• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_GFP_H
3 #define __LINUX_GFP_H
4 
5 #include <linux/mmdebug.h>
6 #include <linux/mmzone.h>
7 #include <linux/stddef.h>
8 #include <linux/linkage.h>
9 #include <linux/topology.h>
10 
11 struct vm_area_struct;
12 
13 /*
14  * In case of changes, please don't forget to update
15  * include/trace/events/mmflags.h and tools/perf/builtin-kmem.c
16  */
17 
18 /* Plain integer GFP bitmasks. Do not use this directly. */
19 #define ___GFP_DMA		0x01u
20 #define ___GFP_HIGHMEM		0x02u
21 #define ___GFP_DMA32		0x04u
22 #define ___GFP_MOVABLE		0x08u
23 #define ___GFP_RECLAIMABLE	0x10u
24 #define ___GFP_HIGH		0x20u
25 #define ___GFP_IO		0x40u
26 #define ___GFP_FS		0x80u
27 #define ___GFP_ZERO		0x100u
28 #define ___GFP_ATOMIC		0x200u
29 #define ___GFP_DIRECT_RECLAIM	0x400u
30 #define ___GFP_KSWAPD_RECLAIM	0x800u
31 #define ___GFP_WRITE		0x1000u
32 #define ___GFP_NOWARN		0x2000u
33 #define ___GFP_RETRY_MAYFAIL	0x4000u
34 #define ___GFP_NOFAIL		0x8000u
35 #define ___GFP_NORETRY		0x10000u
36 #define ___GFP_MEMALLOC		0x20000u
37 #define ___GFP_COMP		0x40000u
38 #define ___GFP_NOMEMALLOC	0x80000u
39 #define ___GFP_HARDWALL		0x100000u
40 #define ___GFP_THISNODE		0x200000u
41 #define ___GFP_ACCOUNT		0x400000u
42 #define ___GFP_CMA		0x800000u
43 #ifdef CONFIG_LOCKDEP
44 #define ___GFP_NOLOCKDEP	0x1000000u
45 #else
46 #define ___GFP_NOLOCKDEP	0
47 #endif
48 /* If the above are modified, __GFP_BITS_SHIFT may need updating */
49 
50 /*
51  * Physical address zone modifiers (see linux/mmzone.h - low four bits)
52  *
53  * Do not put any conditional on these. If necessary modify the definitions
54  * without the underscores and use them consistently. The definitions here may
55  * be used in bit comparisons.
56  */
57 #define __GFP_DMA	((__force gfp_t)___GFP_DMA)
58 #define __GFP_HIGHMEM	((__force gfp_t)___GFP_HIGHMEM)
59 #define __GFP_DMA32	((__force gfp_t)___GFP_DMA32)
60 #define __GFP_MOVABLE	((__force gfp_t)___GFP_MOVABLE)  /* ZONE_MOVABLE allowed */
61 #define __GFP_CMA	((__force gfp_t)___GFP_CMA)
62 #define GFP_ZONEMASK	(__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE)
63 
64 /**
65  * DOC: Page mobility and placement hints
66  *
67  * Page mobility and placement hints
68  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
69  *
70  * These flags provide hints about how mobile the page is. Pages with similar
71  * mobility are placed within the same pageblocks to minimise problems due
72  * to external fragmentation.
73  *
74  * %__GFP_MOVABLE (also a zone modifier) indicates that the page can be
75  * moved by page migration during memory compaction or can be reclaimed.
76  *
77  * %__GFP_RECLAIMABLE is used for slab allocations that specify
78  * SLAB_RECLAIM_ACCOUNT and whose pages can be freed via shrinkers.
79  *
80  * %__GFP_WRITE indicates the caller intends to dirty the page. Where possible,
81  * these pages will be spread between local zones to avoid all the dirty
82  * pages being in one zone (fair zone allocation policy).
83  *
84  * %__GFP_HARDWALL enforces the cpuset memory allocation policy.
85  *
86  * %__GFP_THISNODE forces the allocation to be satisfied from the requested
87  * node with no fallbacks or placement policy enforcements.
88  *
89  * %__GFP_ACCOUNT causes the allocation to be accounted to kmemcg.
