1 //===- HexagonCommonGEP.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "llvm/ADT/ArrayRef.h"
10 #include "llvm/ADT/FoldingSet.h"
11 #include "llvm/ADT/GraphTraits.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/Analysis/LoopInfo.h"
16 #include "llvm/Analysis/PostDominators.h"
17 #include "llvm/IR/BasicBlock.h"
18 #include "llvm/IR/Constant.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Dominators.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Type.h"
26 #include "llvm/IR/Use.h"
27 #include "llvm/IR/User.h"
28 #include "llvm/IR/Value.h"
29 #include "llvm/IR/Verifier.h"
30 #include "llvm/InitializePasses.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Support/Allocator.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Compiler.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Transforms/Utils/Local.h"
39 #include <algorithm>
40 #include <cassert>
41 #include <cstddef>
42 #include <cstdint>
43 #include <iterator>
44 #include <map>
45 #include <set>
46 #include <utility>
47 #include <vector>
48
49 #define DEBUG_TYPE "commgep"
50
51 using namespace llvm;
52
53 static cl::opt<bool> OptSpeculate("commgep-speculate", cl::init(true),
54 cl::Hidden, cl::ZeroOrMore);
55
56 static cl::opt<bool> OptEnableInv("commgep-inv", cl::init(true), cl::Hidden,
57 cl::ZeroOrMore);
58
59 static cl::opt<bool> OptEnableConst("commgep-const", cl::init(true),
60 cl::Hidden, cl::ZeroOrMore);
61
62 namespace llvm {
63
64 void initializeHexagonCommonGEPPass(PassRegistry&);
65
66 } // end namespace llvm
67
68 namespace {
69
70 struct GepNode;
71 using NodeSet = std::set<GepNode *>;
72 using NodeToValueMap = std::map<GepNode *, Value *>;
73 using NodeVect = std::vector<GepNode *>;
74 using NodeChildrenMap = std::map<GepNode *, NodeVect>;
75 using UseSet = SetVector<Use *>;
76 using NodeToUsesMap = std::map<GepNode *, UseSet>;
77
78 // Numbering map for gep nodes. Used to keep track of ordering for
79 // gep nodes.
80 struct NodeOrdering {
81 NodeOrdering() = default;
82
insert__anon115fb69a0111::NodeOrdering83 void insert(const GepNode *N) { Map.insert(std::make_pair(N, ++LastNum)); }
clear__anon115fb69a0111::NodeOrdering84 void clear() { Map.clear(); }
85
operator ()__anon115fb69a0111::NodeOrdering86 bool operator()(const GepNode *N1, const GepNode *N2) const {
87 auto F1 = Map.find(N1), F2 = Map.find(N2);
88 assert(F1 != Map.end() && F2 != Map.end());
89 return F1->second < F2->second;
90 }
91
92 private:
93 std::map<const GepNode *, unsigned> Map;
94 unsigned LastNum = 0;
95 };
96
97 class HexagonCommonGEP : public FunctionPass {
98 public:
99 static char ID;
100
HexagonCommonGEP()101 HexagonCommonGEP() : FunctionPass(ID) {
102 initializeHexagonCommonGEPPass(*PassRegistry::getPassRegistry());
103 }
104
105 bool runOnFunction(Function &F) override;
getPassName() const106 StringRef getPassName() const override { return "Hexagon Common GEP"; }
107
getAnalysisUsage(AnalysisUsage & AU) const108 void getAnalysisUsage(AnalysisUsage &AU) const override {
109 AU.addRequired<DominatorTreeWrapperPass>();
110 AU.addPreserved<DominatorTreeWrapperPass>();
111 AU.addRequired<PostDominatorTreeWrapperPass>();
112 AU.addPreserved<PostDominatorTreeWrapperPass>();
113 AU.addRequired<LoopInfoWrapperPass>();
114 AU.addPreserved<LoopInfoWrapperPass>();
115 FunctionPass::getAnalysisUsage(AU);
116 }
117
118 private:
119 using ValueToNodeMap = std::map<Value *, GepNode *>;
120 using ValueVect = std::vector<Value *>;
121 using NodeToValuesMap = std::map<GepNode *, ValueVect>;
122
123 void getBlockTraversalOrder(BasicBlock *Root, ValueVect &Order);
124 bool isHandledGepForm(GetElementPtrInst *GepI);
125 void processGepInst(GetElementPtrInst *GepI, ValueToNodeMap &NM);
126 void collect();
127 void common();
128
129 BasicBlock *recalculatePlacement(GepNode *Node, NodeChildrenMap &NCM,
130 NodeToValueMap &Loc);
131 BasicBlock *recalculatePlacementRec(GepNode *Node, NodeChildrenMap &NCM,
132 NodeToValueMap &Loc);
133 bool isInvariantIn(Value *Val, Loop *L);
134 bool isInvariantIn(GepNode *Node, Loop *L);
135 bool isInMainPath(BasicBlock *B, Loop *L);
136 BasicBlock *adjustForInvariance(GepNode *Node, NodeChildrenMap &NCM,
137 NodeToValueMap &Loc);
138 void separateChainForNode(GepNode *Node, Use *U, NodeToValueMap &Loc);
139 void separateConstantChains(GepNode *Node, NodeChildrenMap &NCM,
140 NodeToValueMap &Loc);
141 void computeNodePlacement(NodeToValueMap &Loc);
142
143 Value *fabricateGEP(NodeVect &NA, BasicBlock::iterator At,
144 BasicBlock *LocB);
145 void getAllUsersForNode(GepNode *Node, ValueVect &Values,
146 NodeChildrenMap &NCM);
147 void materialize(NodeToValueMap &Loc);
148
149 void removeDeadCode();
150
151 NodeVect Nodes;
152 NodeToUsesMap Uses;
153 NodeOrdering NodeOrder; // Node ordering, for deterministic behavior.
154 SpecificBumpPtrAllocator<GepNode> *Mem;
155 LLVMContext *Ctx;
156 LoopInfo *LI;
157 DominatorTree *DT;
158 PostDominatorTree *PDT;
159 Function *Fn;
160 };
161
162 } // end anonymous namespace
163
164 char HexagonCommonGEP::ID = 0;
165
166 INITIALIZE_PASS_BEGIN(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP",
167 false, false)
168 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
169 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
170 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
171 INITIALIZE_PASS_END(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP",
172 false, false)
173
174 namespace {
175
176 struct GepNode {
177 enum {
178 None = 0,
179 Root = 0x01,
180 Internal = 0x02,
181 Used = 0x04,
182 InBounds = 0x08
183 };
184
185 uint32_t Flags = 0;
186 union {
187 GepNode *Parent;
188 Value *BaseVal;
189 };
190 Value *Idx = nullptr;
191 Type *PTy = nullptr; // Type of the pointer operand.
192
GepNode__anon115fb69a0211::GepNode193 GepNode() : Parent(nullptr) {}
GepNode__anon115fb69a0211::GepNode194 GepNode(const GepNode *N) : Flags(N->Flags), Idx(N->Idx), PTy(N->PTy) {
195 if (Flags & Root)
196 BaseVal = N->BaseVal;
197 else
198 Parent = N->Parent;
199 }
200
201 friend raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN);
202 };
203
next_type(Type * Ty,Value * Idx)204 Type *next_type(Type *Ty, Value *Idx) {
205 if (auto *PTy = dyn_cast<PointerType>(Ty))
206 return PTy->getElementType();
207 // Advance the type.
