• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* gpt.cc -- Functions for loading, saving, and manipulating legacy MBR and GPT partition
2    data. */
3 
4 /* By Rod Smith, initial coding January to February, 2009 */
5 
6 /* This program is copyright (c) 2009-2022 by Roderick W. Smith. It is distributed
7   under the terms of the GNU GPL version 2, as detailed in the COPYING file. */
8 
9 #define __STDC_LIMIT_MACROS
10 #ifndef __STDC_CONSTANT_MACROS
11 #define __STDC_CONSTANT_MACROS
12 #endif
13 
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <stdint.h>
17 #include <fcntl.h>
18 #include <string.h>
19 #include <math.h>
20 #include <time.h>
21 #include <sys/stat.h>
22 #include <errno.h>
23 #include <iostream>
24 #include <algorithm>
25 #include "crc32.h"
26 #include "gpt.h"
27 #include "bsd.h"
28 #include "support.h"
29 #include "parttypes.h"
30 #include "attributes.h"
31 #include "diskio.h"
32 
33 using namespace std;
34 
35 #ifdef __FreeBSD__
36 #define log2(x) (log(x) / M_LN2)
37 #endif // __FreeBSD__
38 
39 #ifdef _MSC_VER
40 #define log2(x) (log((double) x) / log(2.0))
41 #endif // Microsoft Visual C++
42 
43 #ifdef EFI
44 // in UEFI mode MMX registers are not yet available so using the
45 // x86_64 ABI to move "double" values around is not an option.
46 #ifdef log2
47 #undef log2
48 #endif
49 #define log2(x) log2_32( x )
log2_32(uint32_t v)50 static inline uint32_t log2_32(uint32_t v) {
51    int r = -1;
52    while (v >= 1) {
53       r++;
54       v >>= 1;
55    }
56    return r;
57 }
58 #endif
59 
60 /****************************************
61  *                                      *
62  * GPTData class and related structures *
63  *                                      *
64  ****************************************/
65 
66 // Default constructor
GPTData(void)67 GPTData::GPTData(void) {
68    blockSize = SECTOR_SIZE; // set a default
69    physBlockSize = 0; // 0 = can't be determined
70    diskSize = 0;
71    partitions = NULL;
72    state = gpt_valid;
73    device = "";
74    justLooking = 0;
75    mainCrcOk = 0;
76    secondCrcOk = 0;
77    mainPartsCrcOk = 0;
78    secondPartsCrcOk = 0;
79    apmFound = 0;
80    bsdFound = 0;
81    sectorAlignment = MIN_AF_ALIGNMENT; // Align partitions on 4096-byte boundaries by default
82    beQuiet = 0;
83    whichWasUsed = use_new;
84    mainHeader.numParts = 0;
85    mainHeader.lastUsableLBA = 0;
86    numParts = 0;
87    SetGPTSize(NUM_GPT_ENTRIES);
88    // Initialize CRC functions...
89    chksum_crc32gentab();
90 } // GPTData default constructor
91 
GPTData(const GPTData & orig)92 GPTData::GPTData(const GPTData & orig) {
93    uint32_t i;
94 
95    if (&orig != this) {
96       mainHeader = orig.mainHeader;
97       numParts = orig.numParts;
98       secondHeader = orig.secondHeader;
99       protectiveMBR = orig.protectiveMBR;
100       device = orig.device;
101       blockSize = orig.blockSize;
102       physBlockSize = orig.physBlockSize;
103       diskSize = orig.diskSize;
104       state = orig.state;
105       justLooking = orig.justLooking;
106       mainCrcOk = orig.mainCrcOk;
107       secondCrcOk = orig.secondCrcOk;
108       mainPartsCrcOk = orig.mainPartsCrcOk;
109       secondPartsCrcOk = orig.secondPartsCrcOk;
110       apmFound = orig.apmFound;
111       bsdFound = orig.bsdFound;
112       sectorAlignment = orig.sectorAlignment;
113       beQuiet = orig.beQuiet;
114       whichWasUsed = orig.whichWasUsed;
115 
116       myDisk.OpenForRead(orig.myDisk.GetName());
117 
118       delete[] partitions;
119       partitions = new GPTPart [numParts];
120       if (partitions == NULL) {
121          cerr << "Error! Could not allocate memory for partitions in GPTData::operator=()!\n"
122               << "Terminating!\n";
123          exit(1);
124       } // if
125       for (i = 0; i < numParts; i++) {
126          partitions[i] = orig.partitions[i];
127       } // for
128    } // if
129 } // GPTData copy constructor
130 
131 // The following constructor loads GPT data from a device file
GPTData(string filename)132 GPTData::GPTData(string filename) {
133    blockSize = SECTOR_SIZE; // set a default
134    diskSize = 0;
135    partitions = NULL;
136    state = gpt_invalid;
137    device = "";
138    justLooking = 0;
139    mainCrcOk = 0;
140    secondCrcOk = 0;
141    mainPartsCrcOk = 0;
142    secondPartsCrcOk = 0;
143    apmFound = 0;
144    bsdFound = 0;
145    sectorAlignment = MIN_AF_ALIGNMENT; // Align partitions on 4096-byte boundaries by default
146    beQuiet = 0;
147    whichWasUsed = use_new;
148    mainHeader.numParts = 0;
149    mainHeader.lastUsableLBA = 0;
150    numParts = 0;
151    // Initialize CRC functions...
152    chksum_crc32gentab();
153    if (!LoadPartitions(filename))
154       exit(2);
155 } // GPTData(string filename) constructor
156 
157 // Destructor
~GPTData(void)158 GPTData::~GPTData(void) {
159    delete[] partitions;
160 } // GPTData destructor
161 
162 // Assignment operator
operator =(const GPTData & orig)163 GPTData & GPTData::operator=(const GPTData & orig) {
164    uint32_t i;
165 
166    if (&orig != this) {
167       mainHeader = orig.mainHeader;
168       numParts = orig.numParts;
169       secondHeader = orig.secondHeader;
170       protectiveMBR = orig.protectiveMBR;
171       device = orig.device;
172       blockSize = orig.blockSize;
173       physBlockSize = orig.physBlockSize;
174       diskSize = orig.diskSize;
175       state = orig.state;
176       justLooking = orig.justLooking;
177       mainCrcOk = orig.mainCrcOk;
178       secondCrcOk = orig.secondCrcOk;
179       mainPartsCrcOk = orig.mainPartsCrcOk;
180       secondPartsCrcOk = orig.secondPartsCrcOk;
181       apmFound = orig.apmFound;
182       bsdFound = orig.bsdFound;
183       sectorAlignment = orig.sectorAlignment;
184       beQuiet = orig.beQuiet;
185       whichWasUsed = orig.whichWasUsed;
186 
187       myDisk.OpenForRead(orig.myDisk.GetName());
188 
189       delete[] partitions;
190       partitions = new GPTPart [numParts];
191       if (partitions == NULL) {
192          cerr << "Error! Could not allocate memory for partitions in GPTData::operator=()!\n"
193               << "Terminating!\n";
194          exit(1);
195       } // if
196       for (i = 0; i < numParts; i++) {
197          partitions[i] = orig.partitions[i];
198       } // for
199    } // if
200 
201    return *this;
202 } // GPTData::operator=()
203 
204 /*********************************************************************
205  *                                                                   *
206  * Begin functions that verify data, or that adjust the verification *
207  * information (compute CRCs, rebuild headers)                       *
208  *                                                                   *
209  *********************************************************************/
210 
211 // Perform detailed verification, reporting on any problems found, but
212 // do *NOT* recover from these problems. Returns the total number of
213 // problems identified.
Verify(void)214 int GPTData::Verify(void) {
215    int problems = 0, alignProbs = 0;
216    uint32_t i, numSegments, testAlignment = sectorAlignment;
217    uint64_t totalFree, largestSegment;
218 
219    // First, check for CRC errors in the GPT data....
220    if (!mainCrcOk) {
221       problems++;
222       cout << "\nProblem: The CRC for the main GPT header is invalid. The main GPT header may\n"
223            << "be corrupt. Consider loading the backup GPT header to rebuild the main GPT\n"
224            << "header ('b' on the recovery & transformation menu). This report may be a false\n"
225            << "alarm if you've already corrected other problems.\n";
226    } // if
227    if (!mainPartsCrcOk) {
228       problems++;
229       cout << "\nProblem: The CRC for the main partition table is invalid. This table may be\n"
230            << "corrupt. Consider loading the backup partition table ('c' on the recovery &\n"
231            << "transformation menu). This report may be a false alarm if you've already\n"
232            << "corrected other problems.\n";
233    } // if
234    if (!secondCrcOk) {
235       problems++;
236       cout << "\nProblem: The CRC for the backup GPT header is invalid. The backup GPT header\n"
237            << "may be corrupt. Consider using the main GPT header to rebuild the backup GPT\n"
238            << "header ('d' on the recovery & transformation menu). This report may be a false\n"
239            << "alarm if you've already corrected other problems.\n";
240    } // if
241    if (!secondPartsCrcOk) {
242       problems++;
243       cout << "\nCaution: The CRC for the backup partition table is invalid. This table may\n"
244            << "be corrupt. This program will automatically create a new backup partition\n"
245            << "table when you save your partitions.\n";
246    } // if
247 
248    // Now check that the main and backup headers both point to themselves....
249    if (mainHeader.currentLBA != 1) {
250       problems++;
251       cout << "\nProblem: The main header's self-pointer doesn't point to itself. This problem\n"
252            << "is being automatically corrected, but it may be a symptom of more serious\n"
253            << "problems. Think carefully before saving changes with 'w' or using this disk.\n";
254       mainHeader.currentLBA = 1;
255    } // if
256    if (secondHeader.currentLBA != (diskSize - UINT64_C(1))) {
257       problems++;
258       cout << "\nProblem: The secondary header's self-pointer indicates that it doesn't reside\n"
259            << "at the end of the disk. If you've added a disk to a RAID array, use the 'e'\n"
260            << "option on the experts' menu to adjust the secondary header's and partition\n"
261            << "table's locations.\n";
262    } // if
263 
264    // Now check that critical main and backup GPT entries match each other
265    if (mainHeader.currentLBA != secondHeader.backupLBA) {
266       problems++;
267       cout << "\nProblem: main GPT header's current LBA pointer (" << mainHeader.currentLBA
268            << ") doesn't\nmatch the backup GPT header's alternate LBA pointer("
269            << secondHeader.backupLBA << ").\n";
270    } // if
271    if (mainHeader.backupLBA != secondHeader.currentLBA) {
272       problems++;
273       cout << "\nProblem: main GPT header's backup LBA pointer (" << mainHeader.backupLBA
274            << ") doesn't\nmatch the backup GPT header's current LBA pointer ("
275            << secondHeader.currentLBA << ").\n"
276            << "The 'e' option on the experts' menu may fix this problem.\n";
277    } // if
278    if (mainHeader.firstUsableLBA != secondHeader.firstUsableLBA) {
279       problems++;
280       cout << "\nProblem: main GPT header's first usable LBA pointer (" << mainHeader.firstUsableLBA
281            << ") doesn't\nmatch the backup GPT header's first usable LBA pointer ("
282            << secondHeader.firstUsableLBA << ")\n";
283    } // if
284    if (mainHeader.lastUsableLBA != secondHeader.lastUsableLBA) {
285       problems++;
286       cout << "\nProblem: main GPT header's last usable LBA pointer (" << mainHeader.lastUsableLBA
287            << ") doesn't\nmatch the backup GPT header's last usable LBA pointer ("
288            << secondHeader.lastUsableLBA << ")\n"
289            << "The 'e' option on the experts' menu can probably fix this problem.\n";
290    } // if
291    if ((mainHeader.diskGUID != secondHeader.diskGUID)) {
292       problems++;
293       cout << "\nProblem: main header's disk GUID (" << mainHeader.diskGUID
294            << ") doesn't\nmatch the backup GPT header's disk GUID ("
295            << secondHeader.diskGUID << ")\n"
296            << "You should use the 'b' or 'd' option on the recovery & transformation menu to\n"
297            << "select one or the other header.\n";
298    } // if
299    if (mainHeader.numParts != secondHeader.numParts) {
300       problems++;
301       cout << "\nProblem: main GPT header's number of partitions (" << mainHeader.numParts
302            << ") doesn't\nmatch the backup GPT header's number of partitions ("
303            << secondHeader.numParts << ")\n"
304            << "Resizing the partition table ('s' on the experts' menu) may help.\n";
305    } // if
306    if (mainHeader.sizeOfPartitionEntries != secondHeader.sizeOfPartitionEntries) {
307       problems++;
308       cout << "\nProblem: main GPT header's size of partition entries ("
309            << mainHeader.sizeOfPartitionEntries << ") doesn't\n"
310            << "match the backup GPT header's size of partition entries ("
311            << secondHeader.sizeOfPartitionEntries << ")\n"
312            << "You should use the 'b' or 'd' option on the recovery & transformation menu to\n"
313            << "select one or the other header.\n";
314    } // if
315 
316    // Now check for a few other miscellaneous problems...
317    // Check that the disk size will hold the data...
318    if (mainHeader.backupLBA >= diskSize) {
319       problems++;
320       cout << "\nProblem: Disk is too small to hold all the data!\n"
321            << "(Disk size is " << diskSize << " sectors, needs to be "
322            << mainHeader.backupLBA + UINT64_C(1) << " sectors.)\n"
323            << "The 'e' option on the experts' menu may fix this problem.\n";
324    } // if
325 
326    // Check the main and backup partition tables for overlap with things and unusual gaps
327    if (mainHeader.partitionEntriesLBA + GetTableSizeInSectors() > mainHeader.firstUsableLBA) {
328        problems++;
329        cout << "\nProblem: Main partition table extends past the first usable LBA.\n"
330             << "Using 'j' on the experts' menu may enable fixing this problem.\n";
331    } // if
332    if (mainHeader.partitionEntriesLBA < 2) {
333        problems++;
334        cout << "\nProblem: Main partition table appears impossibly early on the disk.\n"
335             << "Using 'j' on the experts' menu may enable fixing this problem.\n";
336    } // if
337    if (secondHeader.partitionEntriesLBA + GetTableSizeInSectors() > secondHeader.currentLBA) {
338        problems++;
339        cout << "\nProblem: The backup partition table overlaps the backup header.\n"
340             << "Using 'e' on the experts' menu may fix this problem.\n";
341    } // if
342    if (mainHeader.partitionEntriesLBA != 2) {
343        cout << "\nWarning: There is a gap between the main metadata (sector 1) and the main\n"
344             << "partition table (sector " << mainHeader.partitionEntriesLBA
345             << "). This is helpful in some exotic configurations,\n"
346             << "but is generally ill-advised. Using 'j' on the experts' menu can adjust this\n"
347             << "gap.\n";
348    } // if
349    if (mainHeader.partitionEntriesLBA + GetTableSizeInSectors() != mainHeader.firstUsableLBA) {
350        cout << "\nWarning: There is a gap between the main partition table (ending sector "
351             << mainHeader.partitionEntriesLBA + GetTableSizeInSectors() - 1 << ")\n"
352             << "and the first usable sector (" << mainHeader.firstUsableLBA << "). This is helpful in some exotic configurations,\n"
353             << "but is unusual. The util-linux fdisk program often creates disks like this.\n"
354             << "Using 'j' on the experts' menu can adjust this gap.\n";
355    } // if
356 
357    if (mainHeader.sizeOfPartitionEntries * mainHeader.numParts < 16384) {
358       cout << "\nWarning: The size of the partition table (" << mainHeader.sizeOfPartitionEntries * mainHeader.numParts
359            << " bytes) is less than the minimum\n"
360            << "required by the GPT specification. Most OSes and tools seem to work fine on\n"
361            << "such disks, but this is a violation of the GPT specification and so may cause\n"
362            << "problems.\n";
363    } // if
364 
365    if ((mainHeader.lastUsableLBA >= diskSize) || (mainHeader.lastUsableLBA > mainHeader.backupLBA)) {
366       problems++;
367       cout << "\nProblem: GPT claims the disk is larger than it is! (Claimed last usable\n"
368            << "sector is " << mainHeader.lastUsableLBA << ", but backup header is at\n"
369            << mainHeader.backupLBA << " and disk size is " << diskSize << " sectors.\n"
370            << "The 'e' option on the experts' menu will probably fix this problem\n";
371    }
372 
373    // Check for overlapping partitions....
