global monitor, this option can cause programs that 1333 perform SWP operations to uncached memory to deadlock. 1334 1335 If unsure, say Y 1336 1337config CP15_BARRIER_EMULATION 1338 bool "Emulate CP15 Barrier instructions" 1339 help 1340 The CP15 barrier instructions - CP15ISB, CP15DSB, and 1341 CP15DMB - are deprecated in ARMv8 (and ARMv7). It is 1342 strongly recommended to use the ISB, DSB, and DMB 1343 instructions instead. 1344 1345 Say Y here to enable software emulation of these 1346 instructions for AArch32 userspace code. When this option is 1347 enabled, CP15 barrier usage is traced which can help 1348 identify software that needs updating. This feature can be 1349 controlled at runtime with the abi.cp15_barrier sysctl. 1350 1351 If unsure, say Y 1352 1353config SETEND_EMULATION 1354 bool "Emulate SETEND instruction" 1355 help 1356 The SETEND instruction alters the data-endianness of the 1357 AArch32 EL0, and is deprecated in ARMv8. 1358 1359 Say Y here to enable software emulation of the instruction 1360 for AArch32 userspace code. This feature can be controlled 1361 at runtime with the abi.setend sysctl. 1362 1363 Note: All the cpus on the system must have mixed endian support at EL0 1364 for this feature to be enabled. If a new CPU - which doesn't support mixed 1365 endian - is hotplugged in after this feature has been enabled, there could 1366 be unexpected results in the applications. 1367 1368 If unsure, say Y 1369endif 1370 1371endif 1372 1373menu "ARMv8.1 architectural features" 1374 1375config ARM64_HW_AFDBM 1376 bool "Support for hardware updates of the Access and Dirty page flags" 1377 default y 1378 help 1379 The ARMv8.1 architecture extensions introduce support for 1380 hardware updates of the access and dirty information in page 1381 table entries. When enabled in TCR_EL1 (HA and HD bits) on 1382 capable processors, accesses to pages with PTE_AF cleared will 1383 set this bit instead of raising an access flag fault. 1384 Similarly, writes to read-only pages with the DBM bit set will 1385 clear the read-only bit (AP[2]) instead of raising a 1386 permission fault. 1387 1388 Kernels built with this configuration option enabled continue 1389 to work on pre-ARMv8.1 hardware and the performance impact is 1390 minimal. If unsure, say Y. 1391 1392config ARM64_PAN 1393 bool "Enable support for Privileged Access Never (PAN)" 1394 default y 1395 help 1396 Privileged Access Never (PAN; part of the ARMv8.1 Extensions) 1397 prevents the kernel or hypervisor from accessing user-space (EL0) 1398 memory directly. 1399 1400 Choosing this option will cause any unprotected (not using 1401 copy_to_user et al) memory access to fail with a permission fault. 1402 1403 The feature is detected at runtime, and will remain as a 'nop' 1404 instruction if the cpu does not implement the feature. 1405 1406config AS_HAS_LSE_ATOMICS 1407 def_bool $(as-instr,.arch_extension lse) 1408 1409config ARM64_LSE_ATOMICS 1410 bool 1411 default ARM64_USE_LSE_ATOMICS 1412 depends on AS_HAS_LSE_ATOMICS 1413 1414config ARM64_USE_LSE_ATOMICS 1415 bool "Atomic instructions" 1416 depends on JUMP_LABEL 1417 default y 1418 help 1419 As part of the Large System Extensions, ARMv8.1 introduces new 1420 atomic instructions that are designed specifically to scale in 1421 very large systems. 1422 1423 Say Y here to make use of these instructions for the in-kernel 1424 atomic routines. This incurs a small overhead on CPUs that do 1425 not support these instructions and requires the kernel to be 1426 built with binutils >= 2.25 in order for the new instructions 1427 to be used. 1428 1429config ARM64_VHE 1430 bool "Enable support for Virtualization Host Extensions (VHE)" 1431 default y 1432 help 1433 Virtualization Host Extensions (VHE) allow the kernel to run 1434 directly at EL2 (instead of EL1) on processors that support 1435 it. This leads to better performance for KVM, as they reduce 1436 the cost of the world switch. 