208 if (!Ty->isStructTy()) {
209 Type *NexTy = cast<SequentialType>(Ty)->getElementType();
210 return NexTy;
211 }
212 // Otherwise it is a struct type.
213 ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
214 assert(CI && "Struct type with non-constant index");
215 int64_t i = CI->getValue().getSExtValue();
216 Type *NextTy = cast<StructType>(Ty)->getElementType(i);
217 return NextTy;
218 }
219
operator <<(raw_ostream & OS,const GepNode & GN)220 raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN) {
221 OS << "{ {";
222 bool Comma = false;
223 if (GN.Flags & GepNode::Root) {
224 OS << "root";
225 Comma = true;
226 }
227 if (GN.Flags & GepNode::Internal) {
228 if (Comma)
229 OS << ',';
230 OS << "internal";
231 Comma = true;
232 }
233 if (GN.Flags & GepNode::Used) {
234 if (Comma)
235 OS << ',';
236 OS << "used";
237 }
238 if (GN.Flags & GepNode::InBounds) {
239 if (Comma)
240 OS << ',';
241 OS << "inbounds";
242 }
243 OS << "} ";
244 if (GN.Flags & GepNode::Root)
245 OS << "BaseVal:" << GN.BaseVal->getName() << '(' << GN.BaseVal << ')';
246 else
247 OS << "Parent:" << GN.Parent;
248
249 OS << " Idx:";
250 if (ConstantInt *CI = dyn_cast<ConstantInt>(GN.Idx))
251 OS << CI->getValue().getSExtValue();
252 else if (GN.Idx->hasName())
253 OS << GN.Idx->getName();
254 else
255 OS << "<anon> =" << *GN.Idx;
256
257 OS << " PTy:";
258 if (GN.PTy->isStructTy()) {
259 StructType *STy = cast<StructType>(GN.PTy);
260 if (!STy->isLiteral())
261 OS << GN.PTy->getStructName();
262 else
263 OS << "<anon-struct>:" << *STy;
264 }
265 else
266 OS << *GN.PTy;
267 OS << " }";
268 return OS;
269 }
270
271 template <typename NodeContainer>
dump_node_container(raw_ostream & OS,const NodeContainer & S)272 void dump_node_container(raw_ostream &OS, const NodeContainer &S) {
273 using const_iterator = typename NodeContainer::const_iterator;
274
275 for (const_iterator I = S.begin(), E = S.end(); I != E; ++I)
276 OS << *I << ' ' << **I << '\n';
277 }
278
279 raw_ostream &operator<< (raw_ostream &OS,
280 const NodeVect &S) LLVM_ATTRIBUTE_UNUSED;
operator <<(raw_ostream & OS,const NodeVect & S)281 raw_ostream &operator<< (raw_ostream &OS, const NodeVect &S) {
282 dump_node_container(OS, S);
283 return OS;
284 }
285
286 raw_ostream &operator<< (raw_ostream &OS,
287 const NodeToUsesMap &M) LLVM_ATTRIBUTE_UNUSED;
operator <<(raw_ostream & OS,const NodeToUsesMap & M)288 raw_ostream &operator<< (raw_ostream &OS, const NodeToUsesMap &M){
289 using const_iterator = NodeToUsesMap::const_iterator;
290
291 for (const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
292 const UseSet &Us = I->second;
293 OS << I->first << " -> #" << Us.size() << '{';
294 for (UseSet::const_iterator J = Us.begin(), F = Us.end(); J != F; ++J) {
295 User *R = (*J)->getUser();
296 if (R->hasName())
297 OS << ' ' << R->getName();
298 else
299 OS << " <?>(" << *R << ')';
300 }
301 OS << " }\n";
302 }
303 return OS;
304 }
305
306 struct in_set {
in_set__anon115fb69a0211::in_set307 in_set(const NodeSet &S) : NS(S) {}
308
operator ()__anon115fb69a0211::in_set309 bool operator() (GepNode *N) const {
310 return NS.find(N) != NS.end();
311 }
312
313 private:
314 const NodeSet &NS;
315 };
316
317 } // end anonymous namespace
318
operator new(size_t,SpecificBumpPtrAllocator<GepNode> & A)319 inline void *operator new(size_t, SpecificBumpPtrAllocator<GepNode> &A) {
320 return A.Allocate();
321 }
322
getBlockTraversalOrder(BasicBlock * Root,ValueVect & Order)323 void HexagonCommonGEP::getBlockTraversalOrder(BasicBlock *Root,
324 ValueVect &Order) {
325 // Compute block ordering for a typical DT-based traversal of the flow
326 // graph: "before visiting a block, all of its dominators must have been
327 // visited".
328
329 Order.push_back(Root);
330 for (auto *DTN : children<DomTreeNode*>(DT->getNode(Root)))
331 getBlockTraversalOrder(DTN->getBlock(), Order);
332 }
333
isHandledGepForm(GetElementPtrInst * GepI)334 bool HexagonCommonGEP::isHandledGepForm(GetElementPtrInst *GepI) {
335 // No vector GEPs.
336 if (!GepI->getType()->isPointerTy())
337 return false;
338 // No GEPs without any indices. (Is this possible?)
339 if (GepI->idx_begin() == GepI->idx_end())
340 return false;
341 return true;
342 }
343
processGepInst(GetElementPtrInst * GepI,ValueToNodeMap & NM)344 void HexagonCommonGEP::processGepInst(GetElementPtrInst *GepI,
345 ValueToNodeMap &NM) {
346 LLVM_DEBUG(dbgs() << "Visiting GEP: " << *GepI << '\n');
347 GepNode *N = new (*Mem) GepNode;
348 Value *PtrOp = GepI->getPointerOperand();
349 uint32_t InBounds = GepI->isInBounds() ? GepNode::InBounds : 0;
350 ValueToNodeMap::iterator F = NM.find(PtrOp);
351 if (F == NM.end()) {
352 N->BaseVal = PtrOp;
353 N->Flags |= GepNode::Root | InBounds;
354 } else {
355 // If PtrOp was a GEP instruction, it must have already been processed.
356 // The ValueToNodeMap entry for it is the last gep node in the generated
357 // chain. Link to it here.