374    problems += FindOverlaps();
375 
376    // Check for insane partitions (start after end, hugely big, etc.)
377    problems += FindInsanePartitions();
378 
379    // Check for mismatched MBR and GPT partitions...
380    problems += FindHybridMismatches();
381 
382    // Check for MBR-specific problems....
383    problems += VerifyMBR();
384 
385    // Check for a 0xEE protective partition that's marked as active....
386    if (protectiveMBR.IsEEActive()) {
387       cout << "\nWarning: The 0xEE protective partition in the MBR is marked as active. This is\n"
388            << "technically a violation of the GPT specification, and can cause some EFIs to\n"
389            << "ignore the disk, but it is required to boot from a GPT disk on some BIOS-based\n"
390            << "computers. You can clear this flag by creating a fresh protective MBR using\n"
391            << "the 'n' option on the experts' menu.\n";
392    }
393 
394    // Verify that partitions don't run into GPT data areas....
395    problems += CheckGPTSize();
396 
397    if (!protectiveMBR.DoTheyFit()) {
398       cout << "\nPartition(s) in the protective MBR are too big for the disk! Creating a\n"
399            << "fresh protective or hybrid MBR is recommended.\n";
400       problems++;
401    }
402 
403    // Check that partitions are aligned on proper boundaries (for WD Advanced
404    // Format and similar disks)....
405    if ((physBlockSize != 0) && (blockSize != 0))
406       testAlignment = physBlockSize / blockSize;
407    testAlignment = max(testAlignment, sectorAlignment);
408    if (testAlignment == 0) // Should not happen; just being paranoid.
409       testAlignment = sectorAlignment;
410    for (i = 0; i < numParts; i++) {
411       if ((partitions[i].IsUsed()) && (partitions[i].GetFirstLBA() % testAlignment) != 0) {
412          cout << "\nCaution: Partition " << i + 1 << " doesn't begin on a "
413               << testAlignment << "-sector boundary. This may\nresult "
414               << "in degraded performance on some modern (2009 and later) hard disks.\n";
415          alignProbs++;
416       } // if
417       if ((partitions[i].IsUsed()) && ((partitions[i].GetLastLBA() + 1) % testAlignment) != 0) {
418          cout << "\nCaution: Partition " << i + 1 << " doesn't end on a "
419               << testAlignment << "-sector boundary. This may\nresult "
420               << "in problems with some disk encryption tools.\n";
421       } // if
422    } // for
423    if (alignProbs > 0)
424       cout << "\nConsult http://www.ibm.com/developerworks/linux/library/l-4kb-sector-disks/\n"
425       << "for information on disk alignment.\n";
426 
427    // Now compute available space, but only if no problems found, since
428    // problems could affect the results
429    if (problems == 0) {
430       totalFree = FindFreeBlocks(&numSegments, &largestSegment);
431       cout << "\nNo problems found. " << totalFree << " free sectors ("
432            << BytesToIeee(totalFree, blockSize) << ") available in "
433            << numSegments << "\nsegments, the largest of which is "
434            << largestSegment << " (" << BytesToIeee(largestSegment, blockSize)
435            << ") in size.\n";
436    } else {
437       cout << "\nIdentified " << problems << " problems!\n";
438    } // if/else
439 
440    return (problems);
441 } // GPTData::Verify()
442 
443 // Checks to see if the GPT tables overrun existing partitions; if they
444 // do, issues a warning but takes no action. Returns number of problems
445 // detected (0 if OK, 1 to 2 if problems).
CheckGPTSize(void)446 int GPTData::CheckGPTSize(void) {
447    uint64_t overlap, firstUsedBlock, lastUsedBlock;
448    uint32_t i;
449    int numProbs = 0;
450 
451    // first, locate the first & last used blocks
452    firstUsedBlock = UINT64_MAX;
453    lastUsedBlock = 0;
454    for (i = 0; i < numParts; i++) {
455       if (partitions[i].IsUsed()) {
456          if (partitions[i].GetFirstLBA() < firstUsedBlock)
457             firstUsedBlock = partitions[i].GetFirstLBA();
458          if (partitions[i].GetLastLBA() > lastUsedBlock) {
459             lastUsedBlock = partitions[i].GetLastLBA();
460          } // if
461       } // if
462    } // for
463 
464    // If the disk size is 0 (the default), then it means that various
465    // variables aren't yet set, so the below tests will be useless;
466    // therefore we should skip everything
467    if (diskSize != 0) {
468       if (mainHeader.firstUsableLBA > firstUsedBlock) {
469          overlap = mainHeader.firstUsableLBA - firstUsedBlock;
470          cout << "Warning! Main partition table overlaps the first partition by "
471               << overlap << " blocks!\n";
472          if (firstUsedBlock > 2) {
473             cout << "Try reducing the partition table size by " << overlap * 4
474                  << " entries.\n(Use the 's' item on the experts' menu.)\n";
475          } else {
476             cout << "You will need to delete this partition or resize it in another utility.\n";
477          } // if/else
478          numProbs++;
479       } // Problem at start of disk
480       if (mainHeader.lastUsableLBA < lastUsedBlock) {
481          overlap = lastUsedBlock - mainHeader.lastUsableLBA;
482          cout << "\nWarning! Secondary partition table overlaps the last partition by\n"
483               << overlap << " blocks!\n";
484          if (lastUsedBlock > (diskSize - 2)) {
485             cout << "You will need to delete this partition or resize it in another utility.\n";
486          } else {
487             cout << "Try reducing the partition table size by " << overlap * 4
488                  << " entries.\n(Use the 's' item on the experts' menu.)\n";
489          } // if/else
490          numProbs++;
491       } // Problem at end of disk
492    } // if (diskSize != 0)
493    return numProbs;
494 } // GPTData::CheckGPTSize()
495 
496 // Check the validity of the GPT header. Returns 1 if the main header
497 // is valid, 2 if the backup header is valid, 3 if both are valid, and
498 // 0 if neither is valid. Note that this function checks the GPT signature,
499 // revision value, and CRCs in both headers.
CheckHeaderValidity(void)500 int GPTData::CheckHeaderValidity(void) {
501    int valid = 3;
502 
503    cout.setf(ios::uppercase);
504    cout.fill('0');
505 
506    // Note: failed GPT signature checks produce no error message because
507    // a message is displayed in the ReversePartitionBytes() function
508    if ((mainHeader.signature != GPT_SIGNATURE) || (!CheckHeaderCRC(&mainHeader, 1))) {
509       valid -= 1;
510    } else if ((mainHeader.revision != 0x00010000) && valid) {
511       valid -= 1;
512       cout << "Unsupported GPT version in main header; read 0x";
513       cout.width(8);
514       cout << hex << mainHeader.revision << ", should be\n0x";
515       cout.width(8);
516       cout << UINT32_C(0x00010000) << dec << "\n";
517    } // if/else/if
518 
519    if ((secondHeader.signature != GPT_SIGNATURE) || (!CheckHeaderCRC(&secondHeader))) {
520       valid -= 2;
521    } else if ((secondHeader.revision != 0x00010000) && valid) {
522       valid -= 2;
523       cout << "Unsupported GPT version in backup header; read 0x";
524       cout.width(8);
525       cout << hex << secondHeader.revision << ", should be\n0x";
526       cout.width(8);
527       cout << UINT32_C(0x00010000) << dec << "\n";
528    } // if/else/if
529 
530    // Check for an Apple disk signature
531    if (((mainHeader.signature << 32) == APM_SIGNATURE1) ||
532         (mainHeader.signature << 32) == APM_SIGNATURE2) {
533       apmFound = 1; // Will display warning message later
534    } // if
535    cout.fill(' ');
536 
537    return valid;
538 } // GPTData::CheckHeaderValidity()
539 
540 // Check the header CRC to see if it's OK...
541 // Note: Must be called with header in platform-ordered byte order.
542 // Returns 1 if header's computed CRC matches the stored value, 0 if the
543 // computed and stored values don't match
CheckHeaderCRC(struct GPTHeader * header,int warn)544 int GPTData::CheckHeaderCRC(struct GPTHeader* header, int warn) {
545    uint32_t oldCRC, newCRC, hSize;
546    uint8_t *temp;
547 
548    // Back up old header CRC and then blank it, since it must be 0 for
549    // computation to be valid
550    oldCRC = header->headerCRC;
551    header->headerCRC = UINT32_C(0);
552 
553    hSize = header->headerSize;
554 
555    if (IsLittleEndian() == 0)
556       ReverseHeaderBytes(header);
557 
558    if ((hSize > blockSize) || (hSize < HEADER_SIZE)) {
559       if (warn) {
560          cerr << "\aWarning! Header size is specified as " << hSize << ", which is invalid.\n";
561          cerr << "Setting the header size for CRC computation to " << HEADER_SIZE << "\n";
562       } // if
563       hSize = HEADER_SIZE;
564    } else if ((hSize > sizeof(GPTHeader)) && warn) {
565       cout << "\aCaution! Header size for CRC check is " << hSize << ", which is greater than " << sizeof(GPTHeader) << ".\n";
566       cout << "If stray data exists after the header on the header sector, it will be ignored,\n"
567            << "which may result in a CRC false alarm.\n";
568    } // if/elseif
569    temp = new uint8_t[hSize];
570    if (temp != NULL) {
571       memset(temp, 0, hSize);
572       if (hSize < sizeof(GPTHeader))
573          memcpy(temp, header, hSize);
574       else
575          memcpy(temp, header, sizeof(GPTHeader));
576 
577       newCRC = chksum_crc32((unsigned char*) temp, hSize);
578       delete[] temp;
579    } else {
580       cerr << "Could not allocate memory in GPTData::CheckHeaderCRC()! Aborting!\n";
581       exit(1);
582    }
583    if (IsLittleEndian() == 0)
584       ReverseHeaderBytes(header);
585    header->headerCRC = oldCRC;
586    return (oldCRC == newCRC);
587 } // GPTData::CheckHeaderCRC()
588 
589 // Recompute all the CRCs. Must be called before saving if any changes have
590 // been made. Must be called on platform-ordered data (this function reverses
591 // byte order and then undoes that reversal.)
RecomputeCRCs(void)592 void GPTData::RecomputeCRCs(void) {
593    uint32_t crc, hSize;
594    int littleEndian;
595 
596    // If the header size is bigger than the GPT header data structure, reset it;
597    // otherwise, set both header sizes to whatever the main one is....
598    if (mainHeader.headerSize > sizeof(GPTHeader))
599       hSize = secondHeader.headerSize = mainHeader.headerSize = HEADER_SIZE;
600    else
601       hSize = secondHeader.headerSize = mainHeader.headerSize;
602 
603    if ((littleEndian = IsLittleEndian()) == 0) {
604       ReversePartitionBytes();
605       ReverseHeaderBytes(&mainHeader);
606       ReverseHeaderBytes(&secondHeader);
607    } // if
608 
609    // Compute CRC of partition tables & store in main and secondary headers
610    crc = chksum_crc32((unsigned char*) partitions, numParts * GPT_SIZE);
611    mainHeader.partitionEntriesCRC = crc;
612    secondHeader.partitionEntriesCRC = crc;
613    if (littleEndian == 0) {
614       ReverseBytes(&mainHeader.partitionEntriesCRC, 4);
615       ReverseBytes(&secondHeader.partitionEntriesCRC, 4);
616    } // if
617 
618    // Zero out GPT headers' own CRCs (required for correct computation)
619    mainHeader.headerCRC = 0;
620    secondHeader.headerCRC = 0;
621 
622    crc = chksum_crc32((unsigned char*) &mainHeader, hSize);
623    if (littleEndian == 0)
624       ReverseBytes(&crc, 4);
625    mainHeader.headerCRC = crc;
626    crc = chksum_crc32((unsigned char*) &secondHeader, hSize);
627    if (littleEndian == 0)
628       ReverseBytes(&crc, 4);
629    secondHeader.headerCRC = crc;
630 
631    if (littleEndian == 0) {
632       ReverseHeaderBytes(&mainHeader);
633       ReverseHeaderBytes(&secondHeader);
634       ReversePartitionBytes();
635    } // if
636 } // GPTData::RecomputeCRCs()
637 
638 // Rebuild the main GPT header, using the secondary header as a model.
639 // Typically called when the main header has been found to be corrupt.
RebuildMainHeader(void)640 void GPTData::RebuildMainHeader(void) {
641    mainHeader.signature = GPT_SIGNATURE;
642    mainHeader.revision = secondHeader.revision;
643    mainHeader.headerSize = secondHeader.headerSize;
644    mainHeader.headerCRC = UINT32_C(0);
645    mainHeader.reserved = secondHeader.reserved;
646    mainHeader.currentLBA = secondHeader.backupLBA;
647    mainHeader.backupLBA = secondHeader.currentLBA;
648    mainHeader.firstUsableLBA = secondHeader.firstUsableLBA;
649    mainHeader.lastUsableLBA = secondHeader.lastUsableLBA;
650    mainHeader.diskGUID = secondHeader.diskGUID;
651    mainHeader.numParts = secondHeader.numParts;
652    mainHeader.partitionEntriesLBA = secondHeader.firstUsableLBA - GetTableSizeInSectors();
653    mainHeader.sizeOfPartitionEntries = secondHeader.sizeOfPartitionEntries;
654    mainHeader.partitionEntriesCRC = secondHeader.partitionEntriesCRC;
655    memcpy(mainHeader.reserved2, secondHeader.reserved2, sizeof(mainHeader.reserved2));
656    mainCrcOk = secondCrcOk;
657    SetGPTSize(mainHeader.numParts, 0);
658 } // GPTData::RebuildMainHeader()
659 
660 // Rebuild the secondary GPT header, using the main header as a model.