1437 1438 Selecting this option allows the VHE feature to be detected 1439 at runtime, and does not affect processors that do not 1440 implement this feature. 1441 1442endmenu 1443 1444menu "ARMv8.2 architectural features" 1445 1446config ARM64_UAO 1447 bool "Enable support for User Access Override (UAO)" 1448 default y 1449 help 1450 User Access Override (UAO; part of the ARMv8.2 Extensions) 1451 causes the 'unprivileged' variant of the load/store instructions to 1452 be overridden to be privileged. 1453 1454 This option changes get_user() and friends to use the 'unprivileged' 1455 variant of the load/store instructions. This ensures that user-space 1456 really did have access to the supplied memory. When addr_limit is 1457 set to kernel memory the UAO bit will be set, allowing privileged 1458 access to kernel memory. 1459 1460 Choosing this option will cause copy_to_user() et al to use user-space 1461 memory permissions. 1462 1463 The feature is detected at runtime, the kernel will use the 1464 regular load/store instructions if the cpu does not implement the 1465 feature. 1466 1467config ARM64_PMEM 1468 bool "Enable support for persistent memory" 1469 select ARCH_HAS_PMEM_API 1470 select ARCH_HAS_UACCESS_FLUSHCACHE 1471 help 1472 Say Y to enable support for the persistent memory API based on the 1473 ARMv8.2 DCPoP feature. 1474 1475 The feature is detected at runtime, and the kernel will use DC CVAC 1476 operations if DC CVAP is not supported (following the behaviour of 1477 DC CVAP itself if the system does not define a point of persistence). 1478 1479config ARM64_RAS_EXTN 1480 bool "Enable support for RAS CPU Extensions" 1481 default y 1482 help 1483 CPUs that support the Reliability, Availability and Serviceability 1484 (RAS) Extensions, part of ARMv8.2 are able to track faults and 1485 errors, classify them and report them to software. 1486 1487 On CPUs with these extensions system software can use additional 1488 barriers to determine if faults are pending and read the 1489 classification from a new set of registers. 1490 1491 Selecting this feature will allow the kernel to use these barriers 1492 and access the new registers if the system supports the extension. 1493 Platform RAS features may additionally depend on firmware support. 1494 1495config ARM64_CNP 1496 bool "Enable support for Common Not Private (CNP) translations" 1497 default y 1498 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1499 help 1500 Common Not Private (CNP) allows translation table entries to 1501 be shared between different PEs in the same inner shareable 1502 domain, so the hardware can use this fact to optimise the 1503 caching of such entries in the TLB. 1504 1505 Selecting this option allows the CNP feature to be detected 1506 at runtime, and does not affect PEs that do not implement 1507 this feature. 1508 1509endmenu 1510 1511menu "ARMv8.3 architectural features" 1512 1513config ARM64_PTR_AUTH 1514 bool "Enable support for pointer authentication" 1515 default y 1516 depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC 1517 # Modern compilers insert a .note.gnu.property section note for PAC 1518 # which is only understood by binutils starting with version 2.33.1. 1519 depends on LD_IS_LLD || LD_VERSION >= 233010000 || (CC_IS_GCC && GCC_VERSION < 90100) 1520 depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE 1521 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS) 1522 help 1523 Pointer authentication (part of the ARMv8.3 Extensions) provides 1524 instructions for signing and authenticating pointers against secret 1525 keys, which can be used to mitigate Return Oriented Programming (ROP) 1526 and other attacks. 1527 1528 This option enables these instructions at EL0 (i.e. for userspace). 1529 Choosing this option will cause the kernel to initialise secret keys 1530 for each process at exec() time, with these keys being 1531 context-switched along with the process. 