358 N->Parent = F->second;
359 }
360 N->PTy = PtrOp->getType();
361 N->Idx = *GepI->idx_begin();
362
363 // Collect the list of users of this GEP instruction. Will add it to the
364 // last node created for it.
365 UseSet Us;
366 for (Value::user_iterator UI = GepI->user_begin(), UE = GepI->user_end();
367 UI != UE; ++UI) {
368 // Check if this gep is used by anything other than other geps that
369 // we will process.
370 if (isa<GetElementPtrInst>(*UI)) {
371 GetElementPtrInst *UserG = cast<GetElementPtrInst>(*UI);
372 if (isHandledGepForm(UserG))
373 continue;
374 }
375 Us.insert(&UI.getUse());
376 }
377 Nodes.push_back(N);
378 NodeOrder.insert(N);
379
380 // Skip the first index operand, since we only handle 0. This dereferences
381 // the pointer operand.
382 GepNode *PN = N;
383 Type *PtrTy = cast<PointerType>(PtrOp->getType())->getElementType();
384 for (User::op_iterator OI = GepI->idx_begin()+1, OE = GepI->idx_end();
385 OI != OE; ++OI) {
386 Value *Op = *OI;
387 GepNode *Nx = new (*Mem) GepNode;
388 Nx->Parent = PN; // Link Nx to the previous node.
389 Nx->Flags |= GepNode::Internal | InBounds;
390 Nx->PTy = PtrTy;
391 Nx->Idx = Op;
392 Nodes.push_back(Nx);
393 NodeOrder.insert(Nx);
394 PN = Nx;
395
396 PtrTy = next_type(PtrTy, Op);
397 }
398
399 // After last node has been created, update the use information.
400 if (!Us.empty()) {
401 PN->Flags |= GepNode::Used;
402 Uses[PN].insert(Us.begin(), Us.end());
403 }
404
405 // Link the last node with the originating GEP instruction. This is to
406 // help with linking chained GEP instructions.
407 NM.insert(std::make_pair(GepI, PN));
408 }
409
collect()410 void HexagonCommonGEP::collect() {
411 // Establish depth-first traversal order of the dominator tree.
412 ValueVect BO;
413 getBlockTraversalOrder(&Fn->front(), BO);
414
415 // The creation of gep nodes requires DT-traversal. When processing a GEP
416 // instruction that uses another GEP instruction as the base pointer, the
417 // gep node for the base pointer should already exist.
418 ValueToNodeMap NM;
419 for (ValueVect::iterator I = BO.begin(), E = BO.end(); I != E; ++I) {
420 BasicBlock *B = cast<BasicBlock>(*I);
421 for (BasicBlock::iterator J = B->begin(), F = B->end(); J != F; ++J) {
422 if (!isa<GetElementPtrInst>(J))
423 continue;
424 GetElementPtrInst *GepI = cast<GetElementPtrInst>(J);
425 if (isHandledGepForm(GepI))
426 processGepInst(GepI, NM);
427 }
428 }
429
430 LLVM_DEBUG(dbgs() << "Gep nodes after initial collection:\n" << Nodes);
431 }
432
invert_find_roots(const NodeVect & Nodes,NodeChildrenMap & NCM,NodeVect & Roots)433 static void invert_find_roots(const NodeVect &Nodes, NodeChildrenMap &NCM,
434 NodeVect &Roots) {
435 using const_iterator = NodeVect::const_iterator;
436
437 for (const_iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
438 GepNode *N = *I;
439 if (N->Flags & GepNode::Root) {
440 Roots.push_back(N);
441 continue;
442 }
443 GepNode *PN = N->Parent;
444 NCM[PN].push_back(N);
445 }
446 }
447
nodes_for_root(GepNode * Root,NodeChildrenMap & NCM,NodeSet & Nodes)448 static void nodes_for_root(GepNode *Root, NodeChildrenMap &NCM,
449 NodeSet &Nodes) {
450 NodeVect Work;
451 Work.push_back(Root);
452 Nodes.insert(Root);
453
454 while (!Work.empty()) {
455 NodeVect::iterator First = Work.begin();
456 GepNode *N = *First;
457 Work.erase(First);
458 NodeChildrenMap::iterator CF = NCM.find(N);
459 if (CF != NCM.end()) {
460 Work.insert(Work.end(), CF->second.begin(), CF->second.end());
461 Nodes.insert(CF->second.begin(), CF->second.end());
462 }
463 }
464 }
465
466 namespace {
467
468 using NodeSymRel = std::set<NodeSet>;
469 using NodePair = std::pair<GepNode *, GepNode *>;
470 using NodePairSet = std::set<NodePair>;
471
472 } // end anonymous namespace
473
node_class(GepNode * N,NodeSymRel & Rel)474 static const NodeSet *node_class(GepNode *N, NodeSymRel &Rel) {
475 for (NodeSymRel::iterator I = Rel.begin(), E = Rel.end(); I != E; ++I)
476 if (I->count(N))
477 return &*I;
478 return nullptr;
479 }
480
481 // Create an ordered pair of GepNode pointers. The pair will be used in
482 // determining equality. The only purpose of the ordering is to eliminate
483 // duplication due to the commutativity of equality/non-equality.
node_pair(GepNode * N1,GepNode * N2)484 static NodePair node_pair(GepNode *N1, GepNode *N2) {
485 uintptr_t P1 = uintptr_t(N1), P2 = uintptr_t(N2);
486 if (P1 <= P2)
487 return std::make_pair(N1, N2);
488 return std::make_pair(N2, N1);
489 }
490
node_hash(GepNode * N)491 static unsigned node_hash(GepNode *N) {
492 // Include everything except flags and parent.
493 FoldingSetNodeID ID;
494 ID.AddPointer(N->Idx);
495 ID.AddPointer(N->PTy);
496 return ID.ComputeHash();
497 }
498
node_eq(GepNode * N1,GepNode * N2,NodePairSet & Eq,NodePairSet & Ne)499 static bool node_eq(GepNode *N1, GepNode *N2, NodePairSet &Eq,
500 NodePairSet &Ne) {
501 // Don't cache the result for nodes with different hashes. The hash
502 // comparison is fast enough.
503 if (node_hash(N1) != node_hash(N2))
504 return false;
505
506 NodePair NP = node_pair(N1, N2);
507 NodePairSet::iterator FEq = Eq.find(NP);
508 if (FEq != Eq.end())
509 return true;
510 NodePairSet::iterator FNe = Ne.find(NP);
511 if (FNe != Ne.end())
512 return false;
513 // Not previously compared.
514 bool Root1 = N1->Flags & GepNode::Root;
515 bool Root2 = N2->Flags & GepNode::Root;
516 NodePair P = node_pair(N1, N2);
517 // If the Root flag has different values, the nodes are different.
518 // If both nodes are root nodes, but their base pointers differ,
519 // they are different.