90  */
91 #define __GFP_RECLAIMABLE ((__force gfp_t)___GFP_RECLAIMABLE)
92 #define __GFP_WRITE	((__force gfp_t)___GFP_WRITE)
93 #define __GFP_HARDWALL   ((__force gfp_t)___GFP_HARDWALL)
94 #define __GFP_THISNODE	((__force gfp_t)___GFP_THISNODE)
95 #define __GFP_ACCOUNT	((__force gfp_t)___GFP_ACCOUNT)
96 
97 /**
98  * DOC: Watermark modifiers
99  *
100  * Watermark modifiers -- controls access to emergency reserves
101  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
102  *
103  * %__GFP_HIGH indicates that the caller is high-priority and that granting
104  * the request is necessary before the system can make forward progress.
105  * For example, creating an IO context to clean pages.
106  *
107  * %__GFP_ATOMIC indicates that the caller cannot reclaim or sleep and is
108  * high priority. Users are typically interrupt handlers. This may be
109  * used in conjunction with %__GFP_HIGH
110  *
111  * %__GFP_MEMALLOC allows access to all memory. This should only be used when
112  * the caller guarantees the allocation will allow more memory to be freed
113  * very shortly e.g. process exiting or swapping. Users either should
114  * be the MM or co-ordinating closely with the VM (e.g. swap over NFS).
115  * Users of this flag have to be extremely careful to not deplete the reserve
116  * completely and implement a throttling mechanism which controls the
117  * consumption of the reserve based on the amount of freed memory.
118  * Usage of a pre-allocated pool (e.g. mempool) should be always considered
119  * before using this flag.
120  *
121  * %__GFP_NOMEMALLOC is used to explicitly forbid access to emergency reserves.
122  * This takes precedence over the %__GFP_MEMALLOC flag if both are set.
123  */
124 #define __GFP_ATOMIC	((__force gfp_t)___GFP_ATOMIC)
125 #define __GFP_HIGH	((__force gfp_t)___GFP_HIGH)
126 #define __GFP_MEMALLOC	((__force gfp_t)___GFP_MEMALLOC)
127 #define __GFP_NOMEMALLOC ((__force gfp_t)___GFP_NOMEMALLOC)
128 
129 /**
130  * DOC: Reclaim modifiers
131  *
132  * Reclaim modifiers
133  * ~~~~~~~~~~~~~~~~~
134  * Please note that all the following flags are only applicable to sleepable
135  * allocations (e.g. %GFP_NOWAIT and %GFP_ATOMIC will ignore them).
136  *
137  * %__GFP_IO can start physical IO.
138  *
139  * %__GFP_FS can call down to the low-level FS. Clearing the flag avoids the
140  * allocator recursing into the filesystem which might already be holding
141  * locks.
142  *
143  * %__GFP_DIRECT_RECLAIM indicates that the caller may enter direct reclaim.
144  * This flag can be cleared to avoid unnecessary delays when a fallback
145  * option is available.
146  *
147  * %__GFP_KSWAPD_RECLAIM indicates that the caller wants to wake kswapd when
148  * the low watermark is reached and have it reclaim pages until the high
149  * watermark is reached. A caller may wish to clear this flag when fallback
150  * options are available and the reclaim is likely to disrupt the system. The
151  * canonical example is THP allocation where a fallback is cheap but
152  * reclaim/compaction may cause indirect stalls.
153  *
154  * %__GFP_RECLAIM is shorthand to allow/forbid both direct and kswapd reclaim.
155  *
156  * The default allocator behavior depends on the request size. We have a concept
157  * of so called costly allocations (with order > %PAGE_ALLOC_COSTLY_ORDER).
158  * !costly allocations are too essential to fail so they are implicitly
159  * non-failing by default (with some exceptions like OOM victims might fail so
160  * the caller still has to check for failures) while costly requests try to be
161  * not disruptive and back off even without invoking the OOM killer.