RebuildSecondHeader(void)661 void GPTData::RebuildSecondHeader(void) {
662    secondHeader.signature = GPT_SIGNATURE;
663    secondHeader.revision = mainHeader.revision;
664    secondHeader.headerSize = mainHeader.headerSize;
665    secondHeader.headerCRC = UINT32_C(0);
666    secondHeader.reserved = mainHeader.reserved;
667    secondHeader.currentLBA = mainHeader.backupLBA;
668    secondHeader.backupLBA = mainHeader.currentLBA;
669    secondHeader.firstUsableLBA = mainHeader.firstUsableLBA;
670    secondHeader.lastUsableLBA = mainHeader.lastUsableLBA;
671    secondHeader.diskGUID = mainHeader.diskGUID;
672    secondHeader.partitionEntriesLBA = secondHeader.lastUsableLBA + UINT64_C(1);
673    secondHeader.numParts = mainHeader.numParts;
674    secondHeader.sizeOfPartitionEntries = mainHeader.sizeOfPartitionEntries;
675    secondHeader.partitionEntriesCRC = mainHeader.partitionEntriesCRC;
676    memcpy(secondHeader.reserved2, mainHeader.reserved2, sizeof(secondHeader.reserved2));
677    secondCrcOk = mainCrcOk;
678    SetGPTSize(secondHeader.numParts, 0);
679 } // GPTData::RebuildSecondHeader()
680 
681 // Search for hybrid MBR entries that have no corresponding GPT partition.
682 // Returns number of such mismatches found
FindHybridMismatches(void)683 int GPTData::FindHybridMismatches(void) {
684    int i, found, numFound = 0;
685    uint32_t j;
686    uint64_t mbrFirst, mbrLast;
687 
688    for (i = 0; i < 4; i++) {
689       if ((protectiveMBR.GetType(i) != 0xEE) && (protectiveMBR.GetType(i) != 0x00)) {
690          j = 0;
691          found = 0;
692          mbrFirst = (uint64_t) protectiveMBR.GetFirstSector(i);
693          mbrLast = mbrFirst + (uint64_t) protectiveMBR.GetLength(i) - UINT64_C(1);
694          do {
695             if ((j < numParts) && (partitions[j].GetFirstLBA() == mbrFirst) &&
696                 (partitions[j].GetLastLBA() == mbrLast) && (partitions[j].IsUsed()))
697                found = 1;
698             j++;
699          } while ((!found) && (j < numParts));
700          if (!found) {
701             numFound++;
702             cout << "\nWarning! Mismatched GPT and MBR partition! MBR partition "
703                  << i + 1 << ", of type 0x";
704             cout.fill('0');
705             cout.setf(ios::uppercase);
706             cout.width(2);
707             cout << hex << (int) protectiveMBR.GetType(i) << ",\n"
708                  << "has no corresponding GPT partition! You may continue, but this condition\n"
709                  << "might cause data loss in the future!\a\n" << dec;
710             cout.fill(' ');
711          } // if
712       } // if
713    } // for
714    return numFound;
715 } // GPTData::FindHybridMismatches
716 
717 // Find overlapping partitions and warn user about them. Returns number of
718 // overlapping partitions.
719 // Returns number of overlapping segments found.
FindOverlaps(void)720 int GPTData::FindOverlaps(void) {
721    int problems = 0;
722    uint32_t i, j;
723 
724    for (i = 1; i < numParts; i++) {
725       for (j = 0; j < i; j++) {
726          if ((partitions[i].IsUsed()) && (partitions[j].IsUsed()) &&
727              (partitions[i].DoTheyOverlap(partitions[j]))) {
728             problems++;
729             cout << "\nProblem: partitions " << i + 1 << " and " << j + 1 << " overlap:\n";
730             cout << "  Partition " << i + 1 << ": " << partitions[i].GetFirstLBA()
731                  << " to " << partitions[i].GetLastLBA() << "\n";
732             cout << "  Partition " << j + 1 << ": " << partitions[j].GetFirstLBA()
733                  << " to " << partitions[j].GetLastLBA() << "\n";
734          } // if
735       } // for j...
736    } // for i...
737    return problems;
738 } // GPTData::FindOverlaps()
739 
740 // Find partitions that are insane -- they start after they end or are too
741 // big for the disk. (The latter should duplicate detection of overlaps
742 // with GPT backup data structures, but better to err on the side of
743 // redundant tests than to miss something....)
744 // Returns number of problems found.
FindInsanePartitions(void)745 int GPTData::FindInsanePartitions(void) {
746    uint32_t i;
747    int problems = 0;
748 
749    for (i = 0; i < numParts; i++) {
750       if (partitions[i].IsUsed()) {
751          if (partitions[i].GetFirstLBA() > partitions[i].GetLastLBA()) {
752             problems++;
753             cout << "\nProblem: partition " << i + 1 << " ends before it begins.\n";
754          } // if
755          if (partitions[i].GetLastLBA() >= diskSize) {
756             problems++;
757             cout << "\nProblem: partition " << i + 1 << " is too big for the disk.\n";
758          } // if
759       } // if
760    } // for
761    return problems;
762 } // GPTData::FindInsanePartitions(void)
763 
764 
765 /******************************************************************
766  *                                                                *
767  * Begin functions that load data from disk or save data to disk. *
768  *                                                                *
769  ******************************************************************/
770 
771 // Change the filename associated with the GPT. Used for duplicating
772 // the partition table to a new disk and saving backups.
773 // Returns 1 on success, 0 on failure.
SetDisk(const string & deviceFilename)774 int GPTData::SetDisk(const string & deviceFilename) {
775    int err, allOK = 1;
776 
777    device = deviceFilename;
778    if (allOK && myDisk.OpenForRead(deviceFilename)) {
779       // store disk information....
780       diskSize = myDisk.DiskSize(&err);
781       blockSize = (uint32_t) myDisk.GetBlockSize();
782       physBlockSize = (uint32_t) myDisk.GetPhysBlockSize();
783    } // if
784    protectiveMBR.SetDisk(&myDisk);
785    protectiveMBR.SetDiskSize(diskSize);
786    protectiveMBR.SetBlockSize(blockSize);
787    return allOK;
788 } // GPTData::SetDisk()
789 
790 // Scan for partition data. This function loads the MBR data (regular MBR or
791 // protective MBR) and loads BSD disklabel data (which is probably invalid).
792 // It also looks for APM data, forces a load of GPT data, and summarizes
793 // the results.
PartitionScan(void)794 void GPTData::PartitionScan(void) {
795    BSDData bsdDisklabel;
796 
797    // Read the MBR & check for BSD disklabel
798    protectiveMBR.ReadMBRData(&myDisk);
799    bsdDisklabel.ReadBSDData(&myDisk, 0, diskSize - 1);
800 
801    // Load the GPT data, whether or not it's valid
802    ForceLoadGPTData();
803 
804    // Some tools create a 0xEE partition that's too big. If this is detected,
805    // normalize it....
806    if ((state == gpt_valid) && !protectiveMBR.DoTheyFit() && (protectiveMBR.GetValidity() == gpt)) {
807       if (!beQuiet) {
808          cerr << "\aThe protective MBR's 0xEE partition is oversized! Auto-repairing.\n\n";
809       } // if
810       protectiveMBR.MakeProtectiveMBR();
811    } // if
812 
813    if (!beQuiet) {
814       cout << "Partition table scan:\n";
815       protectiveMBR.ShowState();
816       bsdDisklabel.ShowState();
817       ShowAPMState(); // Show whether there's an Apple Partition Map present
818       ShowGPTState(); // Show GPT status
819       cout << "\n";
820    } // if
821 
822    if (apmFound) {
823       cout << "\n*******************************************************************\n"
824            << "This disk appears to contain an Apple-format (APM) partition table!\n";
825       if (!justLooking) {
826          cout << "It will be destroyed if you continue!\n";
827       } // if
828       cout << "*******************************************************************\n\n\a";
829    } // if
830 } // GPTData::PartitionScan()
831 
832 // Read GPT data from a disk.
LoadPartitions(const string & deviceFilename)833 int GPTData::LoadPartitions(const string & deviceFilename) {
834    BSDData bsdDisklabel;
835    int err, allOK = 1;
836    MBRValidity mbrState;
837 
838    if (myDisk.OpenForRead(deviceFilename)) {
839       err = myDisk.OpenForWrite(deviceFilename);
840       if ((err == 0) && (!justLooking)) {
841          cout << "\aNOTE: Write test failed with error number " << errno
842               << ". It will be impossible to save\nchanges to this disk's partition table!\n";
843 #if defined (__FreeBSD__) || defined (__FreeBSD_kernel__)
844          cout << "You may be able to enable writes by exiting this program, typing\n"
845               << "'sysctl kern.geom.debugflags=16' at a shell prompt, and re-running this\n"
846               << "program.\n";
847 #endif
848 #if defined (__APPLE__)
849          cout << "You may need to deactivate System Integrity Protection to use this program. See\n"
850               << "https://www.quora.com/How-do-I-turn-off-the-rootless-in-OS-X-El-Capitan-10-11\n"
851               << "for more information.\n";
852 #endif
853               cout << "\n";
854       } // if
855       myDisk.Close(); // Close and re-open read-only in case of bugs
856    } else allOK = 0; // if
857 
858    if (allOK && myDisk.OpenForRead(deviceFilename)) {
859       // store disk information....
860       diskSize = myDisk.DiskSize(&err);
861       blockSize = (uint32_t) myDisk.GetBlockSize();
862       physBlockSize = (uint32_t) myDisk.GetPhysBlockSize();
863       device = deviceFilename;
864       PartitionScan(); // Check for partition types, load GPT, & print summary
865 
866       whichWasUsed = UseWhichPartitions();
867       switch (whichWasUsed) {
868          case use_mbr:
869             XFormPartitions();
870             break;
871          case use_bsd:
872             bsdDisklabel.ReadBSDData(&myDisk, 0, diskSize - 1);
873 //            bsdDisklabel.DisplayBSDData();
874             ClearGPTData();
875             protectiveMBR.MakeProtectiveMBR(1); // clear boot area (option 1)
876             XFormDisklabel(&bsdDisklabel);
877             break;
878          case use_gpt:
879             mbrState = protectiveMBR.GetValidity();
880             if ((mbrState == invalid) || (mbrState == mbr))
881                protectiveMBR.MakeProtectiveMBR();
882             break;
883          case use_new:
884             ClearGPTData();
885             protectiveMBR.MakeProtectiveMBR();
886             break;
887          case use_abort:
888             allOK = 0;
889             cerr << "Invalid partition data!\n";
890             break;
891       } // switch
892 
893       if (allOK) {
894          CheckGPTSize();
895          // Below is unlikely to happen on real disks, but could happen if
896          // the user is manipulating a truncated image file....
897          if (diskSize <= GetTableSizeInSectors() * 2 + 3) {
898              allOK = 0;
899              cout << "Disk is too small to hold GPT data (" << diskSize
900                   << " sectors)! Aborting!\n";
901          }
902       }
903       myDisk.Close();
904       ComputeAlignment();
905    } else {
906       allOK = 0;
907    } // if/else
908    return (allOK);
909 } // GPTData::LoadPartitions()
910 
911 // Loads the GPT, as much as possible. Returns 1 if this seems to have
912 // succeeded, 0 if there are obvious problems....
ForceLoadGPTData(void)913 int GPTData::ForceLoadGPTData(void) {
914    int allOK, validHeaders, loadedTable = 1;
915 
916    allOK = LoadHeader(&mainHeader, myDisk, 1, &mainCrcOk);
917 
918    if (mainCrcOk && (mainHeader.backupLBA < diskSize)) {
919       allOK = LoadHeader(&secondHeader, myDisk, mainHeader.backupLBA, &secondCrcOk) && allOK;
920    } else {
921       allOK = LoadHeader(&secondHeader, myDisk, diskSize - UINT64_C(1), &secondCrcOk) && allOK;
922       if (mainCrcOk && (mainHeader.backupLBA >= diskSize))
923          cout << "Warning! Disk size is smaller than the main header indicates! Loading\n"
924               << "secondary header from the last sector of the disk! You should use 'v' to\n"
925               << "verify disk integrity, and perhaps options on the experts' menu to repair\n"
926               << "the disk.\n";
927    } // if/else
928    if (!allOK)
929       state = gpt_invalid;
930 
931    // Return valid headers code: 0 = both headers bad; 1 = main header
932    // good, backup bad; 2 = backup header good, main header bad;
933    // 3 = both headers good. Note these codes refer to valid GPT
934    // signatures, version numbers, and CRCs.
935    validHeaders = CheckHeaderValidity();
936 
937    // Read partitions (from primary array)
938    if (validHeaders > 0) { // if at least one header is OK....
939       // GPT appears to be valid....
940       state = gpt_valid;
941 
942       // We're calling the GPT valid, but there's a possibility that one
943       // of the two headers is corrupt. If so, use the one that seems to
944       // be in better shape to regenerate the bad one
945       if (validHeaders == 1) { // valid main header, invalid backup header
946          cerr << "\aCaution: invalid backup GPT header, but valid main header; regenerating\n"
947               << "backup header from main header.\n\n";
948          RebuildSecondHeader();
949          state = gpt_corrupt;
950          secondCrcOk = mainCrcOk; // Since regenerated, use CRC validity of main
951       } else if (validHeaders == 2) { // valid backup header, invalid main header
952          cerr << "\aCaution: invalid main GPT header, but valid backup; regenerating main header\n"
953               << "from backup!\n\n";
954          RebuildMainHeader();
955          state = gpt_corrupt;
956          mainCrcOk = secondCrcOk; // Since copied, use CRC validity of backup
957       } // if/else/if
958 
959       // Figure out which partition table to load....
960       // Load the main partition table, if its header's CRC is OK
961       if (validHeaders != 2) {
962          if (LoadMainTable() == 0)
963             allOK = 0;
964       } else { // bad main header CRC and backup header CRC is OK
965          state = gpt_corrupt;
966          if (LoadSecondTableAsMain()) {
967             loadedTable = 2;
968             cerr << "\aWarning: Invalid CRC on main header data; loaded backup partition table.\n";
969          } else { // backup table bad, bad main header CRC, but try main table in desperation....
970             if (LoadMainTable() == 0) {
971                allOK = 0;
972                loadedTable = 0;
973                cerr << "\a\aWarning! Unable to load either main or backup partition table!\n";
974             } // if
975          } // if/else (LoadSecondTableAsMain())
976       } // if/else (load partition table)
977 
978       if (loadedTable == 1)
979          secondPartsCrcOk = CheckTable(&secondHeader);
980       else if (loadedTable == 2)
981          mainPartsCrcOk = CheckTable(&mainHeader);
982       else
983          mainPartsCrcOk = secondPartsCrcOk = 0;
984 
985       // Problem with main partition table; if backup is OK, use it instead....
986       if (secondPartsCrcOk && secondCrcOk && !mainPartsCrcOk) {
987          state = gpt_corrupt;
988          allOK = allOK && LoadSecondTableAsMain();
989          mainPartsCrcOk = 0; // LoadSecondTableAsMain() resets this, so re-flag as bad
990          cerr << "\aWarning! Main partition table CRC mismatch! Loaded backup "
991               << "partition table\ninstead of main partition table!\n\n";
992       } // if */
993 
994       // Check for valid CRCs and warn if there are problems
995       if ((validHeaders != 3) || (mainPartsCrcOk == 0) ||
996            (secondPartsCrcOk == 0)) {
997          cerr << "Warning! One or more CRCs don't match. You should repair the disk!\n";
998          // Show detail status of header and table
999          if (validHeaders & 0x1)
1000             cerr << "Main header: OK\n";
1001          else
1002             cerr << "Main header: ERROR\n";
1003          if (validHeaders & 0x2)
1004             cerr << "Backup header: OK\n";
1005          else
1006             cerr << "Backup header: ERROR\n";
1007          if (mainPartsCrcOk)
1008             cerr << "Main partition table: OK\n";
1009          else
1010             cerr << "Main partition table: ERROR\n";
1011          if (secondPartsCrcOk)
1012             cerr << "Backup partition table: OK\n";
1013          else
1014             cerr << "Backup partition table: ERROR\n";
1015          cerr << "\n";
1016          state = gpt_corrupt;
1017       } // if
1018    } else {
1019       state = gpt_invalid;
1020    } // if/else
1021    return allOK;
1022 } // GPTData::ForceLoadGPTData()
1023 
1024 // Loads the partition table pointed to by the main GPT header. The
1025 // main GPT header in memory MUST be valid for this call to do anything
1026 // sensible!