520 if (Root1 != Root2 || (Root1 && N1->BaseVal != N2->BaseVal)) {
521 Ne.insert(P);
522 return false;
523 }
524 // Here the root flags are identical, and for root nodes the
525 // base pointers are equal, so the root nodes are equal.
526 // For non-root nodes, compare their parent nodes.
527 if (Root1 || node_eq(N1->Parent, N2->Parent, Eq, Ne)) {
528 Eq.insert(P);
529 return true;
530 }
531 return false;
532 }
533
common()534 void HexagonCommonGEP::common() {
535 // The essence of this commoning is finding gep nodes that are equal.
536 // To do this we need to compare all pairs of nodes. To save time,
537 // first, partition the set of all nodes into sets of potentially equal
538 // nodes, and then compare pairs from within each partition.
539 using NodeSetMap = std::map<unsigned, NodeSet>;
540 NodeSetMap MaybeEq;
541
542 for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
543 GepNode *N = *I;
544 unsigned H = node_hash(N);
545 MaybeEq[H].insert(N);
546 }
547
548 // Compute the equivalence relation for the gep nodes. Use two caches,
549 // one for equality and the other for non-equality.
550 NodeSymRel EqRel; // Equality relation (as set of equivalence classes).
551 NodePairSet Eq, Ne; // Caches.
552 for (NodeSetMap::iterator I = MaybeEq.begin(), E = MaybeEq.end();
553 I != E; ++I) {
554 NodeSet &S = I->second;
555 for (NodeSet::iterator NI = S.begin(), NE = S.end(); NI != NE; ++NI) {
556 GepNode *N = *NI;
557 // If node already has a class, then the class must have been created
558 // in a prior iteration of this loop. Since equality is transitive,
559 // nothing more will be added to that class, so skip it.
560 if (node_class(N, EqRel))
561 continue;
562
563 // Create a new class candidate now.
564 NodeSet C;
565 for (NodeSet::iterator NJ = std::next(NI); NJ != NE; ++NJ)
566 if (node_eq(N, *NJ, Eq, Ne))
567 C.insert(*NJ);
568 // If Tmp is empty, N would be the only element in it. Don't bother
569 // creating a class for it then.
570 if (!C.empty()) {
571 C.insert(N); // Finalize the set before adding it to the relation.
572 std::pair<NodeSymRel::iterator, bool> Ins = EqRel.insert(C);
573 (void)Ins;
574 assert(Ins.second && "Cannot add a class");
575 }
576 }
577 }
578
579 LLVM_DEBUG({
580 dbgs() << "Gep node equality:\n";
581 for (NodePairSet::iterator I = Eq.begin(), E = Eq.end(); I != E; ++I)
582 dbgs() << "{ " << I->first << ", " << I->second << " }\n";
583
584 dbgs() << "Gep equivalence classes:\n";
585 for (NodeSymRel::iterator I = EqRel.begin(), E = EqRel.end(); I != E; ++I) {
586 dbgs() << '{';
587 const NodeSet &S = *I;
588 for (NodeSet::const_iterator J = S.begin(), F = S.end(); J != F; ++J) {
589 if (J != S.begin())
590 dbgs() << ',';
591 dbgs() << ' ' << *J;
592 }
593 dbgs() << " }\n";
594 }
595 });
596
597 // Create a projection from a NodeSet to the minimal element in it.
598 using ProjMap = std::map<const NodeSet *, GepNode *>;
599 ProjMap PM;
600 for (NodeSymRel::iterator I = EqRel.begin(), E = EqRel.end(); I != E; ++I) {
601 const NodeSet &S = *I;
602 GepNode *Min = *std::min_element(S.begin(), S.end(), NodeOrder);
603 std::pair<ProjMap::iterator,bool> Ins = PM.insert(std::make_pair(&S, Min));
604 (void)Ins;
605 assert(Ins.second && "Cannot add minimal element");
606
607 // Update the min element's flags, and user list.
608 uint32_t Flags = 0;
609 UseSet &MinUs = Uses[Min];
610 for (NodeSet::iterator J = S.begin(), F = S.end(); J != F; ++J) {
611 GepNode *N = *J;
612 uint32_t NF = N->Flags;
613 // If N is used, append all original values of N to the list of
614 // original values of Min.
615 if (NF & GepNode::Used)
616 MinUs.insert(Uses[N].begin(), Uses[N].end());
617 Flags |= NF;
618 }
619 if (MinUs.empty())
620 Uses.erase(Min);
621
622 // The collected flags should include all the flags from the min element.
623 assert((Min->Flags & Flags) == Min->Flags);
624 Min->Flags = Flags;
625 }
626
627 // Commoning: for each non-root gep node, replace "Parent" with the
628 // selected (minimum) node from the corresponding equivalence class.
629 // If a given parent does not have an equivalence class, leave it
630 // unchanged (it means that it's the only element in its class).
631 for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
632 GepNode *N = *I;
633 if (N->Flags & GepNode::Root)
634 continue;
635 const NodeSet *PC = node_class(N->Parent, EqRel);
636 if (!PC)
637 continue;
638 ProjMap::iterator F = PM.find(PC);
639 if (F == PM.end())
640 continue;
641 // Found a replacement, use it.
642 GepNode *Rep = F->second;
643 N->Parent = Rep;
644 }
645
646 LLVM_DEBUG(dbgs() << "Gep nodes after commoning:\n" << Nodes);
647
648 // Finally, erase the nodes that are no longer used.
649 NodeSet Erase;
650 for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
651 GepNode *N = *I;
652 const NodeSet *PC = node_class(N, EqRel);
653 if (!PC)
654 continue;
655 ProjMap::iterator F = PM.find(PC);
656 if (F == PM.end())
657 continue;
658 if (N == F->second)
659 continue;
660 // Node for removal.
661 Erase.insert(*I);
662 }
663 NodeVect::iterator NewE = remove_if(Nodes, in_set(Erase));
664 Nodes.resize(std::distance(Nodes.begin(), NewE));
665
666 LLVM_DEBUG(dbgs() << "Gep nodes after post-commoning cleanup:\n" << Nodes);
667 }
668
669 template <typename T>
nearest_common_dominator(DominatorTree * DT,T & Blocks)670 static BasicBlock *nearest_common_dominator(DominatorTree *DT, T &Blocks) {
671 LLVM_DEBUG({
672 dbgs() << "NCD of {";
673 for (typename T::iterator I = Blocks.begin(), E = Blocks.end(); I != E;
674 ++I) {
675 if (!*I)
676 continue;
677 BasicBlock *B = cast<BasicBlock>(*I);
678 dbgs() << ' ' << B->getName();
679 }
680 dbgs() << " }\n";
681 });
682
683 // Allow null basic blocks in Blocks. In such cases, return nullptr.