162  * The following three modifiers might be used to override some of these
163  * implicit rules
164  *
165  * %__GFP_NORETRY: The VM implementation will try only very lightweight
166  * memory direct reclaim to get some memory under memory pressure (thus
167  * it can sleep). It will avoid disruptive actions like OOM killer. The
168  * caller must handle the failure which is quite likely to happen under
169  * heavy memory pressure. The flag is suitable when failure can easily be
170  * handled at small cost, such as reduced throughput
171  *
172  * %__GFP_RETRY_MAYFAIL: The VM implementation will retry memory reclaim
173  * procedures that have previously failed if there is some indication
174  * that progress has been made else where.  It can wait for other
175  * tasks to attempt high level approaches to freeing memory such as
176  * compaction (which removes fragmentation) and page-out.
177  * There is still a definite limit to the number of retries, but it is
178  * a larger limit than with %__GFP_NORETRY.
179  * Allocations with this flag may fail, but only when there is
180  * genuinely little unused memory. While these allocations do not
181  * directly trigger the OOM killer, their failure indicates that
182  * the system is likely to need to use the OOM killer soon.  The
183  * caller must handle failure, but can reasonably do so by failing
184  * a higher-level request, or completing it only in a much less
185  * efficient manner.
186  * If the allocation does fail, and the caller is in a position to
187  * free some non-essential memory, doing so could benefit the system
188  * as a whole.
189  *
190  * %__GFP_NOFAIL: The VM implementation _must_ retry infinitely: the caller
191  * cannot handle allocation failures. The allocation could block
192  * indefinitely but will never return with failure. Testing for
193  * failure is pointless.
194  * New users should be evaluated carefully (and the flag should be
195  * used only when there is no reasonable failure policy) but it is
196  * definitely preferable to use the flag rather than opencode endless
197  * loop around allocator.
198  * Using this flag for costly allocations is _highly_ discouraged.
199  */
200 #define __GFP_IO	((__force gfp_t)___GFP_IO)
201 #define __GFP_FS	((__force gfp_t)___GFP_FS)
202 #define __GFP_DIRECT_RECLAIM	((__force gfp_t)___GFP_DIRECT_RECLAIM) /* Caller can reclaim */
203 #define __GFP_KSWAPD_RECLAIM	((__force gfp_t)___GFP_KSWAPD_RECLAIM) /* kswapd can wake */
204 #define __GFP_RECLAIM ((__force gfp_t)(___GFP_DIRECT_RECLAIM|___GFP_KSWAPD_RECLAIM))
205 #define __GFP_RETRY_MAYFAIL	((__force gfp_t)___GFP_RETRY_MAYFAIL)
206 #define __GFP_NOFAIL	((__force gfp_t)___GFP_NOFAIL)
207 #define __GFP_NORETRY	((__force gfp_t)___GFP_NORETRY)
208 
209 /**
210  * DOC: Action modifiers
211  *
212  * Action modifiers
213  * ~~~~~~~~~~~~~~~~
214  *
215  * %__GFP_NOWARN suppresses allocation failure reports.
216  *
217  * %__GFP_COMP address compound page metadata.
218  *
219  * %__GFP_ZERO returns a zeroed page on success.
220  */
221 #define __GFP_NOWARN	((__force gfp_t)___GFP_NOWARN)
222 #define __GFP_COMP	((__force gfp_t)___GFP_COMP)
223 #define __GFP_ZERO	((__force gfp_t)___GFP_ZERO)
224 
225 /* Disable lockdep for GFP context tracking */
226 #define __GFP_NOLOCKDEP ((__force gfp_t)___GFP_NOLOCKDEP)
227 
228 /* Room for N __GFP_FOO bits */
229 #define __GFP_BITS_SHIFT (24 + IS_ENABLED(CONFIG_LOCKDEP))
230 #define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1))
231 
232 /**
233  * DOC: Useful GFP flag combinations
234  *
235  * Useful GFP flag combinations
236  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
237  *
238  * Useful GFP flag combinations that are commonly used. It is recommended
239  * that subsystems start with one of these combinations and then set/clear
240  * %__GFP_FOO flags as necessary.
241  *
242  * %GFP_ATOMIC users can not sleep and need the allocation to succeed. A lower
243  * watermark is applied to allow access to "atomic reserves".
244  * The current implementation doesn't support NMI and few other strict
245  * non-preemptive contexts (e.g. raw_spin_lock). The same applies to %GFP_NOWAIT.