1532 1533 If the compiler supports the -mbranch-protection or 1534 -msign-return-address flag (e.g. GCC 7 or later), then this option 1535 will also cause the kernel itself to be compiled with return address 1536 protection. In this case, and if the target hardware is known to 1537 support pointer authentication, then CONFIG_STACKPROTECTOR can be 1538 disabled with minimal loss of protection. 1539 1540 The feature is detected at runtime. If the feature is not present in 1541 hardware it will not be advertised to userspace/KVM guest nor will it 1542 be enabled. 1543 1544 If the feature is present on the boot CPU but not on a late CPU, then 1545 the late CPU will be parked. Also, if the boot CPU does not have 1546 address auth and the late CPU has then the late CPU will still boot 1547 but with the feature disabled. On such a system, this option should 1548 not be selected. 1549 1550 This feature works with FUNCTION_GRAPH_TRACER option only if 1551 DYNAMIC_FTRACE_WITH_REGS is enabled. 1552 1553config CC_HAS_BRANCH_PROT_PAC_RET 1554 # GCC 9 or later, clang 8 or later 1555 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf) 1556 1557config CC_HAS_SIGN_RETURN_ADDRESS 1558 # GCC 7, 8 1559 def_bool $(cc-option,-msign-return-address=all) 1560 1561config AS_HAS_PAC 1562 def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a) 1563 1564config AS_HAS_CFI_NEGATE_RA_STATE 1565 def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n) 1566 1567endmenu 1568 1569menu "ARMv8.4 architectural features" 1570 1571config ARM64_AMU_EXTN 1572 bool "Enable support for the Activity Monitors Unit CPU extension" 1573 default y 1574 help 1575 The activity monitors extension is an optional extension introduced 1576 by the ARMv8.4 CPU architecture. This enables support for version 1 1577 of the activity monitors architecture, AMUv1. 1578 1579 To enable the use of this extension on CPUs that implement it, say Y. 1580 1581 Note that for architectural reasons, firmware _must_ implement AMU 1582 support when running on CPUs that present the activity monitors 1583 extension. The required support is present in: 1584 * Version 1.5 and later of the ARM Trusted Firmware 1585 1586 For kernels that have this configuration enabled but boot with broken 1587 firmware, you may need to say N here until the firmware is fixed. 1588 Otherwise you may experience firmware panics or lockups when 1589 accessing the counter registers. Even if you are not observing these 1590 symptoms, the values returned by the register reads might not 1591 correctly reflect reality. Most commonly, the value read will be 0, 1592 indicating that the counter is not enabled. 1593 1594config AS_HAS_ARMV8_4 1595 def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a) 1596 1597config ARM64_TLB_RANGE 1598 bool "Enable support for tlbi range feature" 1599 default y 1600 depends on AS_HAS_ARMV8_4 1601 help 1602 ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a 1603 range of input addresses. 1604 1605 The feature introduces new assembly instructions, and they were 1606 support when binutils >= 2.30. 1607 1608endmenu 1609 1610menu "ARMv8.5 architectural features" 1611 1612config ARM64_BTI 1613 bool "Branch Target Identification support" 1614 default y 1615 help 1616 Branch Target Identification (part of the ARMv8.5 Extensions) 1617 provides a mechanism to limit the set of locations to which computed 1618 branch instructions such as BR or BLR can jump. 1619 1620 To make use of BTI on CPUs that support it, say Y. 1621 1622 BTI is intended to provide complementary protection to other control 1623 flow integrity protection mechanisms, such as the Pointer 1624 authentication mechanism provided as part of the ARMv8.3 Extensions. 1625 For this reason, it does not make sense to enable this option without 1626 also enabling support for pointer authentication. Thus, when 1627 enabling this option you should also select ARM64_PTR_AUTH=y. 1628 1629 Userspace binaries must also be specifically compiled to make use of 1630 this mechanism. If you say N here or the hardware does not support 1631 BTI, such binaries can still run, but you get no additional 1632 enforcement of branch destinations. 