684 typename T::iterator I = Blocks.begin(), E = Blocks.end();
685 if (I == E || !*I)
686 return nullptr;
687 BasicBlock *Dom = cast<BasicBlock>(*I);
688 while (++I != E) {
689 BasicBlock *B = cast_or_null<BasicBlock>(*I);
690 Dom = B ? DT->findNearestCommonDominator(Dom, B) : nullptr;
691 if (!Dom)
692 return nullptr;
693 }
694 LLVM_DEBUG(dbgs() << "computed:" << Dom->getName() << '\n');
695 return Dom;
696 }
697
698 template <typename T>
nearest_common_dominatee(DominatorTree * DT,T & Blocks)699 static BasicBlock *nearest_common_dominatee(DominatorTree *DT, T &Blocks) {
700 // If two blocks, A and B, dominate a block C, then A dominates B,
701 // or B dominates A.
702 typename T::iterator I = Blocks.begin(), E = Blocks.end();
703 // Find the first non-null block.
704 while (I != E && !*I)
705 ++I;
706 if (I == E)
707 return DT->getRoot();
708 BasicBlock *DomB = cast<BasicBlock>(*I);
709 while (++I != E) {
710 if (!*I)
711 continue;
712 BasicBlock *B = cast<BasicBlock>(*I);
713 if (DT->dominates(B, DomB))
714 continue;
715 if (!DT->dominates(DomB, B))
716 return nullptr;
717 DomB = B;
718 }
719 return DomB;
720 }
721
722 // Find the first use in B of any value from Values. If no such use,
723 // return B->end().
724 template <typename T>
first_use_of_in_block(T & Values,BasicBlock * B)725 static BasicBlock::iterator first_use_of_in_block(T &Values, BasicBlock *B) {
726 BasicBlock::iterator FirstUse = B->end(), BEnd = B->end();
727
728 using iterator = typename T::iterator;
729
730 for (iterator I = Values.begin(), E = Values.end(); I != E; ++I) {
731 Value *V = *I;
732 // If V is used in a PHI node, the use belongs to the incoming block,
733 // not the block with the PHI node. In the incoming block, the use
734 // would be considered as being at the end of it, so it cannot
735 // influence the position of the first use (which is assumed to be
736 // at the end to start with).
737 if (isa<PHINode>(V))
738 continue;
739 if (!isa<Instruction>(V))
740 continue;
741 Instruction *In = cast<Instruction>(V);
742 if (In->getParent() != B)
743 continue;
744 BasicBlock::iterator It = In->getIterator();
745 if (std::distance(FirstUse, BEnd) < std::distance(It, BEnd))
746 FirstUse = It;
747 }
748 return FirstUse;
749 }
750
is_empty(const BasicBlock * B)751 static bool is_empty(const BasicBlock *B) {
752 return B->empty() || (&*B->begin() == B->getTerminator());
753 }
754
recalculatePlacement(GepNode * Node,NodeChildrenMap & NCM,NodeToValueMap & Loc)755 BasicBlock *HexagonCommonGEP::recalculatePlacement(GepNode *Node,
756 NodeChildrenMap &NCM, NodeToValueMap &Loc) {
757 LLVM_DEBUG(dbgs() << "Loc for node:" << Node << '\n');
758 // Recalculate the placement for Node, assuming that the locations of
759 // its children in Loc are valid.
760 // Return nullptr if there is no valid placement for Node (for example, it
761 // uses an index value that is not available at the location required
762 // to dominate all children, etc.).
763
764 // Find the nearest common dominator for:
765 // - all users, if the node is used, and
766 // - all children.
767 ValueVect Bs;
768 if (Node->Flags & GepNode::Used) {
769 // Append all blocks with uses of the original values to the
770 // block vector Bs.
771 NodeToUsesMap::iterator UF = Uses.find(Node);
772 assert(UF != Uses.end() && "Used node with no use information");
773 UseSet &Us = UF->second;
774 for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) {
775 Use *U = *I;
776 User *R = U->getUser();
777 if (!isa<Instruction>(R))
778 continue;
779 BasicBlock *PB = isa<PHINode>(R)
780 ? cast<PHINode>(R)->getIncomingBlock(*U)
781 : cast<Instruction>(R)->getParent();
782 Bs.push_back(PB);
783 }
784 }
785 // Append the location of each child.
786 NodeChildrenMap::iterator CF = NCM.find(Node);
787 if (CF != NCM.end()) {
788 NodeVect &Cs = CF->second;
789 for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) {
790 GepNode *CN = *I;
791 NodeToValueMap::iterator LF = Loc.find(CN);
792 // If the child is only used in GEP instructions (i.e. is not used in
793 // non-GEP instructions), the nearest dominator computed for it may
794 // have been null. In such case it won't have a location available.
795 if (LF == Loc.end())
796 continue;
797 Bs.push_back(LF->second);
798 }
799 }
800
801 BasicBlock *DomB = nearest_common_dominator(DT, Bs);
802 if (!DomB)
803 return nullptr;
804 // Check if the index used by Node dominates the computed dominator.
805 Instruction *IdxI = dyn_cast<Instruction>(Node->Idx);
806 if (IdxI && !DT->dominates(IdxI->getParent(), DomB))
807 return nullptr;
808
809 // Avoid putting nodes into empty blocks.
810 while (is_empty(DomB)) {
811 DomTreeNode *N = (*DT)[DomB]->getIDom();
812 if (!N)
813 break;
814 DomB = N->getBlock();
815 }
816
817 // Otherwise, DomB is fine. Update the location map.
818 Loc[Node] = DomB;
819 return DomB;
820 }
821
recalculatePlacementRec(GepNode * Node,NodeChildrenMap & NCM,NodeToValueMap & Loc)822 BasicBlock *HexagonCommonGEP::recalculatePlacementRec(GepNode *Node,
823 NodeChildrenMap &NCM, NodeToValueMap &Loc) {
824 LLVM_DEBUG(dbgs() << "LocRec begin for node:" << Node << '\n');
825 // Recalculate the placement of Node, after recursively recalculating the
826 // placements of all its children.
827 NodeChildrenMap::iterator CF = NCM.find(Node);
828 if (CF != NCM.end()) {
829 NodeVect &Cs = CF->second;
830 for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I)
831 recalculatePlacementRec(*I, NCM, Loc);
832 }
833 BasicBlock *LB = recalculatePlacement(Node, NCM, Loc);
834 LLVM_DEBUG(dbgs() << "LocRec end for node:" << Node << '\n');
835 return LB;
836 }
837
isInvariantIn(Value * Val,Loop * L)838 bool HexagonCommonGEP::isInvariantIn(Value *Val, Loop *L) {
839 if (isa<Constant>(Val) || isa<Argument>(Val))
840 return true;
841 Instruction *In = dyn_cast<Instruction>(Val);
842 if (!In)
843 return false;
844 BasicBlock *HdrB = L->getHeader(), *DefB = In->getParent();
845 return DT->properlyDominates(DefB, HdrB);
846 }
847
isInvariantIn(GepNode * Node,Loop * L)848 bool HexagonCommonGEP::isInvariantIn(GepNode *Node, Loop *L) {
849 if (Node->Flags & GepNode::Root)
850 if (!isInvariantIn(Node->BaseVal, L))
851 return false;
852 return isInvariantIn(Node->Idx, L);
853 }
854
isInMainPath(BasicBlock * B,Loop * L)855 bool HexagonCommonGEP::isInMainPath(BasicBlock *B, Loop *L) {
856 BasicBlock *HB = L->getHeader();
857 BasicBlock *LB = L->getLoopLatch();
858 // B must post-dominate the loop header or dominate the loop latch.