246  *
247  * %GFP_KERNEL is typical for kernel-internal allocations. The caller requires
248  * %ZONE_NORMAL or a lower zone for direct access but can direct reclaim.
249  *
250  * %GFP_KERNEL_ACCOUNT is the same as GFP_KERNEL, except the allocation is
251  * accounted to kmemcg.
252  *
253  * %GFP_NOWAIT is for kernel allocations that should not stall for direct
254  * reclaim, start physical IO or use any filesystem callback.
255  *
256  * %GFP_NOIO will use direct reclaim to discard clean pages or slab pages
257  * that do not require the starting of any physical IO.
258  * Please try to avoid using this flag directly and instead use
259  * memalloc_noio_{save,restore} to mark the whole scope which cannot
260  * perform any IO with a short explanation why. All allocation requests
261  * will inherit GFP_NOIO implicitly.
262  *
263  * %GFP_NOFS will use direct reclaim but will not use any filesystem interfaces.
264  * Please try to avoid using this flag directly and instead use
265  * memalloc_nofs_{save,restore} to mark the whole scope which cannot/shouldn't
266  * recurse into the FS layer with a short explanation why. All allocation
267  * requests will inherit GFP_NOFS implicitly.
268  *
269  * %GFP_USER is for userspace allocations that also need to be directly
270  * accessibly by the kernel or hardware. It is typically used by hardware
271  * for buffers that are mapped to userspace (e.g. graphics) that hardware
272  * still must DMA to. cpuset limits are enforced for these allocations.
273  *
274  * %GFP_DMA exists for historical reasons and should be avoided where possible.
275  * The flags indicates that the caller requires that the lowest zone be
276  * used (%ZONE_DMA or 16M on x86-64). Ideally, this would be removed but
277  * it would require careful auditing as some users really require it and
278  * others use the flag to avoid lowmem reserves in %ZONE_DMA and treat the
279  * lowest zone as a type of emergency reserve.
280  *
281  * %GFP_DMA32 is similar to %GFP_DMA except that the caller requires a 32-bit
282  * address.
283  *
284  * %GFP_HIGHUSER is for userspace allocations that may be mapped to userspace,
285  * do not need to be directly accessible by the kernel but that cannot
286  * move once in use. An example may be a hardware allocation that maps
287  * data directly into userspace but has no addressing limitations.
288  *
289  * %GFP_HIGHUSER_MOVABLE is for userspace allocations that the kernel does not
290  * need direct access to but can use kmap() when access is required. They
291  * are expected to be movable via page reclaim or page migration. Typically,
292  * pages on the LRU would also be allocated with %GFP_HIGHUSER_MOVABLE.
293  *
294  * %GFP_TRANSHUGE and %GFP_TRANSHUGE_LIGHT are used for THP allocations. They
295  * are compound allocations that will generally fail quickly if memory is not
296  * available and will not wake kswapd/kcompactd on failure. The _LIGHT
297  * version does not attempt reclaim/compaction at all and is by default used
298  * in page fault path, while the non-light is used by khugepaged.