1633 1634config ARM64_BTI_KERNEL 1635 bool "Use Branch Target Identification for kernel" 1636 default y 1637 depends on ARM64_BTI 1638 depends on ARM64_PTR_AUTH 1639 depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI 1640 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697 1641 depends on !CC_IS_GCC || GCC_VERSION >= 100100 1642 depends on !(CC_IS_CLANG && GCOV_KERNEL) 1643 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS) 1644 help 1645 Build the kernel with Branch Target Identification annotations 1646 and enable enforcement of this for kernel code. When this option 1647 is enabled and the system supports BTI all kernel code including 1648 modular code must have BTI enabled. 1649 1650config CC_HAS_BRANCH_PROT_PAC_RET_BTI 1651 # GCC 9 or later, clang 8 or later 1652 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti) 1653 1654config ARM64_E0PD 1655 bool "Enable support for E0PD" 1656 default y 1657 help 1658 E0PD (part of the ARMv8.5 extensions) allows us to ensure 1659 that EL0 accesses made via TTBR1 always fault in constant time, 1660 providing similar benefits to KASLR as those provided by KPTI, but 1661 with lower overhead and without disrupting legitimate access to 1662 kernel memory such as SPE. 1663 1664 This option enables E0PD for TTBR1 where available. 1665 1666config ARCH_RANDOM 1667 bool "Enable support for random number generation" 1668 default y 1669 help 1670 Random number generation (part of the ARMv8.5 Extensions) 1671 provides a high bandwidth, cryptographically secure 1672 hardware random number generator. 1673 1674config ARM64_AS_HAS_MTE 1675 # Initial support for MTE went in binutils 2.32.0, checked with 1676 # ".arch armv8.5-a+memtag" below. However, this was incomplete 1677 # as a late addition to the final architecture spec (LDGM/STGM) 1678 # is only supported in the newer 2.32.x and 2.33 binutils 1679 # versions, hence the extra "stgm" instruction check below. 1680 def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0]) 1681 1682config ARM64_MTE 1683 bool "Memory Tagging Extension support" 1684 default y 1685 depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI 1686 depends on AS_HAS_LSE_ATOMICS 1687 select ARCH_USES_HIGH_VMA_FLAGS 1688 help 1689 Memory Tagging (part of the ARMv8.5 Extensions) provides 1690 architectural support for run-time, always-on detection of 1691 various classes of memory error to aid with software debugging 1692 to eliminate vulnerabilities arising from memory-unsafe 1693 languages. 1694 1695 This option enables the support for the Memory Tagging 1696 Extension at EL0 (i.e. for userspace). 1697 1698 Selecting this option allows the feature to be detected at 1699 runtime. Any secondary CPU not implementing this feature will 1700 not be allowed a late bring-up. 1701 1702 Userspace binaries that want to use this feature must 1703 explicitly opt in. The mechanism for the userspace is 1704 described in: 1705 1706 Documentation/arm64/memory-tagging-extension.rst. 1707 1708endmenu 1709 1710config ARM64_SVE 1711 bool "ARM Scalable Vector Extension support" 1712 default y 1713 depends on !KVM || ARM64_VHE 1714 help 1715 The Scalable Vector Extension (SVE) is an extension to the AArch64 1716 execution state which complements and extends the SIMD functionality 1717 of the base architecture to support much larger vectors and to enable 1718 additional vectorisation opportunities. 1719 1720 To enable use of this extension on CPUs that implement it, say Y. 1721 1722 On CPUs that support the SVE2 extensions, this option will enable 1723 those too. 1724 1725 Note that for architectural reasons, firmware _must_ implement SVE 1726 support when running on SVE capable hardware. The required support 1727 is present in: 1728 1729 * version 1.5 and later of the ARM Trusted Firmware 1730 * the AArch64 boot wrapper since commit 5e1261e08abf 1731 ("bootwrapper: SVE: Enable SVE for EL2 and below"). 