1027 // Returns 1 on success, 0 on failure. CRC errors do NOT count as failure.
LoadMainTable(void)1028 int GPTData::LoadMainTable(void) {
1029    return LoadPartitionTable(mainHeader, myDisk);
1030 } // GPTData::LoadMainTable()
1031 
1032 // Load the second (backup) partition table as the primary partition
1033 // table. Used in repair functions, and when starting up if the main
1034 // partition table is damaged.
1035 // Returns 1 on success, 0 on failure. CRC errors do NOT count as failure.
LoadSecondTableAsMain(void)1036 int GPTData::LoadSecondTableAsMain(void) {
1037    return LoadPartitionTable(secondHeader, myDisk);
1038 } // GPTData::LoadSecondTableAsMain()
1039 
1040 // Load a single GPT header (main or backup) from the specified disk device and
1041 // sector. Applies byte-order corrections on big-endian platforms. Sets crcOk
1042 // value appropriately.
1043 // Returns 1 on success, 0 on failure. Note that CRC errors do NOT qualify as
1044 // failure.
LoadHeader(struct GPTHeader * header,DiskIO & disk,uint64_t sector,int * crcOk)1045 int GPTData::LoadHeader(struct GPTHeader *header, DiskIO & disk, uint64_t sector, int *crcOk) {
1046    int allOK = 1;
1047    GPTHeader tempHeader;
1048 
1049    disk.Seek(sector);
1050    if (disk.Read(&tempHeader, 512) != 512) {
1051       cerr << "Warning! Read error " << errno << "; strange behavior now likely!\n";
1052       allOK = 0;
1053    } // if
1054 
1055    // Reverse byte order, if necessary
1056    if (IsLittleEndian() == 0) {
1057       ReverseHeaderBytes(&tempHeader);
1058    } // if
1059    *crcOk = CheckHeaderCRC(&tempHeader);
1060 
1061    if (tempHeader.sizeOfPartitionEntries != sizeof(GPTPart)) {
1062       // Print the below warning only if the CRC is OK -- but correct the
1063       // problem either way. The warning is printed only on a valid CRC
1064       // because otherwise this warning will display inappropriately when
1065       // reading MBR disks. If the CRC is invalid, then a warning about
1066       // that will be shown later, so the user will still know that
1067       // something is wrong.
1068       if (*crcOk) {
1069          cerr << "Warning: Partition table header claims that the size of partition table\n";
1070          cerr << "entries is " << tempHeader.sizeOfPartitionEntries << " bytes, but this program ";
1071          cerr << " supports only " << sizeof(GPTPart) << "-byte entries.\n";
1072          cerr << "Adjusting accordingly, but partition table may be garbage.\n";
1073       }
1074       tempHeader.sizeOfPartitionEntries = sizeof(GPTPart);
1075    }
1076 
1077    if (allOK && (numParts != tempHeader.numParts) && *crcOk) {
1078       allOK = SetGPTSize(tempHeader.numParts, 0);
1079    }
1080 
1081    *header = tempHeader;
1082    return allOK;
1083 } // GPTData::LoadHeader
1084 
1085 // Load a partition table (either main or secondary) from the specified disk,
1086 // using header as a reference for what to load. If sector != 0 (the default
1087 // is 0), loads from the specified sector; otherwise loads from the sector
1088 // indicated in header.
1089 // Returns 1 on success, 0 on failure. CRC errors do NOT count as failure.
LoadPartitionTable(const struct GPTHeader & header,DiskIO & disk,uint64_t sector)1090 int GPTData::LoadPartitionTable(const struct GPTHeader & header, DiskIO & disk, uint64_t sector) {
1091    uint32_t sizeOfParts, newCRC;
1092    int retval;
1093 
1094    if (header.sizeOfPartitionEntries != sizeof(GPTPart)) {
1095       cerr << "Error! GPT header contains invalid partition entry size!\n";
1096       retval = 0;
1097    } else if (disk.OpenForRead()) {
1098       if (sector == 0) {
1099          retval = disk.Seek(header.partitionEntriesLBA);
1100       } else {
1101          retval = disk.Seek(sector);
1102       } // if/else
1103       if (retval == 1)
1104          retval = SetGPTSize(header.numParts, 0);
1105       if (retval == 1) {
1106          sizeOfParts = header.numParts * header.sizeOfPartitionEntries;
1107          if (disk.Read(partitions, sizeOfParts) != (int) sizeOfParts) {
1108             cerr << "Warning! Read error " << errno << "! Misbehavior now likely!\n";
1109             retval = 0;
1110          } // if
1111          newCRC = chksum_crc32((unsigned char*) partitions, sizeOfParts);
1112          mainPartsCrcOk = secondPartsCrcOk = (newCRC == header.partitionEntriesCRC);
1113          if (IsLittleEndian() == 0)
1114             ReversePartitionBytes();
1115          if (!mainPartsCrcOk) {
1116             cout << "Caution! After loading partitions, the CRC doesn't check out!\n";
1117          } // if
1118       } else {
1119          cerr << "Error! Couldn't seek to partition table!\n";
1120       } // if/else
1121    } else {
1122       cerr << "Error! Couldn't open device " << device
1123            << " when reading partition table!\n";
1124       retval = 0;
1125    } // if/else
1126    return retval;
1127 } // GPTData::LoadPartitionsTable()
1128 
1129 // Check the partition table pointed to by header, but don't keep it
1130 // around.
1131 // Returns 1 if the CRC is OK & this table matches the one already in memory,
1132 // 0 if not or if there was a read error.
CheckTable(struct GPTHeader * header)1133 int GPTData::CheckTable(struct GPTHeader *header) {
1134    uint32_t sizeOfParts, newCRC;
1135    GPTPart *partsToCheck;
1136    GPTHeader *otherHeader;
1137    int allOK = 0;
1138 
1139    // Load partition table into temporary storage to check
1140    // its CRC and store the results, then discard this temporary
1141    // storage, since we don't use it in any but recovery operations
1142    if (myDisk.Seek(header->partitionEntriesLBA)) {
1143       partsToCheck = new GPTPart[header->numParts];
1144       sizeOfParts = header->numParts * header->sizeOfPartitionEntries;
1145       if (partsToCheck == NULL) {
1146          cerr << "Could not allocate memory in GPTData::CheckTable()! Terminating!\n";
1147          exit(1);
1148       } // if
1149       if (myDisk.Read(partsToCheck, sizeOfParts) != (int) sizeOfParts) {
1150          cerr << "Warning! Error " << errno << " reading partition table for CRC check!\n";
1151       } else {
1152          newCRC = chksum_crc32((unsigned char*) partsToCheck, sizeOfParts);
1153          allOK = (newCRC == header->partitionEntriesCRC);
1154          if (header == &mainHeader)
1155             otherHeader = &secondHeader;
1156          else
1157             otherHeader = &mainHeader;
1158          if (newCRC != otherHeader->partitionEntriesCRC) {
1159             cerr << "Warning! Main and backup partition tables differ! Use the 'c' and 'e' options\n"
1160                  << "on the recovery & transformation menu to examine the two tables.\n\n";
1161             allOK = 0;
1162          } // if
1163       } // if/else
1164       delete[] partsToCheck;
1165    } // if
1166    return allOK;
1167 } // GPTData::CheckTable()
1168 
1169 // Writes GPT (and protective MBR) to disk. If quiet==1, moves the second
1170 // header later on the disk without asking for permission, if necessary, and
1171 // doesn't confirm the operation before writing. If quiet==0, asks permission
1172 // before moving the second header and asks for final confirmation of any
1173 // write.
1174 // Returns 1 on successful write, 0 if there was a problem.
SaveGPTData(int quiet)1175 int GPTData::SaveGPTData(int quiet) {
1176    int allOK = 1, syncIt = 1;
1177    char answer;
1178 
1179    // First do some final sanity checks....
1180 
1181    // This test should only fail on read-only disks....
1182    if (justLooking) {
1183       cout << "The justLooking flag is set. This probably means you can't write to the disk.\n";
1184       allOK = 0;
1185    } // if
1186 
1187    // Check that disk is really big enough to handle the second header...
1188    if (mainHeader.backupLBA >= diskSize) {
1189       cerr << "Caution! Secondary header was placed beyond the disk's limits! Moving the\n"
1190            << "header, but other problems may occur!\n";
1191       MoveSecondHeaderToEnd();
1192    } // if
1193 
1194    // Is there enough space to hold the GPT headers and partition tables,
1195    // given the partition sizes?
1196    if (CheckGPTSize() > 0) {
1197       allOK = 0;
1198    } // if
1199 
1200    // Check that second header is properly placed. Warn and ask if this should
1201    // be corrected if the test fails....
1202    if (mainHeader.backupLBA < (diskSize - UINT64_C(1))) {
1203       if (quiet == 0) {
1204          cout << "Warning! Secondary header is placed too early on the disk! Do you want to\n"
1205               << "correct this problem? ";
1206          if (GetYN() == 'Y') {
1207             MoveSecondHeaderToEnd();
1208             cout << "Have moved second header and partition table to correct location.\n";
1209          } else {
1210             cout << "Have not corrected the problem. Strange problems may occur in the future!\n";
1211          } // if correction requested
1212       } else { // Go ahead and do correction automatically
1213          MoveSecondHeaderToEnd();
1214       } // if/else quiet
1215    } // if
1216 
1217    if ((mainHeader.lastUsableLBA >= diskSize) || (mainHeader.lastUsableLBA > mainHeader.backupLBA)) {
1218       if (quiet == 0) {
1219          cout << "Warning! The claimed last usable sector is incorrect! Do you want to correct\n"
1220               << "this problem? ";
1221          if (GetYN() == 'Y') {
1222             MoveSecondHeaderToEnd();
1223             cout << "Have adjusted the second header and last usable sector value.\n";
1224          } else {
1225             cout << "Have not corrected the problem. Strange problems may occur in the future!\n";
1226          } // if correction requested
1227       } else { // go ahead and do correction automatically
1228          MoveSecondHeaderToEnd();
1229       } // if/else quiet
1230    } // if
1231 
1232    // Check for overlapping or insane partitions....
1233    if ((FindOverlaps() > 0) || (FindInsanePartitions() > 0)) {
1234       allOK = 0;
1235       cerr << "Aborting write operation!\n";
1236    } // if
1237 
1238    // Check that protective MBR fits, and warn if it doesn't....
1239    if (!protectiveMBR.DoTheyFit()) {
1240       cerr << "\nPartition(s) in the protective MBR are too big for the disk! Creating a\n"
1241            << "fresh protective or hybrid MBR is recommended.\n";
1242    }
1243 
1244    // Check for mismatched MBR and GPT data, but let it pass if found
1245    // (function displays warning message)
1246    FindHybridMismatches();
1247 
1248    RecomputeCRCs();
1249 
1250    if ((allOK) && (!quiet)) {
1251       cout << "\nFinal checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING\n"
1252            << "PARTITIONS!!\n\nDo you want to proceed? ";
1253       answer = GetYN();
1254       if (answer == 'Y') {
1255          cout << "OK; writing new GUID partition table (GPT) to " << myDisk.GetName() << ".\n";
1256       } else {
1257          allOK = 0;
1258       } // if/else
1259    } // if
1260 
1261    // Do it!
1262    if (allOK) {
1263       if (myDisk.OpenForWrite()) {
1264          // As per UEFI specs, write the secondary table and GPT first....
1265          allOK = SavePartitionTable(myDisk, secondHeader.partitionEntriesLBA);
1266          if (!allOK) {
1267             cerr << "Unable to save backup partition table! Perhaps the 'e' option on the experts'\n"
1268                  << "menu will resolve this problem.\n";
1269             syncIt = 0;
1270          } // if
1271 
1272          // Now write the secondary GPT header...
1273          allOK = allOK && SaveHeader(&secondHeader, myDisk, mainHeader.backupLBA);
1274 
1275          // Now write the main partition tables...
1276          allOK = allOK && SavePartitionTable(myDisk, mainHeader.partitionEntriesLBA);
1277 
1278          // Now write the main GPT header...
1279          allOK = allOK && SaveHeader(&mainHeader, myDisk, 1);
1280 
1281          // To top it off, write the protective MBR...
1282          allOK = allOK && protectiveMBR.WriteMBRData(&myDisk);
1283 
1284          // re-read the partition table
1285          // Note: Done even if some write operations failed, but not if all of them failed.
1286          // Done this way because I've received one problem report from a user one whose
1287          // system the MBR write failed but everything else was OK (on a GPT disk under
1288          // Windows), and the failure to sync therefore caused Windows to restore the
1289          // original partition table from its cache. OTOH, such restoration might be
1290          // desirable if the error occurs later; but that seems unlikely unless the initial
1291          // write fails....
1292          if (syncIt)
1293             myDisk.DiskSync();
1294 
1295          if (allOK) { // writes completed OK
1296             cout << "The operation has completed successfully.\n";
1297          } else {
1298             cerr << "Warning! An error was reported when writing the partition table! This error\n"
1299                  << "MIGHT be harmless, or the disk might be damaged! Checking it is advisable.\n";
1300          } // if/else
1301 
1302          myDisk.Close();
1303       } else {
1304          cerr << "Unable to open device '" << myDisk.GetName() << "' for writing! Errno is "
1305               << errno << "! Aborting write!\n";
1306          allOK = 0;
1307       } // if/else
1308    } else {
1309       cout << "Aborting write of new partition table.\n";
1310    } // if
1311 
1312    return (allOK);
1313 } // GPTData::SaveGPTData()
1314 
1315 // Save GPT data to a backup file. This function does much less error
1316 // checking than SaveGPTData(). It can therefore preserve many types of
1317 // corruption for later analysis; however, it preserves only the MBR,
1318 // the main GPT header, the backup GPT header, and the main partition
1319 // table; it discards the backup partition table, since it should be
1320 // identical to the main partition table on healthy disks.
SaveGPTBackup(const string & filename)1321 int GPTData::SaveGPTBackup(const string & filename) {
1322    int allOK = 1;
1323    DiskIO backupFile;
1324 
1325    if (backupFile.OpenForWrite(filename)) {
1326       // Recomputing the CRCs is likely to alter them, which could be bad
1327       // if the intent is to save a potentially bad GPT for later analysis;
1328       // but if we don't do this, we get bogus errors when we load the
1329       // backup. I'm favoring misses over false alarms....
1330       RecomputeCRCs();
1331 
1332       protectiveMBR.WriteMBRData(&backupFile);
1333       protectiveMBR.SetDisk(&myDisk);
1334 
1335       if (allOK) {
1336          // MBR write closed disk, so re-open and seek to end....