299  */
300 #define GFP_ATOMIC	(__GFP_HIGH|__GFP_ATOMIC|__GFP_KSWAPD_RECLAIM)
301 #define GFP_KERNEL	(__GFP_RECLAIM | __GFP_IO | __GFP_FS)
302 #define GFP_KERNEL_ACCOUNT (GFP_KERNEL | __GFP_ACCOUNT)
303 #define GFP_NOWAIT	(__GFP_KSWAPD_RECLAIM)
304 #define GFP_NOIO	(__GFP_RECLAIM)
305 #define GFP_NOFS	(__GFP_RECLAIM | __GFP_IO)
306 #define GFP_USER	(__GFP_RECLAIM | __GFP_IO | __GFP_FS | __GFP_HARDWALL)
307 #define GFP_DMA		__GFP_DMA
308 #define GFP_DMA32	__GFP_DMA32
309 #define GFP_HIGHUSER	(GFP_USER | __GFP_HIGHMEM)
310 #define GFP_HIGHUSER_MOVABLE	(GFP_HIGHUSER | __GFP_MOVABLE)
311 #define GFP_TRANSHUGE_LIGHT	((GFP_HIGHUSER_MOVABLE | __GFP_COMP | \
312 			 __GFP_NOMEMALLOC | __GFP_NOWARN) & ~__GFP_RECLAIM)
313 #define GFP_TRANSHUGE	(GFP_TRANSHUGE_LIGHT | __GFP_DIRECT_RECLAIM)
314 
315 /* Convert GFP flags to their corresponding migrate type */
316 #define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE)
317 #define GFP_MOVABLE_SHIFT 3
318 
gfp_migratetype(const gfp_t gfp_flags)319 static inline int gfp_migratetype(const gfp_t gfp_flags)
320 {
321 	unsigned int ret_mt = 0;
322 
323 	VM_WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);
324 	BUILD_BUG_ON((1UL << GFP_MOVABLE_SHIFT) != ___GFP_MOVABLE);
325 	BUILD_BUG_ON((___GFP_MOVABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_MOVABLE);
326 
327 	if (unlikely(page_group_by_mobility_disabled))
328 		return MIGRATE_UNMOVABLE;
329 
330 	/* Group based on mobility */
331 	ret_mt = (gfp_flags & GFP_MOVABLE_MASK) >> GFP_MOVABLE_SHIFT;
332 
333 #ifdef CONFIG_CMA_REUSE
334 	if (ret_mt == MIGRATE_MOVABLE && (gfp_flags & __GFP_CMA))
335 		return MIGRATE_CMA;
336 #endif
337 
338 	return ret_mt;
339 }
340 #undef GFP_MOVABLE_MASK
341 #undef GFP_MOVABLE_SHIFT
342 
gfpflags_allow_blocking(const gfp_t gfp_flags)343 static inline bool gfpflags_allow_blocking(const gfp_t gfp_flags)
344 {
345 	return !!(gfp_flags & __GFP_DIRECT_RECLAIM);
346 }
347 
348 /**
349  * gfpflags_normal_context - is gfp_flags a normal sleepable context?
350  * @gfp_flags: gfp_flags to test
351  *
352  * Test whether @gfp_flags indicates that the allocation is from the
353  * %current context and allowed to sleep.
354  *
355  * An allocation being allowed to block doesn't mean it owns the %current
356  * context.  When direct reclaim path tries to allocate memory, the
357  * allocation context is nested inside whatever %current was doing at the
358  * time of the original allocation.  The nested allocation may be allowed
359  * to block but modifying anything %current owns can corrupt the outer
360  * context's expectations.
361  *
362  * %true result from this function indicates that the allocation context
363  * can sleep and use anything that's associated with %current.
364  */
gfpflags_normal_context(const gfp_t gfp_flags)365 static inline bool gfpflags_normal_context(const gfp_t gfp_flags)
366 {
367 	return (gfp_flags & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC)) ==
368 		__GFP_DIRECT_RECLAIM;
369 }
370 
371 #ifdef CONFIG_HIGHMEM
372 #define OPT_ZONE_HIGHMEM ZONE_HIGHMEM
373 #else
374 #define OPT_ZONE_HIGHMEM ZONE_NORMAL
375 #endif
376 
377 #ifdef CONFIG_ZONE_DMA
378 #define OPT_ZONE_DMA ZONE_DMA
379 #else
380 #define OPT_ZONE_DMA ZONE_NORMAL
381 #endif
382 
383 #ifdef CONFIG_ZONE_DMA32
384 #define OPT_ZONE_DMA32 ZONE_DMA32
385 #else
386 #define OPT_ZONE_DMA32 ZONE_NORMAL
387 #endif
388 
389 /*
390  * GFP_ZONE_TABLE is a word size bitstring that is used for looking up the
391  * zone to use given the lowest 4 bits of gfp_t. Entries are GFP_ZONES_SHIFT
392  * bits long and there are 16 of them to cover all possible combinations of
393  * __GFP_DMA, __GFP_DMA32, __GFP_MOVABLE and __GFP_HIGHMEM.
394  *
395  * The zone fallback order is MOVABLE=>HIGHMEM=>NORMAL=>DMA32=>DMA.