1732 1733 For other firmware implementations, consult the firmware documentation 1734 or vendor. 1735 1736 If you need the kernel to boot on SVE-capable hardware with broken 1737 firmware, you may need to say N here until you get your firmware 1738 fixed. Otherwise, you may experience firmware panics or lockups when 1739 booting the kernel. If unsure and you are not observing these 1740 symptoms, you should assume that it is safe to say Y. 1741 1742 CPUs that support SVE are architecturally required to support the 1743 Virtualization Host Extensions (VHE), so the kernel makes no 1744 provision for supporting SVE alongside KVM without VHE enabled. 1745 Thus, you will need to enable CONFIG_ARM64_VHE if you want to support 1746 KVM in the same kernel image. 1747 1748config ARM64_MODULE_PLTS 1749 bool "Use PLTs to allow module memory to spill over into vmalloc area" 1750 depends on MODULES 1751 select HAVE_MOD_ARCH_SPECIFIC 1752 help 1753 Allocate PLTs when loading modules so that jumps and calls whose 1754 targets are too far away for their relative offsets to be encoded 1755 in the instructions themselves can be bounced via veneers in the 1756 module's PLT. This allows modules to be allocated in the generic 1757 vmalloc area after the dedicated module memory area has been 1758 exhausted. 1759 1760 When running with address space randomization (KASLR), the module 1761 region itself may be too far away for ordinary relative jumps and 1762 calls, and so in that case, module PLTs are required and cannot be 1763 disabled. 1764 1765 Specific errata workaround(s) might also force module PLTs to be 1766 enabled (ARM64_ERRATUM_843419). 1767 1768config ARM64_PSEUDO_NMI 1769 bool "Support for NMI-like interrupts" 1770 select ARM_GIC_V3 1771 help 1772 Adds support for mimicking Non-Maskable Interrupts through the use of 1773 GIC interrupt priority. This support requires version 3 or later of 1774 ARM GIC. 1775 1776 This high priority configuration for interrupts needs to be 1777 explicitly enabled by setting the kernel parameter 1778 "irqchip.gicv3_pseudo_nmi" to 1. 1779 1780 If unsure, say N 1781 1782if ARM64_PSEUDO_NMI 1783config ARM64_DEBUG_PRIORITY_MASKING 1784 bool "Debug interrupt priority masking" 1785 help 1786 This adds runtime checks to functions enabling/disabling 1787 interrupts when using priority masking. The additional checks verify 1788 the validity of ICC_PMR_EL1 when calling concerned functions. 1789 1790 If unsure, say N 1791endif 1792 1793config RELOCATABLE 1794 bool "Build a relocatable kernel image" if EXPERT 1795 select ARCH_HAS_RELR 1796 default y 1797 help 1798 This builds the kernel as a Position Independent Executable (PIE), 1799 which retains all relocation metadata required to relocate the 1800 kernel binary at runtime to a different virtual address than the 1801 address it was linked at. 1802 Since AArch64 uses the RELA relocation format, this requires a 1803 relocation pass at runtime even if the kernel is loaded at the 1804 same address it was linked at. 1805 1806config RANDOMIZE_BASE 1807 bool "Randomize the address of the kernel image" 1808 select ARM64_MODULE_PLTS if MODULES 1809 select RELOCATABLE 1810 help 1811 Randomizes the virtual address at which the kernel image is 1812 loaded, as a security feature that deters exploit attempts 1813 relying on knowledge of the location of kernel internals. 1814 1815 It is the bootloader's job to provide entropy, by passing a 1816 random u64 value in /chosen/kaslr-seed at kernel entry. 