859 if (PDT->dominates(B, HB))
860 return true;
861 if (LB && DT->dominates(B, LB))
862 return true;
863 return false;
864 }
865
preheader(DominatorTree * DT,Loop * L)866 static BasicBlock *preheader(DominatorTree *DT, Loop *L) {
867 if (BasicBlock *PH = L->getLoopPreheader())
868 return PH;
869 if (!OptSpeculate)
870 return nullptr;
871 DomTreeNode *DN = DT->getNode(L->getHeader());
872 if (!DN)
873 return nullptr;
874 return DN->getIDom()->getBlock();
875 }
876
adjustForInvariance(GepNode * Node,NodeChildrenMap & NCM,NodeToValueMap & Loc)877 BasicBlock *HexagonCommonGEP::adjustForInvariance(GepNode *Node,
878 NodeChildrenMap &NCM, NodeToValueMap &Loc) {
879 // Find the "topmost" location for Node: it must be dominated by both,
880 // its parent (or the BaseVal, if it's a root node), and by the index
881 // value.
882 ValueVect Bs;
883 if (Node->Flags & GepNode::Root) {
884 if (Instruction *PIn = dyn_cast<Instruction>(Node->BaseVal))
885 Bs.push_back(PIn->getParent());
886 } else {
887 Bs.push_back(Loc[Node->Parent]);
888 }
889 if (Instruction *IIn = dyn_cast<Instruction>(Node->Idx))
890 Bs.push_back(IIn->getParent());
891 BasicBlock *TopB = nearest_common_dominatee(DT, Bs);
892
893 // Traverse the loop nest upwards until we find a loop in which Node
894 // is no longer invariant, or until we get to the upper limit of Node's
895 // placement. The traversal will also stop when a suitable "preheader"
896 // cannot be found for a given loop. The "preheader" may actually be
897 // a regular block outside of the loop (i.e. not guarded), in which case
898 // the Node will be speculated.
899 // For nodes that are not in the main path of the containing loop (i.e.
900 // are not executed in each iteration), do not move them out of the loop.
901 BasicBlock *LocB = cast_or_null<BasicBlock>(Loc[Node]);
902 if (LocB) {
903 Loop *Lp = LI->getLoopFor(LocB);
904 while (Lp) {
905 if (!isInvariantIn(Node, Lp) || !isInMainPath(LocB, Lp))
906 break;
907 BasicBlock *NewLoc = preheader(DT, Lp);
908 if (!NewLoc || !DT->dominates(TopB, NewLoc))
909 break;
910 Lp = Lp->getParentLoop();
911 LocB = NewLoc;
912 }
913 }
914 Loc[Node] = LocB;
915
916 // Recursively compute the locations of all children nodes.
917 NodeChildrenMap::iterator CF = NCM.find(Node);
918 if (CF != NCM.end()) {
919 NodeVect &Cs = CF->second;
920 for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I)
921 adjustForInvariance(*I, NCM, Loc);
922 }
923 return LocB;
924 }
925
926 namespace {
927
928 struct LocationAsBlock {
LocationAsBlock__anon115fb69a0611::LocationAsBlock929 LocationAsBlock(const NodeToValueMap &L) : Map(L) {}
930
931 const NodeToValueMap ⤅
932 };
933
934 raw_ostream &operator<< (raw_ostream &OS,
935 const LocationAsBlock &Loc) LLVM_ATTRIBUTE_UNUSED ;
operator <<(raw_ostream & OS,const LocationAsBlock & Loc)936 raw_ostream &operator<< (raw_ostream &OS, const LocationAsBlock &Loc) {
937 for (NodeToValueMap::const_iterator I = Loc.Map.begin(), E = Loc.Map.end();
938 I != E; ++I) {
939 OS << I->first << " -> ";
940 BasicBlock *B = cast<BasicBlock>(I->second);
941 OS << B->getName() << '(' << B << ')';
942 OS << '\n';
943 }
944 return OS;
945 }
946
is_constant(GepNode * N)947 inline bool is_constant(GepNode *N) {
948 return isa<ConstantInt>(N->Idx);
949 }
950
951 } // end anonymous namespace
952
separateChainForNode(GepNode * Node,Use * U,NodeToValueMap & Loc)953 void HexagonCommonGEP::separateChainForNode(GepNode *Node, Use *U,
954 NodeToValueMap &Loc) {
955 User *R = U->getUser();
956 LLVM_DEBUG(dbgs() << "Separating chain for node (" << Node << ") user: " << *R
957 << '\n');
958 BasicBlock *PB = cast<Instruction>(R)->getParent();
959
960 GepNode *N = Node;
961 GepNode *C = nullptr, *NewNode = nullptr;
962 while (is_constant(N) && !(N->Flags & GepNode::Root)) {
963 // XXX if (single-use) dont-replicate;
964 GepNode *NewN = new (*Mem) GepNode(N);
965 Nodes.push_back(NewN);
966 Loc[NewN] = PB;
967
968 if (N == Node)
969 NewNode = NewN;
970 NewN->Flags &= ~GepNode::Used;
971 if (C)
972 C->Parent = NewN;
973 C = NewN;
974 N = N->Parent;
975 }
976 if (!NewNode)
977 return;
978
979 // Move over all uses that share the same user as U from Node to NewNode.
980 NodeToUsesMap::iterator UF = Uses.find(Node);
981 assert(UF != Uses.end());
982 UseSet &Us = UF->second;
983 UseSet NewUs;
984 for (Use *U : Us) {
985 if (U->getUser() == R)
986 NewUs.insert(U);
987 }
988 for (Use *U : NewUs)
989 Us.remove(U); // erase takes an iterator.
990
991 if (Us.empty()) {
992 Node->Flags &= ~GepNode::Used;
993 Uses.erase(UF);
994 }
995
996 // Should at least have U in NewUs.
997 NewNode->Flags |= GepNode::Used;
998 LLVM_DEBUG(dbgs() << "new node: " << NewNode << " " << *NewNode << '\n');
999 assert(!NewUs.empty());
1000 Uses[NewNode] = NewUs;
1001 }
1002
separateConstantChains(GepNode * Node,NodeChildrenMap & NCM,NodeToValueMap & Loc)1003 void HexagonCommonGEP::separateConstantChains(GepNode *Node,
1004 NodeChildrenMap &NCM, NodeToValueMap &Loc) {
1005 // First approximation: extract all chains.