396  * But GFP_MOVABLE is not only a zone specifier but also an allocation
397  * policy. Therefore __GFP_MOVABLE plus another zone selector is valid.
398  * Only 1 bit of the lowest 3 bits (DMA,DMA32,HIGHMEM) can be set to "1".
399  *
400  *       bit       result
401  *       =================
402  *       0x0    => NORMAL
403  *       0x1    => DMA or NORMAL
404  *       0x2    => HIGHMEM or NORMAL
405  *       0x3    => BAD (DMA+HIGHMEM)
406  *       0x4    => DMA32 or NORMAL
407  *       0x5    => BAD (DMA+DMA32)
408  *       0x6    => BAD (HIGHMEM+DMA32)
409  *       0x7    => BAD (HIGHMEM+DMA32+DMA)
410  *       0x8    => NORMAL (MOVABLE+0)
411  *       0x9    => DMA or NORMAL (MOVABLE+DMA)
412  *       0xa    => MOVABLE (Movable is valid only if HIGHMEM is set too)
413  *       0xb    => BAD (MOVABLE+HIGHMEM+DMA)
414  *       0xc    => DMA32 or NORMAL (MOVABLE+DMA32)
415  *       0xd    => BAD (MOVABLE+DMA32+DMA)
416  *       0xe    => BAD (MOVABLE+DMA32+HIGHMEM)
417  *       0xf    => BAD (MOVABLE+DMA32+HIGHMEM+DMA)
418  *
419  * GFP_ZONES_SHIFT must be <= 2 on 32 bit platforms.
420  */
421 
422 #if defined(CONFIG_ZONE_DEVICE) && (MAX_NR_ZONES-1) <= 4
423 /* ZONE_DEVICE is not a valid GFP zone specifier */
424 #define GFP_ZONES_SHIFT 2
425 #else
426 #define GFP_ZONES_SHIFT ZONES_SHIFT
427 #endif
428 
429 #if 16 * GFP_ZONES_SHIFT > BITS_PER_LONG
430 #error GFP_ZONES_SHIFT too large to create GFP_ZONE_TABLE integer
431 #endif
432 
433 #define GFP_ZONE_TABLE ( \
434 	(ZONE_NORMAL << 0 * GFP_ZONES_SHIFT)				       \
435 	| (OPT_ZONE_DMA << ___GFP_DMA * GFP_ZONES_SHIFT)		       \
436 	| (OPT_ZONE_HIGHMEM << ___GFP_HIGHMEM * GFP_ZONES_SHIFT)	       \
437 	| (OPT_ZONE_DMA32 << ___GFP_DMA32 * GFP_ZONES_SHIFT)		       \
438 	| (ZONE_NORMAL << ___GFP_MOVABLE * GFP_ZONES_SHIFT)		       \
439 	| (OPT_ZONE_DMA << (___GFP_MOVABLE | ___GFP_DMA) * GFP_ZONES_SHIFT)    \
440 	| (ZONE_MOVABLE << (___GFP_MOVABLE | ___GFP_HIGHMEM) * GFP_ZONES_SHIFT)\
441 	| (OPT_ZONE_DMA32 << (___GFP_MOVABLE | ___GFP_DMA32) * GFP_ZONES_SHIFT)\
442 )
443 
444 /*
445  * GFP_ZONE_BAD is a bitmap for all combinations of __GFP_DMA, __GFP_DMA32
446  * __GFP_HIGHMEM and __GFP_MOVABLE that are not permitted. One flag per
447  * entry starting with bit 0. Bit is set if the combination is not
448  * allowed.
