• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <linux/ethtool.h>
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 
52 struct netpoll_info;
53 struct device;
54 struct phy_device;
55 struct dsa_port;
56 struct ip_tunnel_parm;
57 struct macsec_context;
58 struct macsec_ops;
59 
60 struct sfp_bus;
61 /* 802.11 specific */
62 struct wireless_dev;
63 /* 802.15.4 specific */
64 struct wpan_dev;
65 struct mpls_dev;
66 /* UDP Tunnel offloads */
67 struct udp_tunnel_info;
68 struct udp_tunnel_nic_info;
69 struct udp_tunnel_nic;
70 struct bpf_prog;
71 struct xdp_buff;
72 
73 void synchronize_net(void);
74 void netdev_set_default_ethtool_ops(struct net_device *dev,
75 				    const struct ethtool_ops *ops);
76 
77 /* Backlog congestion levels */
78 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
79 #define NET_RX_DROP		1	/* packet dropped */
80 
81 #define MAX_NEST_DEV 8
82 
83 /*
84  * Transmit return codes: transmit return codes originate from three different
85  * namespaces:
86  *
87  * - qdisc return codes
88  * - driver transmit return codes
89  * - errno values
90  *
91  * Drivers are allowed to return any one of those in their hard_start_xmit()
92  * function. Real network devices commonly used with qdiscs should only return
93  * the driver transmit return codes though - when qdiscs are used, the actual
94  * transmission happens asynchronously, so the value is not propagated to
95  * higher layers. Virtual network devices transmit synchronously; in this case
96  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
97  * others are propagated to higher layers.
98  */
99 
100 /* qdisc ->enqueue() return codes. */
101 #define NET_XMIT_SUCCESS	0x00
102 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
103 #define NET_XMIT_CN		0x02	/* congestion notification	*/
104 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
105 
106 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
107  * indicates that the device will soon be dropping packets, or already drops
108  * some packets of the same priority; prompting us to send less aggressively. */
109 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
110 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
111 
112 /* Driver transmit return codes */
113 #define NETDEV_TX_MASK		0xf0
114 
115 enum netdev_tx {
116 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
117 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
118 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
119 };
120 typedef enum netdev_tx netdev_tx_t;
121 
122 /*
123  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
124  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
125  */
dev_xmit_complete(int rc)126 static inline bool dev_xmit_complete(int rc)
127 {
128 	/*
129 	 * Positive cases with an skb consumed by a driver:
130 	 * - successful transmission (rc == NETDEV_TX_OK)
131 	 * - error while transmitting (rc < 0)
132 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
133 	 */
134 	if (likely(rc < NET_XMIT_MASK))
135 		return true;
136 
137 	return false;
138 }
139 
140 /*
141  *	Compute the worst-case header length according to the protocols
142  *	used.
143  */
144 
145 #if defined(CONFIG_HYPERV_NET)
146 # define LL_MAX_HEADER 128
147 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
148 # if defined(CONFIG_MAC80211_MESH)
149 #  define LL_MAX_HEADER 128
150 # else
151 #  define LL_MAX_HEADER 96
152 # endif
153 #else
154 # define LL_MAX_HEADER 32
155 #endif
156 
157 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
158     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
159 #define MAX_HEADER LL_MAX_HEADER
160 #else
161 #define MAX_HEADER (LL_MAX_HEADER + 48)
162 #endif
163 
164 /*
165  *	Old network device statistics. Fields are native words
166  *	(unsigned long) so they can be read and written atomically.