1337          backupFile.OpenForWrite();
1338          allOK = SaveHeader(&mainHeader, backupFile, 1);
1339       } // if (allOK)
1340 
1341       if (allOK)
1342          allOK = SaveHeader(&secondHeader, backupFile, 2);
1343 
1344       if (allOK)
1345          allOK = SavePartitionTable(backupFile, 3);
1346 
1347       if (allOK) { // writes completed OK
1348          cout << "The operation has completed successfully.\n";
1349       } else {
1350          cerr << "Warning! An error was reported when writing the backup file.\n"
1351               << "It may not be usable!\n";
1352       } // if/else
1353       backupFile.Close();
1354    } else {
1355       cerr << "Unable to open file '" << filename << "' for writing! Aborting!\n";
1356       allOK = 0;
1357    } // if/else
1358    return allOK;
1359 } // GPTData::SaveGPTBackup()
1360 
1361 // Write a GPT header (main or backup) to the specified sector. Used by both
1362 // the SaveGPTData() and SaveGPTBackup() functions.
1363 // Should be passed an architecture-appropriate header (DO NOT call
1364 // ReverseHeaderBytes() on the header before calling this function)
1365 // Returns 1 on success, 0 on failure
SaveHeader(struct GPTHeader * header,DiskIO & disk,uint64_t sector)1366 int GPTData::SaveHeader(struct GPTHeader *header, DiskIO & disk, uint64_t sector) {
1367    int littleEndian, allOK = 1;
1368 
1369    littleEndian = IsLittleEndian();
1370    if (!littleEndian)
1371       ReverseHeaderBytes(header);
1372    if (disk.Seek(sector)) {
1373       if (disk.Write(header, 512) == -1)
1374          allOK = 0;
1375    } else allOK = 0; // if (disk.Seek()...)
1376    if (!littleEndian)
1377       ReverseHeaderBytes(header);
1378    return allOK;
1379 } // GPTData::SaveHeader()
1380 
1381 // Save the partitions to the specified sector. Used by both the SaveGPTData()
1382 // and SaveGPTBackup() functions.
1383 // Should be passed an architecture-appropriate header (DO NOT call
1384 // ReverseHeaderBytes() on the header before calling this function)
1385 // Returns 1 on success, 0 on failure
SavePartitionTable(DiskIO & disk,uint64_t sector)1386 int GPTData::SavePartitionTable(DiskIO & disk, uint64_t sector) {
1387    int littleEndian, allOK = 1;
1388 
1389    littleEndian = IsLittleEndian();
1390    if (disk.Seek(sector)) {
1391       if (!littleEndian)
1392          ReversePartitionBytes();
1393       if (disk.Write(partitions, mainHeader.sizeOfPartitionEntries * numParts) == -1)
1394          allOK = 0;
1395       if (!littleEndian)
1396          ReversePartitionBytes();
1397    } else allOK = 0; // if (myDisk.Seek()...)
1398    return allOK;
1399 } // GPTData::SavePartitionTable()
1400 
1401 // Load GPT data from a backup file created by SaveGPTBackup(). This function
1402 // does minimal error checking. It returns 1 if it completed successfully,
1403 // 0 if there was a problem. In the latter case, it creates a new empty
1404 // set of partitions.
LoadGPTBackup(const string & filename)1405 int GPTData::LoadGPTBackup(const string & filename) {
1406    int allOK = 1, val, err;
1407    int shortBackup = 0;
1408    DiskIO backupFile;
1409 
1410    if (backupFile.OpenForRead(filename)) {
1411       // Let the MBRData class load the saved MBR...
1412       protectiveMBR.ReadMBRData(&backupFile, 0); // 0 = don't check block size
1413       protectiveMBR.SetDisk(&myDisk);
1414 
1415       LoadHeader(&mainHeader, backupFile, 1, &mainCrcOk);
1416 
1417       // Check backup file size and rebuild second header if file is right
1418       // size to be direct dd copy of MBR, main header, and main partition
1419       // table; if other size, treat it like a GPT fdisk-generated backup
1420       // file
1421       shortBackup = ((backupFile.DiskSize(&err) * backupFile.GetBlockSize()) ==
1422                      (mainHeader.numParts * mainHeader.sizeOfPartitionEntries) + 1024);
1423       if (shortBackup) {
1424          RebuildSecondHeader();
1425          secondCrcOk = mainCrcOk;
1426       } else {
1427          LoadHeader(&secondHeader, backupFile, 2, &secondCrcOk);
1428       } // if/else
1429 
1430       // Return valid headers code: 0 = both headers bad; 1 = main header
1431       // good, backup bad; 2 = backup header good, main header bad;
1432       // 3 = both headers good. Note these codes refer to valid GPT
1433       // signatures and version numbers; more subtle problems will elude
1434       // this check!
1435       if ((val = CheckHeaderValidity()) > 0) {
1436          if (val == 2) { // only backup header seems to be good
1437             SetGPTSize(secondHeader.numParts, 0);
1438          } else { // main header is OK
1439             SetGPTSize(mainHeader.numParts, 0);
1440          } // if/else
1441 
1442          if (secondHeader.currentLBA != diskSize - UINT64_C(1)) {
1443             cout << "Warning! Current disk size doesn't match that of the backup!\n"
1444                  << "Adjusting sizes to match, but subsequent problems are possible!\n";
1445             MoveSecondHeaderToEnd();
1446          } // if
1447 
1448          if (!LoadPartitionTable(mainHeader, backupFile, (uint64_t) (3 - shortBackup)))
1449             cerr << "Warning! Read error " << errno
1450                  << " loading partition table; strange behavior now likely!\n";
1451       } else {
1452          allOK = 0;
1453       } // if/else
1454       // Something went badly wrong, so blank out partitions
1455       if (allOK == 0) {
1456          cerr << "Improper backup file! Clearing all partition data!\n";
1457          ClearGPTData();
1458          protectiveMBR.MakeProtectiveMBR();
1459       } // if
1460    } else {
1461       allOK = 0;
1462       cerr << "Unable to open file '" << filename << "' for reading! Aborting!\n";
1463    } // if/else
1464 
1465    return allOK;
1466 } // GPTData::LoadGPTBackup()
1467 
SaveMBR(void)1468 int GPTData::SaveMBR(void) {
1469    return protectiveMBR.WriteMBRData(&myDisk);
1470 } // GPTData::SaveMBR()
1471 
1472 // This function destroys the on-disk GPT structures, but NOT the on-disk
1473 // MBR.
1474 // Returns 1 if the operation succeeds, 0 if not.
DestroyGPT(void)1475 int GPTData::DestroyGPT(void) {
1476    int sum, tableSize, allOK = 1;
1477    uint8_t blankSector[512];
1478    uint8_t* emptyTable;
1479 
1480    memset(blankSector, 0, sizeof(blankSector));
1481    ClearGPTData();
1482 
1483    if (myDisk.OpenForWrite()) {
1484       if (!myDisk.Seek(mainHeader.currentLBA))
1485          allOK = 0;
1486       if (myDisk.Write(blankSector, 512) != 512) { // blank it out
1487          cerr << "Warning! GPT main header not overwritten! Error is " << errno << "\n";
1488          allOK = 0;
1489       } // if
1490       if (!myDisk.Seek(mainHeader.partitionEntriesLBA))
1491          allOK = 0;
1492       tableSize = numParts * mainHeader.sizeOfPartitionEntries;
1493       emptyTable = new uint8_t[tableSize];
1494       if (emptyTable == NULL) {
1495          cerr << "Could not allocate memory in GPTData::DestroyGPT()! Terminating!\n";
1496          exit(1);
1497       } // if
1498       memset(emptyTable, 0, tableSize);
1499       if (allOK) {
1500          sum = myDisk.Write(emptyTable, tableSize);
1501          if (sum != tableSize) {
1502             cerr << "Warning! GPT main partition table not overwritten! Error is " << errno << "\n";
1503             allOK = 0;
1504          } // if write failed
1505       } // if
1506       if (!myDisk.Seek(secondHeader.partitionEntriesLBA))
1507          allOK = 0;
1508       if (allOK) {
1509          sum = myDisk.Write(emptyTable, tableSize);
1510          if (sum != tableSize) {
1511             cerr << "Warning! GPT backup partition table not overwritten! Error is "
1512                  << errno << "\n";
1513             allOK = 0;
1514          } // if wrong size written
1515       } // if
1516       if (!myDisk.Seek(secondHeader.currentLBA))
1517          allOK = 0;
1518       if (allOK) {
1519          if (myDisk.Write(blankSector, 512) != 512) { // blank it out
1520             cerr << "Warning! GPT backup header not overwritten! Error is " << errno << "\n";
1521             allOK = 0;
1522          } // if
1523       } // if
1524       myDisk.DiskSync();
1525       myDisk.Close();
1526       cout << "GPT data structures destroyed! You may now partition the disk using fdisk or\n"
1527            << "other utilities.\n";
1528       delete[] emptyTable;
1529    } else {
1530       cerr << "Problem opening '" << device << "' for writing! Program will now terminate.\n";
1531    } // if/else (fd != -1)
1532    return (allOK);
1533 } // GPTDataTextUI::DestroyGPT()
1534 
1535 // Wipe MBR data from the disk (zero it out completely)
1536 // Returns 1 on success, 0 on failure.
DestroyMBR(void)1537 int GPTData::DestroyMBR(void) {
1538    int allOK;
1539    uint8_t blankSector[512];
1540 
1541    memset(blankSector, 0, sizeof(blankSector));
1542 
1543    allOK = myDisk.OpenForWrite() && myDisk.Seek(0) && (myDisk.Write(blankSector, 512) == 512);
1544 
1545    if (!allOK)
1546       cerr << "Warning! MBR not overwritten! Error is " << errno << "!\n";
1547    return allOK;
1548 } // GPTData::DestroyMBR(void)
1549 
1550 // Tell user whether Apple Partition Map (APM) was discovered....
ShowAPMState(void)1551 void GPTData::ShowAPMState(void) {
1552    if (apmFound)
1553       cout << "  APM: present\n";
1554    else
1555       cout << "  APM: not present\n";
1556 } // GPTData::ShowAPMState()
1557 
1558 // Tell user about the state of the GPT data....
ShowGPTState(void)1559 void GPTData::ShowGPTState(void) {
1560    switch (state) {
1561       case gpt_invalid:
1562          cout << "  GPT: not present\n";
1563          break;
1564       case gpt_valid:
1565          cout << "  GPT: present\n";
1566          break;
1567       case gpt_corrupt:
1568          cout << "  GPT: damaged\n";
1569          break;
1570       default:
1571          cout << "\a  GPT: unknown -- bug!\n";
1572          break;
1573    } // switch
1574 } // GPTData::ShowGPTState()
1575 
1576 // Display the basic GPT data
DisplayGPTData(void)1577 void GPTData::DisplayGPTData(void) {
1578    uint32_t i;
1579    uint64_t temp, totalFree;
1580 
1581    cout << "Disk " << device << ": " << diskSize << " sectors, "
1582         << BytesToIeee(diskSize, blockSize) << "\n";
1583    if (myDisk.GetModel() != "")
1584       cout << "Model: " << myDisk.GetModel() << "\n";
1585    if (physBlockSize > 0)
1586       cout << "Sector size (logical/physical): " << blockSize << "/" << physBlockSize << " bytes\n";
1587    else
1588       cout << "Sector size (logical): " << blockSize << " bytes\n";
1589    cout << "Disk identifier (GUID): " << mainHeader.diskGUID << "\n";
1590    cout << "Partition table holds up to " << numParts << " entries\n";
1591    cout << "Main partition table begins at sector " << mainHeader.partitionEntriesLBA
1592         << " and ends at sector " << mainHeader.partitionEntriesLBA + GetTableSizeInSectors() - 1 << "\n";
1593    cout << "First usable sector is " << mainHeader.firstUsableLBA
1594         << ", last usable sector is " << mainHeader.lastUsableLBA << "\n";
1595    totalFree = FindFreeBlocks(&i, &temp);
1596    cout << "Partitions will be aligned on " << sectorAlignment << "-sector boundaries\n";
1597    cout << "Total free space is " << totalFree << " sectors ("
1598         << BytesToIeee(totalFree, blockSize) << ")\n";
1599    cout << "\nNumber  Start (sector)    End (sector)  Size       Code  Name\n";
1600    for (i = 0; i < numParts; i++) {
1601       partitions[i].ShowSummary(i, blockSize);
1602    } // for
1603 } // GPTData::DisplayGPTData()
1604 
1605 // Show detailed information on the specified partition
ShowPartDetails(uint32_t partNum)1606 void GPTData::ShowPartDetails(uint32_t partNum) {
1607    if ((partNum < numParts) && !IsFreePartNum(partNum)) {
1608       partitions[partNum].ShowDetails(blockSize);
1609    } else {
1610       cout << "Partition #" << partNum + 1 << " does not exist.\n";
1611    } // if
1612 } // GPTData::ShowPartDetails()
1613 
1614 /**************************************************************************
1615  *                                                                        *
1616  * Partition table transformation functions (MBR or BSD disklabel to GPT) *
1617  * (some of these functions may require user interaction)                 *
1618  *                                                                        *
1619  **************************************************************************/
1620 
1621 // Examines the MBR & GPT data to determine which set of data to use: the
1622 // MBR (use_mbr), the GPT (use_gpt), the BSD disklabel (use_bsd), or create
1623 // a new set of partitions (use_new). A return value of use_abort indicates
1624 // that this function couldn't determine what to do. Overriding functions
1625 // in derived classes may ask users questions in such cases.
UseWhichPartitions(void)1626 WhichToUse GPTData::UseWhichPartitions(void) {
1627    WhichToUse which = use_new;
1628    MBRValidity mbrState;
1629 
1630    mbrState = protectiveMBR.GetValidity();
1631 
1632    if ((state == gpt_invalid) && ((mbrState == mbr) || (mbrState == hybrid))) {
1633       cout << "\n***************************************************************\n"
1634            << "Found invalid GPT and valid MBR; converting MBR to GPT format\n"
1635            << "in memory. ";
1636       if (!justLooking) {
1637          cout << "\aTHIS OPERATION IS POTENTIALLY DESTRUCTIVE! Exit by\n"
1638               << "typing 'q' if you don't want to convert your MBR partitions\n"
1639               << "to GPT format!";
1640       } // if
1641       cout << "\n***************************************************************\n\n";
1642       which = use_mbr;
1643    } // if
1644 
1645    if ((state == gpt_invalid) && bsdFound) {
1646       cout << "\n**********************************************************************\n"
1647            << "Found invalid GPT and valid BSD disklabel; converting BSD disklabel\n"
1648            << "to GPT format.";
1649       if ((!justLooking) && (!beQuiet)) {
1650       cout << "\a THIS OPERATION IS POTENTIALLY DESTRUCTIVE! Your first\n"
1651            << "BSD partition will likely be unusable. Exit by typing 'q' if you don't\n"
1652            << "want to convert your BSD partitions to GPT format!";
1653       } // if
1654       cout << "\n**********************************************************************\n\n";
1655       which = use_bsd;
1656    } // if
1657 
1658    if ((state == gpt_valid) && (mbrState == gpt)) {
1659       which = use_gpt;
1660       if (!beQuiet)
1661          cout << "Found valid GPT with protective MBR; using GPT.\n";
1662    } // if
1663    if ((state == gpt_valid) && (mbrState == hybrid)) {
1664       which = use_gpt;
1665       if (!beQuiet)
1666          cout << "Found valid GPT with hybrid MBR; using GPT.\n";
1667    } // if
1668    if ((state == gpt_valid) && (mbrState == invalid)) {
1669       cout << "\aFound valid GPT with corrupt MBR; using GPT and will write new\n"
1670            << "protective MBR on save.\n";
1671       which = use_gpt;
1672    } // if
1673    if ((state == gpt_valid) && (mbrState == mbr)) {
1674       which = use_abort;
1675    } // if
1676 
1677    if (state == gpt_corrupt) {
1678       if (mbrState == gpt) {
1679          cout << "\a\a****************************************************************************\n"
1680               << "Caution: Found protective or hybrid MBR and corrupt GPT. Using GPT, but disk\n"
1681               << "verification and recovery are STRONGLY recommended.\n"
1682               << "****************************************************************************\n";
1683          which = use_gpt;
1684       } else {
1685          which = use_abort;
1686       } // if/else MBR says disk is GPT
1687    } // if GPT corrupt
1688 
1689    if (which == use_new)
1690       cout << "Creating new GPT entries in memory.\n";
1691 
1692    return which;
1693 } // UseWhichPartitions()
1694 
1695 // Convert MBR partition table into GPT form.