1006 NodeSet Ns;
1007 nodes_for_root(Node, NCM, Ns);
1008
1009 LLVM_DEBUG(dbgs() << "Separating constant chains for node: " << Node << '\n');
1010 // Collect all used nodes together with the uses from loads and stores,
1011 // where the GEP node could be folded into the load/store instruction.
1012 NodeToUsesMap FNs; // Foldable nodes.
1013 for (NodeSet::iterator I = Ns.begin(), E = Ns.end(); I != E; ++I) {
1014 GepNode *N = *I;
1015 if (!(N->Flags & GepNode::Used))
1016 continue;
1017 NodeToUsesMap::iterator UF = Uses.find(N);
1018 assert(UF != Uses.end());
1019 UseSet &Us = UF->second;
1020 // Loads/stores that use the node N.
1021 UseSet LSs;
1022 for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J) {
1023 Use *U = *J;
1024 User *R = U->getUser();
1025 // We're interested in uses that provide the address. It can happen
1026 // that the value may also be provided via GEP, but we won't handle
1027 // those cases here for now.
1028 if (LoadInst *Ld = dyn_cast<LoadInst>(R)) {
1029 unsigned PtrX = LoadInst::getPointerOperandIndex();
1030 if (&Ld->getOperandUse(PtrX) == U)
1031 LSs.insert(U);
1032 } else if (StoreInst *St = dyn_cast<StoreInst>(R)) {
1033 unsigned PtrX = StoreInst::getPointerOperandIndex();
1034 if (&St->getOperandUse(PtrX) == U)
1035 LSs.insert(U);
1036 }
1037 }
1038 // Even if the total use count is 1, separating the chain may still be
1039 // beneficial, since the constant chain may be longer than the GEP alone
1040 // would be (e.g. if the parent node has a constant index and also has
1041 // other children).
1042 if (!LSs.empty())
1043 FNs.insert(std::make_pair(N, LSs));
1044 }
1045
1046 LLVM_DEBUG(dbgs() << "Nodes with foldable users:\n" << FNs);
1047
1048 for (NodeToUsesMap::iterator I = FNs.begin(), E = FNs.end(); I != E; ++I) {
1049 GepNode *N = I->first;
1050 UseSet &Us = I->second;
1051 for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J)
1052 separateChainForNode(N, *J, Loc);
1053 }
1054 }
1055
computeNodePlacement(NodeToValueMap & Loc)1056 void HexagonCommonGEP::computeNodePlacement(NodeToValueMap &Loc) {
1057 // Compute the inverse of the Node.Parent links. Also, collect the set
1058 // of root nodes.
1059 NodeChildrenMap NCM;
1060 NodeVect Roots;
1061 invert_find_roots(Nodes, NCM, Roots);
1062
1063 // Compute the initial placement determined by the users' locations, and
1064 // the locations of the child nodes.
1065 for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I)
1066 recalculatePlacementRec(*I, NCM, Loc);
1067
1068 LLVM_DEBUG(dbgs() << "Initial node placement:\n" << LocationAsBlock(Loc));
1069
1070 if (OptEnableInv) {
1071 for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I)
1072 adjustForInvariance(*I, NCM, Loc);
1073
1074 LLVM_DEBUG(dbgs() << "Node placement after adjustment for invariance:\n"
1075 << LocationAsBlock(Loc));
1076 }
1077 if (OptEnableConst) {
1078 for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I)
1079 separateConstantChains(*I, NCM, Loc);
1080 }
1081 LLVM_DEBUG(dbgs() << "Node use information:\n" << Uses);
1082
1083 // At the moment, there is no further refinement of the initial placement.
1084 // Such a refinement could include splitting the nodes if they are placed
1085 // too far from some of its users.
1086
1087 LLVM_DEBUG(dbgs() << "Final node placement:\n" << LocationAsBlock(Loc));
1088 }
1089
fabricateGEP(NodeVect & NA,BasicBlock::iterator At,BasicBlock * LocB)1090 Value *HexagonCommonGEP::fabricateGEP(NodeVect &NA, BasicBlock::iterator At,
1091 BasicBlock *LocB) {
1092 LLVM_DEBUG(dbgs() << "Fabricating GEP in " << LocB->getName()
1093 << " for nodes:\n"
1094 << NA);
1095 unsigned Num = NA.size();
1096 GepNode *RN = NA[0];
1097 assert((RN->Flags & GepNode::Root) && "Creating GEP for non-root");
1098
1099 GetElementPtrInst *NewInst = nullptr;
1100 Value *Input = RN->BaseVal;
1101 Value **IdxList = new Value*[Num+1];
1102 unsigned nax = 0;
1103 do {
1104 unsigned IdxC = 0;
1105 // If the type of the input of the first node is not a pointer,
1106 // we need to add an artificial i32 0 to the indices (because the
1107 // actual input in the IR will be a pointer).
1108 if (!NA[nax]->PTy->isPointerTy()) {
1109 Type *Int32Ty = Type::getInt32Ty(*Ctx);
1110 IdxList[IdxC++] = ConstantInt::get(Int32Ty, 0);
1111 }
1112
1113 // Keep adding indices from NA until we have to stop and generate
1114 // an "intermediate" GEP.
1115 while (++nax <= Num) {
1116 GepNode *N = NA[nax-1];
1117 IdxList[IdxC++] = N->Idx;
1118 if (nax < Num) {
1119 // We have to stop, if the expected type of the output of this node
1120 // is not the same as the input type of the next node.