449  */
450 #define GFP_ZONE_BAD ( \
451 	1 << (___GFP_DMA | ___GFP_HIGHMEM)				      \
452 	| 1 << (___GFP_DMA | ___GFP_DMA32)				      \
453 	| 1 << (___GFP_DMA32 | ___GFP_HIGHMEM)				      \
454 	| 1 << (___GFP_DMA | ___GFP_DMA32 | ___GFP_HIGHMEM)		      \
455 	| 1 << (___GFP_MOVABLE | ___GFP_HIGHMEM | ___GFP_DMA)		      \
456 	| 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA)		      \
457 	| 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_HIGHMEM)		      \
458 	| 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA | ___GFP_HIGHMEM)  \
459 )
460 
gfp_zone(gfp_t flags)461 static inline enum zone_type gfp_zone(gfp_t flags)
462 {
463 	enum zone_type z;
464 	int bit = (__force int) (flags & GFP_ZONEMASK);
465 
466 	z = (GFP_ZONE_TABLE >> (bit * GFP_ZONES_SHIFT)) &
467 					 ((1 << GFP_ZONES_SHIFT) - 1);
468 	VM_BUG_ON((GFP_ZONE_BAD >> bit) & 1);
469 	return z;
470 }
471 
472 /*
473  * There is only one page-allocator function, and two main namespaces to
474  * it. The alloc_page*() variants return 'struct page *' and as such
475  * can allocate highmem pages, the *get*page*() variants return
476  * virtual kernel addresses to the allocated page(s).
477  */
478 
gfp_zonelist(gfp_t flags)479 static inline int gfp_zonelist(gfp_t flags)
480 {
481 #ifdef CONFIG_NUMA
482 	if (unlikely(flags & __GFP_THISNODE))
483 		return ZONELIST_NOFALLBACK;
484 #endif
485 	return ZONELIST_FALLBACK;
486 }
487 
488 /*
489  * We get the zone list from the current node and the gfp_mask.
490  * This zone list contains a maximum of MAXNODES*MAX_NR_ZONES zones.
491  * There are two zonelists per node, one for all zones with memory and
492  * one containing just zones from the node the zonelist belongs to.
493  *
494  * For the normal case of non-DISCONTIGMEM systems the NODE_DATA() gets
495  * optimized to &contig_page_data at compile-time.
496  */
node_zonelist(int nid,gfp_t flags)497 static inline struct zonelist *node_zonelist(int nid, gfp_t flags)
498 {
499 	return NODE_DATA(nid)->node_zonelists + gfp_zonelist(flags);
500 }
501 
502 #ifndef HAVE_ARCH_FREE_PAGE
arch_free_page(struct page * page,int order)503 static inline void arch_free_page(struct page *page, int order) { }
504 #endif
505 #ifndef HAVE_ARCH_ALLOC_PAGE
arch_alloc_page(struct page * page,int order)506 static inline void arch_alloc_page(struct page *page, int order) { }
507 #endif
508 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
arch_make_page_accessible(struct page * page)509 static inline int arch_make_page_accessible(struct page *page)
510 {
511 	return 0;
512 }
513 #endif
514 
515 struct page *
516 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
517 							nodemask_t *nodemask);
518 
519 static inline struct page *
__alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid)520 __alloc_pages(gfp_t gfp_mask, unsigned int order, int preferred_nid)
521 {
522 	return __alloc_pages_nodemask(gfp_mask, order, preferred_nid, NULL);
523 }
524 
525 /*
526  * Allocate pages, preferring the node given as nid. The node must be valid and
527  * online. For more general interface, see alloc_pages_node().
528  */
529 static inline struct page *
__alloc_pages_node(int nid,gfp_t gfp_mask,unsigned int order)530 __alloc_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
531 {
532 	VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES);
533 	VM_WARN_ON((gfp_mask & __GFP_THISNODE) && !node_online(nid));
534 
535 	return __alloc_pages(gfp_mask, order, nid);
536 }
537 
538 /*
539  * Allocate pages, preferring the node given as nid. When nid == NUMA_NO_NODE,
540  * prefer the current CPU's closest node. Otherwise node must be valid and
541  * online.