XFormPartitions(void)1696 void GPTData::XFormPartitions(void) {
1697    int i, numToConvert;
1698    uint8_t origType;
1699 
1700    // Clear out old data & prepare basics....
1701    ClearGPTData();
1702 
1703    // Convert the smaller of the # of GPT or MBR partitions
1704    if (numParts > MAX_MBR_PARTS)
1705       numToConvert = MAX_MBR_PARTS;
1706    else
1707       numToConvert = numParts;
1708 
1709    for (i = 0; i < numToConvert; i++) {
1710       origType = protectiveMBR.GetType(i);
1711       // don't waste CPU time trying to convert extended, hybrid protective, or
1712       // null (non-existent) partitions
1713       if ((origType != 0x05) && (origType != 0x0f) && (origType != 0x85) &&
1714           (origType != 0x00) && (origType != 0xEE))
1715          partitions[i] = protectiveMBR.AsGPT(i);
1716    } // for
1717 
1718    // Convert MBR into protective MBR
1719    protectiveMBR.MakeProtectiveMBR();
1720 
1721    // Record that all original CRCs were OK so as not to raise flags
1722    // when doing a disk verification
1723    mainCrcOk = secondCrcOk = mainPartsCrcOk = secondPartsCrcOk = 1;
1724 } // GPTData::XFormPartitions()
1725 
1726 // Transforms BSD disklabel on the specified partition (numbered from 0).
1727 // If an invalid partition number is given, the program does nothing.
1728 // Returns the number of new partitions created.
XFormDisklabel(uint32_t partNum)1729 int GPTData::XFormDisklabel(uint32_t partNum) {
1730    uint32_t low, high;
1731    int goOn = 1, numDone = 0;
1732    BSDData disklabel;
1733 
1734    if (GetPartRange(&low, &high) == 0) {
1735       goOn = 0;
1736       cout << "No partitions!\n";
1737    } // if
1738    if (partNum > high) {
1739       goOn = 0;
1740       cout << "Specified partition is invalid!\n";
1741    } // if
1742 
1743    // If all is OK, read the disklabel and convert it.
1744    if (goOn) {
1745       goOn = disklabel.ReadBSDData(&myDisk, partitions[partNum].GetFirstLBA(),
1746                                    partitions[partNum].GetLastLBA());
1747       if ((goOn) && (disklabel.IsDisklabel())) {
1748          numDone = XFormDisklabel(&disklabel);
1749          if (numDone == 1)
1750             cout << "Converted 1 BSD partition.\n";
1751          else
1752             cout << "Converted " << numDone << " BSD partitions.\n";
1753       } else {
1754          cout << "Unable to convert partitions! Unrecognized BSD disklabel.\n";
1755       } // if/else
1756    } // if
1757    if (numDone > 0) { // converted partitions; delete carrier
1758       partitions[partNum].BlankPartition();
1759    } // if
1760    return numDone;
1761 } // GPTData::XFormDisklabel(uint32_t i)
1762 
1763 // Transform the partitions on an already-loaded BSD disklabel...
XFormDisklabel(BSDData * disklabel)1764 int GPTData::XFormDisklabel(BSDData* disklabel) {
1765    int i, partNum = 0, numDone = 0;
1766 
1767    if (disklabel->IsDisklabel()) {
1768       for (i = 0; i < disklabel->GetNumParts(); i++) {
1769          partNum = FindFirstFreePart();
1770          if (partNum >= 0) {
1771             partitions[partNum] = disklabel->AsGPT(i);
1772             if (partitions[partNum].IsUsed())
1773                numDone++;
1774          } // if
1775       } // for
1776       if (partNum == -1)
1777          cerr << "Warning! Too many partitions to convert!\n";
1778    } // if
1779 
1780    // Record that all original CRCs were OK so as not to raise flags
1781    // when doing a disk verification
1782    mainCrcOk = secondCrcOk = mainPartsCrcOk = secondPartsCrcOk = 1;
1783 
1784    return numDone;
1785 } // GPTData::XFormDisklabel(BSDData* disklabel)
1786 
1787 // Add one GPT partition to MBR. Used by PartsToMBR() functions. Created
1788 // partition has the active/bootable flag UNset and uses the GPT fdisk
1789 // type code divided by 0x0100 as the MBR type code.
1790 // Returns 1 if operation was 100% successful, 0 if there were ANY
1791 // problems.
OnePartToMBR(uint32_t gptPart,int mbrPart)1792 int GPTData::OnePartToMBR(uint32_t gptPart, int mbrPart) {
1793    int allOK = 1;
1794 
1795    if ((mbrPart < 0) || (mbrPart > 3)) {
1796       cout << "MBR partition " << mbrPart + 1 << " is out of range; omitting it.\n";
1797       allOK = 0;
1798    } // if
1799    if (gptPart >= numParts) {
1800       cout << "GPT partition " << gptPart + 1 << " is out of range; omitting it.\n";
1801       allOK = 0;
1802    } // if
1803    if (allOK && (partitions[gptPart].GetLastLBA() == UINT64_C(0))) {
1804       cout << "GPT partition " << gptPart + 1 << " is undefined; omitting it.\n";
1805       allOK = 0;
1806    } // if
1807    if (allOK && (partitions[gptPart].GetFirstLBA() <= UINT32_MAX) &&
1808        (partitions[gptPart].GetLengthLBA() <= UINT32_MAX)) {
1809       if (partitions[gptPart].GetLastLBA() > UINT32_MAX) {
1810          cout << "Caution: Partition end point past 32-bit pointer boundary;"
1811               << " some OSes may\nreact strangely.\n";
1812       } // if
1813       protectiveMBR.MakePart(mbrPart, (uint32_t) partitions[gptPart].GetFirstLBA(),
1814                              (uint32_t) partitions[gptPart].GetLengthLBA(),
1815                              partitions[gptPart].GetHexType() / 256, 0);
1816    } else { // partition out of range
1817       if (allOK) // Display only if "else" triggered by out-of-bounds condition
1818          cout << "Partition " << gptPart + 1 << " begins beyond the 32-bit pointer limit of MBR "
1819               << "partitions, or is\n too big; omitting it.\n";
1820       allOK = 0;
1821    } // if/else
1822    return allOK;
1823 } // GPTData::OnePartToMBR()
1824 
1825 
1826 /**********************************************************************
1827  *                                                                    *
1828  * Functions that adjust GPT data structures WITHOUT user interaction *
1829  * (they may display information for the user's benefit, though)      *
1830  *                                                                    *
1831  **********************************************************************/
1832 
1833 // Resizes GPT to specified number of entries. Creates a new table if
1834 // necessary, copies data if it already exists. If fillGPTSectors is 1
1835 // (the default), rounds numEntries to fill all the sectors necessary to
1836 // hold the GPT.
1837 // Returns 1 if all goes well, 0 if an error is encountered.
SetGPTSize(uint32_t numEntries,int fillGPTSectors)1838 int GPTData::SetGPTSize(uint32_t numEntries, int fillGPTSectors) {
1839    GPTPart* newParts;
1840    uint32_t i, high, copyNum, entriesPerSector;
1841    int allOK = 1;
1842 
1843    // First, adjust numEntries upward, if necessary, to get a number
1844    // that fills the allocated sectors
1845    entriesPerSector = blockSize / GPT_SIZE;
1846    if (fillGPTSectors && ((numEntries % entriesPerSector) != 0)) {
1847       cout << "Adjusting GPT size from " << numEntries << " to ";
1848       numEntries = ((numEntries / entriesPerSector) + 1) * entriesPerSector;
1849       cout << numEntries << " to fill the sector\n";
1850    } // if
1851 
1852    // Do the work only if the # of partitions is changing. Along with being
1853    // efficient, this prevents mucking with the location of the secondary
1854    // partition table, which causes problems when loading data from a RAID
1855    // array that's been expanded because this function is called when loading
1856    // data.
1857    if (((numEntries != numParts) || (partitions == NULL)) && (numEntries > 0)) {
1858       newParts = new GPTPart [numEntries];
1859       if (newParts != NULL) {
1860          if (partitions != NULL) { // existing partitions; copy them over
1861             GetPartRange(&i, &high);
1862             if (numEntries < (high + 1)) { // Highest entry too high for new #
1863                cout << "The highest-numbered partition is " << high + 1
1864                     << ", which is greater than the requested\n"
1865                     << "partition table size of " << numEntries
1866                     << "; cannot resize. Perhaps sorting will help.\n";
1867                allOK = 0;
1868                delete[] newParts;
1869             } else { // go ahead with copy
1870                if (numEntries < numParts)
1871                   copyNum = numEntries;
1872                else
1873                   copyNum = numParts;
1874                for (i = 0; i < copyNum; i++) {
1875                   newParts[i] = partitions[i];
1876                } // for
1877                delete[] partitions;
1878                partitions = newParts;
1879             } // if
1880          } else { // No existing partition table; just create it
1881             partitions = newParts;
1882          } // if/else existing partitions
1883          numParts = numEntries;
1884          mainHeader.firstUsableLBA = GetTableSizeInSectors() + mainHeader.partitionEntriesLBA;
1885          secondHeader.firstUsableLBA = mainHeader.firstUsableLBA;
1886          MoveSecondHeaderToEnd();
1887          if (diskSize > 0)
1888             CheckGPTSize();
1889       } else { // Bad memory allocation
1890          cerr << "Error allocating memory for partition table! Size is unchanged!\n";
1891          allOK = 0;
1892       } // if/else
1893    } // if/else
1894    mainHeader.numParts = numParts;
1895    secondHeader.numParts = numParts;
1896    return (allOK);
1897 } // GPTData::SetGPTSize()
1898 
1899 // Change the start sector for the main partition table.
1900 // Returns 1 on success, 0 on failure
MoveMainTable(uint64_t pteSector)1901 int GPTData::MoveMainTable(uint64_t pteSector) {
1902     uint64_t pteSize = GetTableSizeInSectors();
1903     int retval = 1;
1904 
1905     if ((pteSector >= 2) && ((pteSector + pteSize) <= FindFirstUsedLBA())) {
1906        mainHeader.partitionEntriesLBA = pteSector;
1907        mainHeader.firstUsableLBA = pteSector + pteSize;
1908        RebuildSecondHeader();
1909     } else {
1910        cerr << "Unable to set the main partition table's location to " << pteSector << "!\n";
1911        retval = 0;
1912     } // if/else
1913     return retval;
1914 } // GPTData::MoveMainTable()
1915 
1916 // Blank the partition array
BlankPartitions(void)1917 void GPTData::BlankPartitions(void) {
1918    uint32_t i;
1919 
1920    for (i = 0; i < numParts; i++) {
1921       partitions[i].BlankPartition();
1922    } // for
1923 } // GPTData::BlankPartitions()
1924 
1925 // Delete a partition by number. Returns 1 if successful,
1926 // 0 if there was a problem. Returns 1 if partition was in
1927 // range, 0 if it was out of range.
DeletePartition(uint32_t partNum)1928 int GPTData::DeletePartition(uint32_t partNum) {
1929    uint64_t startSector, length;
1930    uint32_t low, high, numUsedParts, retval = 1;;
1931 
1932    numUsedParts = GetPartRange(&low, &high);
1933    if ((numUsedParts > 0) && (partNum >= low) && (partNum <= high)) {
1934       // In case there's a protective MBR, look for & delete matching
1935       // MBR partition....
1936       startSector = partitions[partNum].GetFirstLBA();
1937       length = partitions[partNum].GetLengthLBA();
1938       protectiveMBR.DeleteByLocation(startSector, length);
1939 
1940       // Now delete the GPT partition
1941       partitions[partNum].BlankPartition();
1942    } else {
1943       cerr << "Partition number " << partNum + 1 << " out of range!\n";
1944       retval = 0;
1945    } // if/else
1946    return retval;
1947 } // GPTData::DeletePartition(uint32_t partNum)
1948 
1949 // Non-interactively create a partition.
1950 // Returns 1 if the operation was successful, 0 if a problem was discovered.
CreatePartition(uint32_t partNum,uint64_t startSector,uint64_t endSector)1951 uint32_t GPTData::CreatePartition(uint32_t partNum, uint64_t startSector, uint64_t endSector) {
1952    int retval = 1; // assume there'll be no problems
1953    uint64_t origSector = startSector;
1954 
1955    if (IsFreePartNum(partNum)) {
1956       if (Align(&startSector)) {
1957          cout << "Information: Moved requested sector from " << origSector << " to "
1958               << startSector << " in\norder to align on " << sectorAlignment
1959               << "-sector boundaries.\n";
1960       } // if
1961       if (IsFree(startSector) && (startSector <= endSector)) {
1962          if (FindLastInFree(startSector) >= endSector) {
1963             partitions[partNum].SetFirstLBA(startSector);
1964             partitions[partNum].SetLastLBA(endSector);
1965             partitions[partNum].SetType(DEFAULT_GPT_TYPE);
1966             partitions[partNum].RandomizeUniqueGUID();
1967          } else retval = 0; // if free space until endSector
1968       } else retval = 0; // if startSector is free
1969    } else retval = 0; // if legal partition number
1970    return retval;
1971 } // GPTData::CreatePartition(partNum, startSector, endSector)
1972 
1973 // Sort the GPT entries, eliminating gaps and making for a logical
1974 // ordering.
SortGPT(void)1975 void GPTData::SortGPT(void) {
1976    if (numParts > 0)
1977       sort(partitions, partitions + numParts);
1978 } // GPTData::SortGPT()
1979 
1980 // Swap the contents of two partitions.
1981 // Returns 1 if successful, 0 if either partition is out of range
1982 // (that is, not a legal number; either or both can be empty).
1983 // Note that if partNum1 = partNum2 and this number is in range,
1984 // it will be considered successful.
SwapPartitions(uint32_t partNum1,uint32_t partNum2)1985 int GPTData::SwapPartitions(uint32_t partNum1, uint32_t partNum2) {
1986    GPTPart temp;
1987    int allOK = 1;
1988 
1989    if ((partNum1 < numParts) && (partNum2 < numParts)) {
1990       if (partNum1 != partNum2) {
1991          temp = partitions[partNum1];
1992          partitions[partNum1] = partitions[partNum2];
1993          partitions[partNum2] = temp;
1994       } // if
1995    } else allOK = 0; // partition numbers are valid
1996    return allOK;
1997 } // GPTData::SwapPartitions()
1998 
1999 // Set up data structures for entirely new set of partitions on the
2000 // specified device. Returns 1 if OK, 0 if there were problems.