1817 1818 When booting via the UEFI stub, it will invoke the firmware's 1819 EFI_RNG_PROTOCOL implementation (if available) to supply entropy 1820 to the kernel proper. In addition, it will randomise the physical 1821 location of the kernel Image as well. 1822 1823 If unsure, say N. 1824 1825config RANDOMIZE_MODULE_REGION_FULL 1826 bool "Randomize the module region over a 4 GB range" 1827 depends on RANDOMIZE_BASE 1828 default y 1829 help 1830 Randomizes the location of the module region inside a 4 GB window 1831 covering the core kernel. This way, it is less likely for modules 1832 to leak information about the location of core kernel data structures 1833 but it does imply that function calls between modules and the core 1834 kernel will need to be resolved via veneers in the module PLT. 1835 1836 When this option is not set, the module region will be randomized over 1837 a limited range that contains the [_stext, _etext] interval of the 1838 core kernel, so branch relocations are always in range. 1839 1840config CC_HAVE_STACKPROTECTOR_SYSREG 1841 def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0) 1842 1843config STACKPROTECTOR_PER_TASK 1844 def_bool y 1845 depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG 1846 1847endmenu 1848 1849menu "Boot options" 1850 1851config ARM64_ACPI_PARKING_PROTOCOL 1852 bool "Enable support for the ARM64 ACPI parking protocol" 1853 depends on ACPI 1854 help 1855 Enable support for the ARM64 ACPI parking protocol. If disabled 1856 the kernel will not allow booting through the ARM64 ACPI parking 1857 protocol even if the corresponding data is present in the ACPI 1858 MADT table. 1859 1860config CMDLINE 1861 string "Default kernel command string" 1862 default "" 1863 help 1864 Provide a set of default command-line options at build time by 1865 entering them here. As a minimum, you should specify the the 1866 root device (e.g. root=/dev/nfs). 1867 1868config CMDLINE_FORCE 1869 bool "Always use the default kernel command string" 1870 depends on CMDLINE != "" 1871 help 1872 Always use the default kernel command string, even if the boot 1873 loader passes other arguments to the kernel. 1874 This is useful if you cannot or don't want to change the 1875 command-line options your boot loader passes to the kernel. 1876 1877config EFI_STUB 1878 bool 1879 1880config EFI 1881 bool "UEFI runtime support" 1882 depends on OF && !CPU_BIG_ENDIAN 1883 depends on KERNEL_MODE_NEON 1884 select ARCH_SUPPORTS_ACPI 1885 select LIBFDT 1886 select UCS2_STRING 1887 select EFI_PARAMS_FROM_FDT 1888 select EFI_RUNTIME_WRAPPERS 1889 select EFI_STUB 1890 select EFI_GENERIC_STUB 1891 default y 1892 help 1893 This option provides support for runtime services provided 1894 by UEFI firmware (such as non-volatile variables, realtime 1895 clock, and platform reset). A UEFI stub is also provided to 1896 allow the kernel to be booted as an EFI application. This 1897 is only useful on systems that have UEFI firmware. 1898 1899config DMI 1900 bool "Enable support for SMBIOS (DMI) tables" 1901 depends on EFI 1902 default y 1903 help 1904 This enables SMBIOS/DMI feature for systems. 1905 1906 This option is only useful on systems that have UEFI firmware. 1907 However, even with this option, the resultant kernel should 1908 continue to boot on existing non-UEFI platforms. 1909 1910endmenu 1911 1912config SYSVIPC_COMPAT 1913 def_bool y 1914 depends on COMPAT && SYSVIPC 1915 1916config ARCH_ENABLE_HUGEPAGE_MIGRATION 1917 def_bool y 1918 depends on HUGETLB_PAGE && MIGRATION 1919 1920config ARCH_ENABLE_THP_MIGRATION 1921 def_bool y 1922 depends on TRANSPARENT_HUGEPAGE 1923 1924menu "Power management options" 1925 1926source "kernel/power/Kconfig" 1927 1928config ARCH_HIBERNATION_POSSIBLE 1929 def_bool y 1930 depends on CPU_PM 1931 1932config ARCH_HIBERNATION_HEADER 1933 def_bool y 1934 depends on HIBERNATION 1935 1936config ARCH_SUSPEND_POSSIBLE 1937 def_bool y 1938 1939endmenu 1940 1941menu "CPU Power Management" 1942 1943source "drivers/cpuidle/Kconfig" 1944 1945source "drivers/cpufreq/Kconfig" 1946 1947endmenu 1948 1949source "drivers/firmware/Kconfig" 1950 1951source "drivers/acpi/Kconfig" 1952 1953source "arch/arm64/kvm/Kconfig" 1954 1955if CRYPTO 1956source "arch/arm64/crypto/Kconfig" 1957endif 1958