542  */
alloc_pages_node(int nid,gfp_t gfp_mask,unsigned int order)543 static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask,
544 						unsigned int order)
545 {
546 	if (nid == NUMA_NO_NODE)
547 		nid = numa_mem_id();
548 
549 	return __alloc_pages_node(nid, gfp_mask, order);
550 }
551 
552 #ifdef CONFIG_NUMA
553 extern struct page *alloc_pages_current(gfp_t gfp_mask, unsigned order);
554 
555 static inline struct page *
alloc_pages(gfp_t gfp_mask,unsigned int order)556 alloc_pages(gfp_t gfp_mask, unsigned int order)
557 {
558 	return alloc_pages_current(gfp_mask, order);
559 }
560 extern struct page *alloc_pages_vma(gfp_t gfp_mask, int order,
561 			struct vm_area_struct *vma, unsigned long addr,
562 			int node, bool hugepage);
563 #define alloc_hugepage_vma(gfp_mask, vma, addr, order) \
564 	alloc_pages_vma(gfp_mask, order, vma, addr, numa_node_id(), true)
565 #else
alloc_pages(gfp_t gfp_mask,unsigned int order)566 static inline struct page *alloc_pages(gfp_t gfp_mask, unsigned int order)
567 {
568 	return alloc_pages_node(numa_node_id(), gfp_mask, order);
569 }
570 #define alloc_pages_vma(gfp_mask, order, vma, addr, node, false)\
571 	alloc_pages(gfp_mask, order)
572 #define alloc_hugepage_vma(gfp_mask, vma, addr, order) \
573 	alloc_pages(gfp_mask, order)
574 #endif
575 #define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0)
576 #define alloc_page_vma(gfp_mask, vma, addr)			\
577 	alloc_pages_vma(gfp_mask, 0, vma, addr, numa_node_id(), false)
578 
579 extern unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order);
580 extern unsigned long get_zeroed_page(gfp_t gfp_mask);
581 
582 void *alloc_pages_exact(size_t size, gfp_t gfp_mask);
583 void free_pages_exact(void *virt, size_t size);
584 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask);
585 
586 #define __get_free_page(gfp_mask) \
587 		__get_free_pages((gfp_mask), 0)
588 
589 #define __get_dma_pages(gfp_mask, order) \
590 		__get_free_pages((gfp_mask) | GFP_DMA, (order))
591 
592 extern void __free_pages(struct page *page, unsigned int order);
593 extern void free_pages(unsigned long addr, unsigned int order);
594 extern void free_unref_page(struct page *page);
595 extern void free_unref_page_list(struct list_head *list);
596 
597 struct page_frag_cache;
598 extern void __page_frag_cache_drain(struct page *page, unsigned int count);
599 extern void *page_frag_alloc(struct page_frag_cache *nc,
600 			     unsigned int fragsz, gfp_t gfp_mask);
601 extern void page_frag_free(void *addr);
602 
603 #define __free_page(page) __free_pages((page), 0)
604 #define free_page(addr) free_pages((addr), 0)
605 
606 void page_alloc_init(void);
607 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp);
608 void drain_all_pages(struct zone *zone);
609 void drain_local_pages(struct zone *zone);
610 
611 void page_alloc_init_late(void);
612 
613 /*
614  * gfp_allowed_mask is set to GFP_BOOT_MASK during early boot to restrict what
615  * GFP flags are used before interrupts are enabled. Once interrupts are
616  * enabled, it is set to __GFP_BITS_MASK while the system is running. During
617  * hibernation, it is used by PM to avoid I/O during memory allocation while
618  * devices are suspended.
619  */
620 extern gfp_t gfp_allowed_mask;
621 
622 /* Returns true if the gfp_mask allows use of ALLOC_NO_WATERMARK */
623 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask);
624 
625 extern void pm_restrict_gfp_mask(void);
626 extern void pm_restore_gfp_mask(void);
627 
628 #ifdef CONFIG_PM_SLEEP
629 extern bool pm_suspended_storage(void);
630 #else
pm_suspended_storage(void)631 static inline bool pm_suspended_storage(void)
632 {
633 	return false;
634 }
635 #endif /* CONFIG_PM_SLEEP */
636 
637 #ifdef CONFIG_CONTIG_ALLOC
638 /* The below functions must be run on a range from a single zone. */
639 extern int alloc_contig_range(unsigned long start, unsigned long end,
640 			      unsigned migratetype, gfp_t gfp_mask);
641 extern struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
642 				       int nid, nodemask_t *nodemask);
643 #endif
644 void free_contig_range(unsigned long pfn, unsigned int nr_pages);
645 
646 #ifdef CONFIG_CMA
647 /* CMA stuff */
648 extern void init_cma_reserved_pageblock(struct page *page);
649 #endif
650 
651 #endif /* __LINUX_GFP_H */
652