1121 Type *NextTy = next_type(N->PTy, N->Idx);
1122 if (NextTy != NA[nax]->PTy)
1123 break;
1124 }
1125 }
1126 ArrayRef<Value*> A(IdxList, IdxC);
1127 Type *InpTy = Input->getType();
1128 Type *ElTy = cast<PointerType>(InpTy->getScalarType())->getElementType();
1129 NewInst = GetElementPtrInst::Create(ElTy, Input, A, "cgep", &*At);
1130 NewInst->setIsInBounds(RN->Flags & GepNode::InBounds);
1131 LLVM_DEBUG(dbgs() << "new GEP: " << *NewInst << '\n');
1132 Input = NewInst;
1133 } while (nax <= Num);
1134
1135 delete[] IdxList;
1136 return NewInst;
1137 }
1138
getAllUsersForNode(GepNode * Node,ValueVect & Values,NodeChildrenMap & NCM)1139 void HexagonCommonGEP::getAllUsersForNode(GepNode *Node, ValueVect &Values,
1140 NodeChildrenMap &NCM) {
1141 NodeVect Work;
1142 Work.push_back(Node);
1143
1144 while (!Work.empty()) {
1145 NodeVect::iterator First = Work.begin();
1146 GepNode *N = *First;
1147 Work.erase(First);
1148 if (N->Flags & GepNode::Used) {
1149 NodeToUsesMap::iterator UF = Uses.find(N);
1150 assert(UF != Uses.end() && "No use information for used node");
1151 UseSet &Us = UF->second;
1152 for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I)
1153 Values.push_back((*I)->getUser());
1154 }
1155 NodeChildrenMap::iterator CF = NCM.find(N);
1156 if (CF != NCM.end()) {
1157 NodeVect &Cs = CF->second;
1158 Work.insert(Work.end(), Cs.begin(), Cs.end());
1159 }
1160 }
1161 }
1162
materialize(NodeToValueMap & Loc)1163 void HexagonCommonGEP::materialize(NodeToValueMap &Loc) {
1164 LLVM_DEBUG(dbgs() << "Nodes before materialization:\n" << Nodes << '\n');
1165 NodeChildrenMap NCM;
1166 NodeVect Roots;
1167 // Compute the inversion again, since computing placement could alter
1168 // "parent" relation between nodes.
1169 invert_find_roots(Nodes, NCM, Roots);
1170
1171 while (!Roots.empty()) {
1172 NodeVect::iterator First = Roots.begin();
1173 GepNode *Root = *First, *Last = *First;
1174 Roots.erase(First);
1175
1176 NodeVect NA; // Nodes to assemble.
1177 // Append to NA all child nodes up to (and including) the first child
1178 // that:
1179 // (1) has more than 1 child, or
1180 // (2) is used, or
1181 // (3) has a child located in a different block.
1182 bool LastUsed = false;
1183 unsigned LastCN = 0;
1184 // The location may be null if the computation failed (it can legitimately
1185 // happen for nodes created from dead GEPs).
1186 Value *LocV = Loc[Last];
1187 if (!LocV)
1188 continue;
1189 BasicBlock *LastB = cast<BasicBlock>(LocV);
1190 do {
1191 NA.push_back(Last);
1192 LastUsed = (Last->Flags & GepNode::Used);
1193 if (LastUsed)
1194 break;
1195 NodeChildrenMap::iterator CF = NCM.find(Last);
1196 LastCN = (CF != NCM.end()) ? CF->second.size() : 0;
1197 if (LastCN != 1)
1198 break;
1199 GepNode *Child = CF->second.front();
1200 BasicBlock *ChildB = cast_or_null<BasicBlock>(Loc[Child]);
1201 if (ChildB != nullptr && LastB != ChildB)
1202 break;
1203 Last = Child;
1204 } while (true);
1205
1206 BasicBlock::iterator InsertAt = LastB->getTerminator()->getIterator();
1207 if (LastUsed || LastCN > 0) {
1208 ValueVect Urs;
1209 getAllUsersForNode(Root, Urs, NCM);
1210 BasicBlock::iterator FirstUse = first_use_of_in_block(Urs, LastB);
1211 if (FirstUse != LastB->end())
1212 InsertAt = FirstUse;
1213 }
1214
1215 // Generate a new instruction for NA.
1216 Value *NewInst = fabricateGEP(NA, InsertAt, LastB);
1217
1218 // Convert all the children of Last node into roots, and append them
1219 // to the Roots list.
1220 if (LastCN > 0) {
1221 NodeVect &Cs = NCM[Last];
1222 for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) {
1223 GepNode *CN = *I;
1224 CN->Flags &= ~GepNode::Internal;
1225 CN->Flags |= GepNode::Root;
1226 CN->BaseVal = NewInst;
1227 Roots.push_back(CN);
1228 }
1229 }
1230
1231 // Lastly, if the Last node was used, replace all uses with the new GEP.
1232 // The uses reference the original GEP values.
1233 if (LastUsed) {
1234 NodeToUsesMap::iterator UF = Uses.find(Last);
1235 assert(UF != Uses.end() && "No use information found");
1236 UseSet &Us = UF->second;
1237 for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) {
1238 Use *U = *I;
1239 U->set(NewInst);
1240 }
1241 }
1242 }
1243 }
1244
removeDeadCode()1245 void HexagonCommonGEP::removeDeadCode() {
1246 ValueVect BO;
1247 BO.push_back(&Fn->front());
1248
1249 for (unsigned i = 0; i < BO.size(); ++i) {
1250 BasicBlock *B = cast<BasicBlock>(BO[i]);
1251 for (auto DTN : children<DomTreeNode*>(DT->getNode(B)))
1252 BO.push_back(DTN->getBlock());
1253 }
1254
1255 for (unsigned i = BO.size(); i > 0; --i) {
1256 BasicBlock *B = cast<BasicBlock>(BO[i-1]);
1257 BasicBlock::InstListType &IL = B->getInstList();
1258
1259 using reverse_iterator = BasicBlock::InstListType::reverse_iterator;
1260
1261 ValueVect Ins;
1262 for (reverse_iterator I = IL.rbegin(), E = IL.rend(); I != E; ++I)
1263 Ins.push_back(&*I);
1264 for (ValueVect::iterator I = Ins.begin(), E = Ins.end(); I != E; ++I) {
1265 Instruction *In = cast<Instruction>(*I);
1266 if (isInstructionTriviallyDead(In))
1267 In->eraseFromParent();
1268 }
1269 }
1270 }
1271
runOnFunction(Function & F)1272 bool HexagonCommonGEP::runOnFunction(Function &F) {
1273 if (skipFunction(F))
1274 return false;
1275
1276 // For now bail out on C++ exception handling.
1277 for (Function::iterator A = F.begin(), Z = F.end(); A != Z; ++A)
1278 for (BasicBlock::iterator I = A->begin(), E = A->end(); I != E; ++I)
1279 if (isa<InvokeInst>(I) || isa<LandingPadInst>(I))
1280 return false;
1281
1282 Fn = &F;
1283 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1284 PDT = &getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1285 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1286 Ctx = &F.getContext();
1287
1288 Nodes.clear();
1289 Uses.clear();
1290 NodeOrder.clear();
1291
1292 SpecificBumpPtrAllocator<GepNode> Allocator;
1293 Mem = &Allocator;
1294
1295 collect();
1296 common();
1297
1298 NodeToValueMap Loc;
1299 computeNodePlacement(Loc);
1300 materialize(Loc);
1301 removeDeadCode();
1302
1303 #ifdef EXPENSIVE_CHECKS
1304 // Run this only when expensive checks are enabled.
1305 verifyFunction(F);
1306 #endif
1307 return true;
1308 }
1309
1310 namespace llvm {
1311
createHexagonCommonGEP()1312 FunctionPass *createHexagonCommonGEP() {
1313 return new HexagonCommonGEP();
1314 }
1315
1316 } // end namespace llvm
1317