2001 // Note that this function does NOT clear the protectiveMBR data
2002 // structure, since it may hold the original MBR partitions if the
2003 // program was launched on an MBR disk, and those may need to be
2004 // converted to GPT format.
ClearGPTData(void)2005 int GPTData::ClearGPTData(void) {
2006    int goOn = 1, i;
2007 
2008    // Set up the partition table....
2009    delete[] partitions;
2010    partitions = NULL;
2011    SetGPTSize(NUM_GPT_ENTRIES);
2012 
2013    // Now initialize a bunch of stuff that's static....
2014    mainHeader.signature = GPT_SIGNATURE;
2015    mainHeader.revision = 0x00010000;
2016    mainHeader.headerSize = HEADER_SIZE;
2017    mainHeader.reserved = 0;
2018    mainHeader.currentLBA = UINT64_C(1);
2019    mainHeader.partitionEntriesLBA = (uint64_t) 2;
2020    mainHeader.sizeOfPartitionEntries = GPT_SIZE;
2021    mainHeader.firstUsableLBA = GetTableSizeInSectors() + mainHeader.partitionEntriesLBA;
2022    for (i = 0; i < GPT_RESERVED; i++) {
2023       mainHeader.reserved2[i] = '\0';
2024    } // for
2025    if (blockSize > 0)
2026       sectorAlignment = DEFAULT_ALIGNMENT * SECTOR_SIZE / blockSize;
2027    else
2028       sectorAlignment = DEFAULT_ALIGNMENT;
2029 
2030    // Now some semi-static items (computed based on end of disk)
2031    mainHeader.backupLBA = diskSize - UINT64_C(1);
2032    mainHeader.lastUsableLBA = diskSize - mainHeader.firstUsableLBA;
2033 
2034    // Set a unique GUID for the disk, based on random numbers
2035    mainHeader.diskGUID.Randomize();
2036 
2037    // Copy main header to backup header
2038    RebuildSecondHeader();
2039 
2040    // Blank out the partitions array....
2041    BlankPartitions();
2042 
2043    // Flag all CRCs as being OK....
2044    mainCrcOk = 1;
2045    secondCrcOk = 1;
2046    mainPartsCrcOk = 1;
2047    secondPartsCrcOk = 1;
2048 
2049    return (goOn);
2050 } // GPTData::ClearGPTData()
2051 
2052 // Set the location of the second GPT header data to the end of the disk.
2053 // If the disk size has actually changed, this also adjusts the protective
2054 // entry in the MBR, since it's probably no longer correct.
2055 // Used internally and called by the 'e' option on the recovery &
2056 // transformation menu, to help users of RAID arrays who add disk space
2057 // to their arrays or to adjust data structures in restore operations
2058 // involving unequal-sized disks.
MoveSecondHeaderToEnd()2059 void GPTData::MoveSecondHeaderToEnd() {
2060    mainHeader.backupLBA = secondHeader.currentLBA = diskSize - UINT64_C(1);
2061    if (mainHeader.lastUsableLBA != diskSize - mainHeader.firstUsableLBA) {
2062       if (protectiveMBR.GetValidity() == hybrid) {
2063          protectiveMBR.OptimizeEESize();
2064          RecomputeCHS();
2065       } // if
2066       if (protectiveMBR.GetValidity() == gpt)
2067          MakeProtectiveMBR();
2068    } // if
2069    mainHeader.lastUsableLBA = secondHeader.lastUsableLBA = diskSize - mainHeader.firstUsableLBA;
2070    secondHeader.partitionEntriesLBA = secondHeader.lastUsableLBA + UINT64_C(1);
2071 } // GPTData::FixSecondHeaderLocation()
2072 
2073 // Sets the partition's name to the specified UnicodeString without
2074 // user interaction.
2075 // Returns 1 on success, 0 on failure (invalid partition number).
SetName(uint32_t partNum,const UnicodeString & theName)2076 int GPTData::SetName(uint32_t partNum, const UnicodeString & theName) {
2077    int retval = 1;
2078 
2079    if (IsUsedPartNum(partNum))
2080       partitions[partNum].SetName(theName);
2081    else
2082       retval = 0;
2083 
2084    return retval;
2085 } // GPTData::SetName
2086 
2087 // Set the disk GUID to the specified value. Note that the header CRCs must
2088 // be recomputed after calling this function.
SetDiskGUID(GUIDData newGUID)2089 void GPTData::SetDiskGUID(GUIDData newGUID) {
2090    mainHeader.diskGUID = newGUID;
2091    secondHeader.diskGUID = newGUID;
2092 } // SetDiskGUID()
2093 
2094 // Set the unique GUID of the specified partition. Returns 1 on
2095 // successful completion, 0 if there were problems (invalid
2096 // partition number).
SetPartitionGUID(uint32_t pn,GUIDData theGUID)2097 int GPTData::SetPartitionGUID(uint32_t pn, GUIDData theGUID) {
2098    int retval = 0;
2099 
2100    if (pn < numParts) {
2101       if (partitions[pn].IsUsed()) {
2102          partitions[pn].SetUniqueGUID(theGUID);
2103          retval = 1;
2104       } // if
2105    } // if
2106    return retval;
2107 } // GPTData::SetPartitionGUID()
2108 
2109 // Set new random GUIDs for the disk and all partitions. Intended to be used
2110 // after disk cloning or similar operations that don't randomize the GUIDs.
RandomizeGUIDs(void)2111 void GPTData::RandomizeGUIDs(void) {
2112    uint32_t i;
2113 
2114    mainHeader.diskGUID.Randomize();
2115    secondHeader.diskGUID = mainHeader.diskGUID;
2116    for (i = 0; i < numParts; i++)
2117       if (partitions[i].IsUsed())
2118          partitions[i].RandomizeUniqueGUID();
2119 } // GPTData::RandomizeGUIDs()
2120 
2121 // Change partition type code non-interactively. Returns 1 if
2122 // successful, 0 if not....
ChangePartType(uint32_t partNum,PartType theGUID)2123 int GPTData::ChangePartType(uint32_t partNum, PartType theGUID) {
2124    int retval = 1;
2125 
2126    if (!IsFreePartNum(partNum)) {
2127       partitions[partNum].SetType(theGUID);
2128    } else retval = 0;
2129    return retval;
2130 } // GPTData::ChangePartType()
2131 
2132 // Recompute the CHS values of all the MBR partitions. Used to reset
2133 // CHS values that some BIOSes require, despite the fact that the
2134 // resulting CHS values violate the GPT standard.
RecomputeCHS(void)2135 void GPTData::RecomputeCHS(void) {
2136    int i;
2137 
2138    for (i = 0; i < 4; i++)
2139       protectiveMBR.RecomputeCHS(i);
2140 } // GPTData::RecomputeCHS()
2141 
2142 // Adjust sector number so that it falls on a sector boundary that's a
2143 // multiple of sectorAlignment. This is done to improve the performance
2144 // of Western Digital Advanced Format disks and disks with similar
2145 // technology from other companies, which use 4096-byte sectors
2146 // internally although they translate to 512-byte sectors for the
2147 // benefit of the OS. If partitions aren't properly aligned on these
2148 // disks, some filesystem data structures can span multiple physical
2149 // sectors, degrading performance. This function should be called
2150 // only on the FIRST sector of the partition, not the last!
2151 // This function returns 1 if the alignment was altered, 0 if it
2152 // was unchanged.
Align(uint64_t * sector)2153 int GPTData::Align(uint64_t* sector) {
2154    int retval = 0, sectorOK = 0;
2155    uint64_t earlier, later, testSector;
2156 
2157    if ((*sector % sectorAlignment) != 0) {
2158       earlier = (*sector / sectorAlignment) * sectorAlignment;
2159       later = earlier + (uint64_t) sectorAlignment;
2160 
2161       // Check to see that every sector between the earlier one and the
2162       // requested one is clear, and that it's not too early....
2163       if (earlier >= mainHeader.firstUsableLBA) {
2164          testSector = earlier;
2165          do {
2166             sectorOK = IsFree(testSector++);
2167          } while ((sectorOK == 1) && (testSector < *sector));
2168          if (sectorOK == 1) {
2169             *sector = earlier;
2170             retval = 1;
2171          } // if
2172       } // if firstUsableLBA check
2173 
2174       // If couldn't move the sector earlier, try to move it later instead....
2175       if ((sectorOK != 1) && (later <= mainHeader.lastUsableLBA)) {
2176          testSector = later;
2177          do {
2178             sectorOK = IsFree(testSector--);
2179          } while ((sectorOK == 1) && (testSector > *sector));
2180          if (sectorOK == 1) {
2181             *sector = later;
2182             retval = 1;
2183          } // if
2184       } // if
2185    } // if
2186    return retval;
2187 } // GPTData::Align()
2188 
2189 /********************************************************
2190  *                                                      *
2191  * Functions that return data about GPT data structures *
2192  * (most of these are inline in gpt.h)                  *
2193  *                                                      *
2194  ********************************************************/
2195 
2196 // Find the low and high used partition numbers (numbered from 0).
2197 // Return value is the number of partitions found. Note that the
2198 // *low and *high values are both set to 0 when no partitions
2199 // are found, as well as when a single partition in the first
2200 // position exists. Thus, the return value is the only way to
2201 // tell when no partitions exist.
GetPartRange(uint32_t * low,uint32_t * high)2202 int GPTData::GetPartRange(uint32_t *low, uint32_t *high) {
2203    uint32_t i;
2204    int numFound = 0;
2205 
2206    *low = numParts + 1; // code for "not found"
2207    *high = 0;
2208    for (i = 0; i < numParts; i++) {
2209       if (partitions[i].IsUsed()) { // it exists
2210          *high = i; // since we're counting up, set the high value
2211          // Set the low value only if it's not yet found...
2212          if (*low == (numParts + 1)) *low = i;
2213             numFound++;
2214       } // if
2215    } // for
2216 
2217    // Above will leave *low pointing to its "not found" value if no partitions
2218    // are defined, so reset to 0 if this is the case....
2219    if (*low == (numParts + 1))
2220       *low = 0;
2221    return numFound;
2222 } // GPTData::GetPartRange()
2223 
2224 // Returns the value of the first free partition, or -1 if none is
2225 // unused.
FindFirstFreePart(void)2226 int GPTData::FindFirstFreePart(void) {
2227    int i = 0;
2228 
2229    if (partitions != NULL) {
2230       while ((i < (int) numParts) && (partitions[i].IsUsed()))
2231          i++;
2232       if (i >= (int) numParts)
2233          i = -1;
2234    } else i = -1;
2235    return i;
2236 } // GPTData::FindFirstFreePart()
2237 
2238 // Returns the number of defined partitions.
CountParts(void)2239 uint32_t GPTData::CountParts(void) {
2240    uint32_t i, counted = 0;
2241 
2242    for (i = 0; i < numParts; i++) {
2243       if (partitions[i].IsUsed())
2244          counted++;
2245    } // for
2246    return counted;
2247 } // GPTData::CountParts()
2248 
2249 /****************************************************
2250  *                                                  *
2251  * Functions that return data about disk free space *
2252  *                                                  *
2253  ****************************************************/
2254 
2255 // Find the first available block after the starting point; returns 0 if
2256 // there are no available blocks left
FindFirstAvailable(uint64_t start)2257 uint64_t GPTData::FindFirstAvailable(uint64_t start) {
2258    uint64_t first;
2259    uint32_t i;
2260    int firstMoved = 0;
2261 
2262    // Begin from the specified starting point or from the first usable
2263    // LBA, whichever is greater...
2264    if (start < mainHeader.firstUsableLBA)
2265       first = mainHeader.firstUsableLBA;
2266    else
2267       first = start;
2268 
2269    // ...now search through all partitions; if first is within an
2270    // existing partition, move it to the next sector after that
2271    // partition and repeat. If first was moved, set firstMoved
2272    // flag; repeat until firstMoved is not set, so as to catch
2273    // cases where partitions are out of sequential order....
2274    do {
2275       firstMoved = 0;
2276       for (i = 0; i < numParts; i++) {
2277          if ((partitions[i].IsUsed()) && (first >= partitions[i].GetFirstLBA()) &&
2278              (first <= partitions[i].GetLastLBA())) { // in existing part.
2279             first = partitions[i].GetLastLBA() + 1;
2280             firstMoved = 1;
2281          } // if
2282       } // for
2283    } while (firstMoved == 1);
2284    if (first > mainHeader.lastUsableLBA)
2285       first = 0;
2286    return (first);
2287 } // GPTData::FindFirstAvailable()
2288 
2289 // Returns the LBA of the start of the first partition on the disk (by
2290 // sector number), or 0 if there are no partitions defined.
FindFirstUsedLBA(void)2291 uint64_t GPTData::FindFirstUsedLBA(void) {
2292     uint32_t i;
2293     uint64_t firstFound = UINT64_MAX;
2294 
2295     for (i = 0; i < numParts; i++) {
2296         if ((partitions[i].IsUsed()) && (partitions[i].GetFirstLBA() < firstFound)) {
2297             firstFound = partitions[i].GetFirstLBA();
2298         } // if
2299     } // for
2300     return firstFound;
2301 } // GPTData::FindFirstUsedLBA()
2302 
2303 // Finds the first available sector in the largest block of unallocated
2304 // space on the disk. Returns 0 if there are no available blocks left
FindFirstInLargest(void)2305 uint64_t GPTData::FindFirstInLargest(void) {
2306    uint64_t start, firstBlock, lastBlock, segmentSize, selectedSize = 0, selectedSegment = 0;
2307 
2308    start = 0;
2309    do {
2310       firstBlock = FindFirstAvailable(start);
2311       if (firstBlock != UINT32_C(0)) { // something's free...
2312          lastBlock = FindLastInFree(firstBlock);
2313          segmentSize = lastBlock - firstBlock + UINT32_C(1);
2314          if (segmentSize > selectedSize) {
2315             selectedSize = segmentSize;
2316             selectedSegment = firstBlock;
2317          } // if
2318          start = lastBlock + 1;
2319       } // if
2320    } while (firstBlock != 0);
2321    return selectedSegment;
2322 } // GPTData::FindFirstInLargest()
2323 
2324 // Find the last available block on the disk.
2325 // Returns 0 if there are no available sectors
FindLastAvailable(void)2326 uint64_t GPTData::FindLastAvailable(void) {
2327    uint64_t last;
2328    uint32_t i;
2329    int lastMoved = 0;
2330 
2331    // Start by assuming the last usable LBA is available....
2332    last = mainHeader.lastUsableLBA;
2333 
2334    // ...now, similar to algorithm in FindFirstAvailable(), search
2335    // through all partitions, moving last when it's in an existing
2336    // partition. Set the lastMoved flag so we repeat to catch cases
2337    // where partitions are out of logical order.
2338    do {
2339       lastMoved = 0;
2340       for (i = 0; i < numParts; i++) {
2341          if ((last >= partitions[i].GetFirstLBA()) &&
2342              (last <= partitions[i].GetLastLBA())) { // in existing part.
2343             last = partitions[i].GetFirstLBA() - 1;
2344             lastMoved = 1;
2345          } // if
2346       } // for
2347    } while (lastMoved == 1);
2348    if (last < mainHeader.firstUsableLBA)
2349       last = 0;
2350    return (last);
2351 } // GPTData::FindLastAvailable()
2352 
2353 // Find the last available block in the free space pointed to by start.
2354 // If align == true, returns the last sector that's aligned on the
2355 // system alignment value (unless that's less than the start value);
2356 // if align == false, returns the last available block regardless of
2357 // alignment. (The align variable is set to false by default.)
FindLastInFree(uint64_t start,bool align)2358 uint64_t GPTData::FindLastInFree(uint64_t start, bool align) {
2359    uint64_t nearestEnd, endPlus;
2360    uint32_t i;
2361 
2362    nearestEnd = mainHeader.lastUsableLBA;
2363    for (i = 0; i < numParts; i++) {
2364       if ((nearestEnd > partitions[i].GetFirstLBA()) &&
2365           (partitions[i].GetFirstLBA() > start)) {
2366          nearestEnd = partitions[i].GetFirstLBA() - 1;
2367       } // if
2368    } // for
2369    if (align) {
2370        endPlus = nearestEnd + 1;
2371        if (Align(&endPlus) && IsFree(endPlus - 1) && (endPlus > start)) {
2372            nearestEnd = endPlus - 1;
2373        } // if
2374    } // if
2375    return (nearestEnd);
2376 } // GPTData::FindLastInFree()
2377 
2378 // Finds the total number of free blocks, the number of segments in which
2379 // they reside, and the size of the largest of those segments
FindFreeBlocks(uint32_t * numSegments,uint64_t * largestSegment)2380 uint64_t GPTData::FindFreeBlocks(uint32_t *numSegments, uint64_t *largestSegment) {
2381    uint64_t start = UINT64_C(0); // starting point for each search
2382    uint64_t totalFound = UINT64_C(0); // running total
2383    uint64_t firstBlock; // first block in a segment
2384    uint64_t lastBlock; // last block in a segment
2385    uint64_t segmentSize; // size of segment in blocks
2386    uint32_t num = 0;
2387 
2388    *largestSegment = UINT64_C(0);
2389    if (diskSize > 0) {
2390       do {
2391          firstBlock = FindFirstAvailable(start);
2392          if (firstBlock != UINT64_C(0)) { // something's free...
2393             lastBlock = FindLastInFree(firstBlock);
2394             segmentSize = lastBlock - firstBlock + UINT64_C(1);
2395             if (segmentSize > *largestSegment) {
2396                *largestSegment = segmentSize;
2397             } // if
2398             totalFound += segmentSize;
2399             num++;
2400             start = lastBlock + 1;
2401          } // if
2402       } while (firstBlock != 0);
2403    } // if
2404    *numSegments = num;
2405    return totalFound;
2406 } // GPTData::FindFreeBlocks()
2407 
2408 // Returns 1 if sector is unallocated, 0 if it's allocated to a partition.
2409 // If it's allocated, return the partition number to which it's allocated
2410 // in partNum, if that variable is non-NULL. (A value of UINT32_MAX is
2411 // returned in partNum if the sector is in use by basic GPT data structures.)
IsFree(uint64_t sector,uint32_t * partNum)2412 int GPTData::IsFree(uint64_t sector, uint32_t *partNum) {
2413    int isFree = 1;
2414    uint32_t i;
2415 
2416    for (i = 0; i < numParts; i++) {
2417       if ((sector >= partitions[i].GetFirstLBA()) &&
2418            (sector <= partitions[i].GetLastLBA())) {
2419          isFree = 0;
2420          if (partNum != NULL)
2421             *partNum = i;
2422       } // if
2423    } // for
2424    if ((sector < mainHeader.firstUsableLBA) ||
2425         (sector > mainHeader.lastUsableLBA)) {
2426       isFree = 0;
2427       if (partNum != NULL)
2428          *partNum = UINT32_MAX;
2429    } // if
2430    return (isFree);
2431 } // GPTData::IsFree()
2432 
2433 // Returns 1 if partNum is unused AND if it's a legal value.
IsFreePartNum(uint32_t partNum)2434 int GPTData::IsFreePartNum(uint32_t partNum) {
2435    return ((partNum < numParts) && (partitions != NULL) &&
2436            (!partitions[partNum].IsUsed()));
2437 } // GPTData::IsFreePartNum()
2438 
2439 // Returns 1 if partNum is in use.
IsUsedPartNum(uint32_t partNum)2440 int GPTData::IsUsedPartNum(uint32_t partNum) {
2441    return ((partNum < numParts) && (partitions != NULL) &&
2442            (partitions[partNum].IsUsed()));
2443 } // GPTData::IsUsedPartNum()
2444 
2445 /***********************************************************
2446  *                                                         *
2447  * Change how functions work or return information on them *
2448  *                                                         *
2449  ***********************************************************/
2450 
2451 // Set partition alignment value; partitions will begin on multiples of
2452 // the specified value, and the default end values will be set so that
2453 // partition sizes are multiples of this value in cgdisk and gdisk, too.
2454 // (In sgdisk, end-alignment is done only if the '-I' command-line option
2455 // is used.)
SetAlignment(uint32_t n)2456 void GPTData::SetAlignment(uint32_t n) {
2457    if (n > 0) {
2458       sectorAlignment = n;
2459       if ((physBlockSize > 0) && (n % (physBlockSize / blockSize) != 0)) {
2460          cout << "Warning: Setting alignment to a value that does not match the disk's\n"
2461               << "physical block size! Performance degradation may result!\n"
2462               << "Physical block size = " << physBlockSize << "\n"
2463               << "Logical block size = " << blockSize << "\n"
2464               << "Optimal alignment = " << physBlockSize / blockSize << " or multiples thereof.\n";
2465       } // if
2466    } else {
2467       cerr << "Attempt to set partition alignment to 0!\n";
2468    } // if/else
2469 } // GPTData::SetAlignment()
2470 
2471 // Compute sector alignment based on the current partitions (if any). Each
2472 // partition's starting LBA is examined, and if it's divisible by a power-of-2
2473 // value less than or equal to the DEFAULT_ALIGNMENT value (adjusted for the
2474 // sector size), but not by the previously-located alignment value, then the
2475 // alignment value is adjusted down. If the computed alignment is less than 8
2476 // and the disk is bigger than SMALLEST_ADVANCED_FORMAT, resets it to 8. This
2477 // is a safety measure for Advanced Format drives. If no partitions are
2478 // defined, the alignment value is set to DEFAULT_ALIGNMENT (2048) (or an
2479 // adjustment of that based on the current sector size). The result is that new
2480 // drives are aligned to 2048-sector multiples but the program won't complain
2481 // about other alignments on existing disks unless a smaller-than-8 alignment
2482 // is used on big disks (as safety for Advanced Format drives).
2483 // Returns the computed alignment value.
ComputeAlignment(void)2484 uint32_t GPTData::ComputeAlignment(void) {
2485    uint32_t i = 0, found, exponent;
2486    uint32_t align = DEFAULT_ALIGNMENT;
2487 
2488    if (blockSize > 0)
2489       align = DEFAULT_ALIGNMENT * SECTOR_SIZE / blockSize;
2490    exponent = (uint32_t) log2(align);
2491    for (i = 0; i < numParts; i++) {
2492       if (partitions[i].IsUsed()) {
2493          found = 0;
2494          while (!found) {
2495             align = UINT64_C(1) << exponent;
2496             if ((partitions[i].GetFirstLBA() % align) == 0) {
2497                found = 1;
2498             } else {
2499                exponent--;
2500             } // if/else
2501          } // while
2502       } // if
2503    } // for
2504    if ((align < MIN_AF_ALIGNMENT) && (diskSize >= SMALLEST_ADVANCED_FORMAT))
2505       align = MIN_AF_ALIGNMENT;
2506    sectorAlignment = align;
2507    return align;
2508 } // GPTData::ComputeAlignment()
2509 
2510 /********************************
2511  *                              *
2512  * Endianness support functions *
2513  *                              *
2514  ********************************/
2515 
ReverseHeaderBytes(struct GPTHeader * header)2516 void GPTData::ReverseHeaderBytes(struct GPTHeader* header) {
2517    ReverseBytes(&header->signature, 8);
2518    ReverseBytes(&header->revision, 4);
2519    ReverseBytes(&header->headerSize, 4);
2520    ReverseBytes(&header->headerCRC, 4);
2521    ReverseBytes(&header->reserved, 4);
2522    ReverseBytes(&header->currentLBA, 8);
2523    ReverseBytes(&header->backupLBA, 8);
2524    ReverseBytes(&header->firstUsableLBA, 8);
2525    ReverseBytes(&header->lastUsableLBA, 8);
2526    ReverseBytes(&header->partitionEntriesLBA, 8);
2527    ReverseBytes(&header->numParts, 4);
2528    ReverseBytes(&header->sizeOfPartitionEntries, 4);
2529    ReverseBytes(&header->partitionEntriesCRC, 4);
2530    ReverseBytes(header->reserved2, GPT_RESERVED);
2531 } // GPTData::ReverseHeaderBytes()
2532 
2533 // Reverse byte order for all partitions.
ReversePartitionBytes()2534 void GPTData::ReversePartitionBytes() {
2535    uint32_t i;
2536 
2537    for (i = 0; i < numParts; i++) {
2538       partitions[i].ReversePartBytes();
2539    } // for
2540 } // GPTData::ReversePartitionBytes()
2541 
2542 // Validate partition number
ValidPartNum(const uint32_t partNum)2543 bool GPTData::ValidPartNum (const uint32_t partNum) {
2544    if (partNum >= numParts) {
2545       cerr << "Partition number out of range: " << partNum << "\n";
2546       return false;
2547    } // if
2548    return true;
2549 } // GPTData::ValidPartNum
2550 
2551 // Return a single partition for inspection (not modification!) by other
2552 // functions.
operator [](uint32_t partNum) const2553 const GPTPart & GPTData::operator[](uint32_t partNum) const {
2554    if (partNum >= numParts) {
2555       cerr << "Partition number out of range (" << partNum << " requested, but only "
2556            << numParts << " available)\n";
2557       exit(1);
2558    } // if
2559    if (partitions == NULL) {
2560       cerr << "No partitions defined in GPTData::operator[]; fatal error!\n";
2561       exit(1);
2562    } // if
2563    return partitions[partNum];
2564 } // operator[]
2565 
2566 // Return (not for modification!) the disk's GUID value
GetDiskGUID(void) const2567 const GUIDData & GPTData::GetDiskGUID(void) const {
2568    return mainHeader.diskGUID;
2569 } // GPTData::GetDiskGUID()
2570 
2571 // Manage attributes for a partition, based on commands passed to this function.
2572 // (Function is non-interactive.)
2573 // Returns 1 if a modification command succeeded, 0 if the command should not have
2574 // modified data, and -1 if a modification command failed.
ManageAttributes(int partNum,const string & command,const string & bits)2575 int GPTData::ManageAttributes(int partNum, const string & command, const string & bits) {
2576    int retval = 0;
2577    Attributes theAttr;
2578 
2579    if (partNum >= (int) numParts) {
2580       cerr << "Invalid partition number (" << partNum + 1 << ")\n";
2581       retval = -1;
2582    } else {
2583       if (command == "show") {
2584          ShowAttributes(partNum);
2585       } else if (command == "get") {
2586          GetAttribute(partNum, bits);
2587       } else {
2588          theAttr = partitions[partNum].GetAttributes();
2589          if (theAttr.OperateOnAttributes(partNum, command, bits)) {
2590             partitions[partNum].SetAttributes(theAttr.GetAttributes());
2591             retval = 1;
2592          } else {
2593             retval = -1;
2594          } // if/else
2595       } // if/elseif/else
2596    } // if/else invalid partition #
2597 
2598    return retval;
2599 } // GPTData::ManageAttributes()
2600 
2601 // Show all attributes for a specified partition....
ShowAttributes(const uint32_t partNum)2602 void GPTData::ShowAttributes(const uint32_t partNum) {
2603    if ((partNum < numParts) && partitions[partNum].IsUsed())
2604       partitions[partNum].ShowAttributes(partNum);
2605 } // GPTData::ShowAttributes
2606 
2607 // Show whether a single attribute bit is set (terse output)...
GetAttribute(const uint32_t partNum,const string & attributeBits)2608 void GPTData::GetAttribute(const uint32_t partNum, const string& attributeBits) {
2609    if (partNum < numParts)
2610       partitions[partNum].GetAttributes().OperateOnAttributes(partNum, "get", attributeBits);
2611 } // GPTData::GetAttribute
2612 
2613 
2614 /******************************************
2615  *                                        *
2616  * Additional non-class support functions *
2617  *                                        *
2618  ******************************************/
2619 
2620 // Check to be sure that data type sizes are correct. The basic types (uint*_t) should
2621 // never fail these tests, but the struct types may fail depending on compile options.
2622 // Specifically, the -fpack-struct option to gcc may be required to ensure proper structure
2623 // sizes.
SizesOK(void)2624 int SizesOK(void) {
2625    int allOK = 1;
2626 
2627    if (sizeof(uint8_t) != 1) {
2628       cerr << "uint8_t is " << sizeof(uint8_t) << " bytes, should be 1 byte; aborting!\n";
2629       allOK = 0;
2630    } // if
2631    if (sizeof(uint16_t) != 2) {
2632       cerr << "uint16_t is " << sizeof(uint16_t) << " bytes, should be 2 bytes; aborting!\n";
2633       allOK = 0;
2634    } // if
2635    if (sizeof(uint32_t) != 4) {
2636       cerr << "uint32_t is " << sizeof(uint32_t) << " bytes, should be 4 bytes; aborting!\n";
2637       allOK = 0;
2638    } // if
2639    if (sizeof(uint64_t) != 8) {
2640       cerr << "uint64_t is " << sizeof(uint64_t) << " bytes, should be 8 bytes; aborting!\n";
2641       allOK = 0;
2642    } // if
2643    if (sizeof(struct MBRRecord) != 16) {
2644       cerr << "MBRRecord is " << sizeof(MBRRecord) << " bytes, should be 16 bytes; aborting!\n";
2645       allOK = 0;
2646    } // if
2647    if (sizeof(struct TempMBR) != 512) {
2648       cerr << "TempMBR is " <<  sizeof(TempMBR) << " bytes, should be 512 bytes; aborting!\n";
2649       allOK = 0;
2650    } // if
2651    if (sizeof(struct GPTHeader) != 512) {
2652       cerr << "GPTHeader is " << sizeof(GPTHeader) << " bytes, should be 512 bytes; aborting!\n";
2653       allOK = 0;
2654    } // if
2655    if (sizeof(GPTPart) != 128) {
2656       cerr << "GPTPart is " << sizeof(GPTPart) << " bytes, should be 128 bytes; aborting!\n";
2657       allOK = 0;
2658    } // if
2659    if (sizeof(GUIDData) != 16) {
2660       cerr << "GUIDData is " << sizeof(GUIDData) << " bytes, should be 16 bytes; aborting!\n";
2661       allOK = 0;
2662    } // if
2663    if (sizeof(PartType) != 16) {
2664       cerr << "PartType is " << sizeof(PartType) << " bytes, should be 16 bytes; aborting!\n";
2665       allOK = 0;
2666    } // if
2667    return (allOK);
2668 } // SizesOK()
2669 
2670