167  */
168 
169 struct net_device_stats {
170 	unsigned long	rx_packets;
171 	unsigned long	tx_packets;
172 	unsigned long	rx_bytes;
173 	unsigned long	tx_bytes;
174 	unsigned long	rx_errors;
175 	unsigned long	tx_errors;
176 	unsigned long	rx_dropped;
177 	unsigned long	tx_dropped;
178 	unsigned long	multicast;
179 	unsigned long	collisions;
180 	unsigned long	rx_length_errors;
181 	unsigned long	rx_over_errors;
182 	unsigned long	rx_crc_errors;
183 	unsigned long	rx_frame_errors;
184 	unsigned long	rx_fifo_errors;
185 	unsigned long	rx_missed_errors;
186 	unsigned long	tx_aborted_errors;
187 	unsigned long	tx_carrier_errors;
188 	unsigned long	tx_fifo_errors;
189 	unsigned long	tx_heartbeat_errors;
190 	unsigned long	tx_window_errors;
191 	unsigned long	rx_compressed;
192 	unsigned long	tx_compressed;
193 };
194 
195 
196 #include <linux/cache.h>
197 #include <linux/skbuff.h>
198 
199 #ifdef CONFIG_RPS
200 #include <linux/static_key.h>
201 extern struct static_key_false rps_needed;
202 extern struct static_key_false rfs_needed;
203 #endif
204 
205 struct neighbour;
206 struct neigh_parms;
207 struct sk_buff;
208 
209 struct netdev_hw_addr {
210 	struct list_head	list;
211 	unsigned char		addr[MAX_ADDR_LEN];
212 	unsigned char		type;
213 #define NETDEV_HW_ADDR_T_LAN		1
214 #define NETDEV_HW_ADDR_T_SAN		2
215 #define NETDEV_HW_ADDR_T_UNICAST	3
216 #define NETDEV_HW_ADDR_T_MULTICAST	4
217 	bool			global_use;
218 	int			sync_cnt;
219 	int			refcount;
220 	int			synced;
221 	struct rcu_head		rcu_head;
222 };
223 
224 struct netdev_hw_addr_list {
225 	struct list_head	list;
226 	int			count;
227 };
228 
229 #define netdev_hw_addr_list_count(l) ((l)->count)
230 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
231 #define netdev_hw_addr_list_for_each(ha, l) \
232 	list_for_each_entry(ha, &(l)->list, list)
233 
234 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
235 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
236 #define netdev_for_each_uc_addr(ha, dev) \
237 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
238 
239 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
240 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
241 #define netdev_for_each_mc_addr(ha, dev) \
242 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
243 
244 struct hh_cache {
245 	unsigned int	hh_len;
246 	seqlock_t	hh_lock;
247 
248 	/* cached hardware header; allow for machine alignment needs.        */
249 #define HH_DATA_MOD	16
250 #define HH_DATA_OFF(__len) \
251 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
252 #define HH_DATA_ALIGN(__len) \
253 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
254 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
255 };
256 
257 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
258  * Alternative is:
259  *   dev->hard_header_len ? (dev->hard_header_len +
260  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
261  *
262  * We could use other alignment values, but we must maintain the
263  * relationship HH alignment <= LL alignment.
264  */
265 #define LL_RESERVED_SPACE(dev) \
266 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
267 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
268 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
269 
270 struct header_ops {
271 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
272 			   unsigned short type, const void *daddr,
273 			   const void *saddr, unsigned int len);
274 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
275 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
276 	void	(*cache_update)(struct hh_cache *hh,
277 				const struct net_device *dev,
278 				const unsigned char *haddr);
279 	bool	(*validate)(const char *ll_header, unsigned int len);
280 	__be16	(*parse_protocol)(const struct sk_buff *skb);
281 };
282 
283 /* These flag bits are private to the generic network queueing
284  * layer; they may not be explicitly referenced by any other
285  * code.
286  */
287 
288 enum netdev_state_t {
289 	__LINK_STATE_START,
290 	__LINK_STATE_PRESENT,
291 	__LINK_STATE_NOCARRIER,
292 	__LINK_STATE_LINKWATCH_PENDING,
293 	__LINK_STATE_DORMANT,
294 	__LINK_STATE_TESTING,
295 };
296 
297 
298 /*
299  * This structure holds boot-time configured netdevice settings. They
300  * are then used in the device probing.
301  */
302 struct netdev_boot_setup {
303 	char name[IFNAMSIZ];
304 	struct ifmap map;
305 };
306 #define NETDEV_BOOT_SETUP_MAX 8
307 
308 int __init netdev_boot_setup(char *str);
309 
310 struct gro_list {
311 	struct list_head	list;
312 	int			count;
313 };
314 
315 /*
316  * size of gro hash buckets, must less than bit number of
317  * napi_struct::gro_bitmask
318  */
319 #define GRO_HASH_BUCKETS	8
320 
321 /*
322  * Structure for NAPI scheduling similar to tasklet but with weighting
323  */
324 struct napi_struct {
325 	/* The poll_list must only be managed by the entity which
326 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
327 	 * whoever atomically sets that bit can add this napi_struct
328 	 * to the per-CPU poll_list, and whoever clears that bit
329 	 * can remove from the list right before clearing the bit.
330 	 */
331 	struct list_head	poll_list;
332 
333 	unsigned long		state;
334 	int			weight;
335 	int			defer_hard_irqs_count;
336 	unsigned long		gro_bitmask;
337 	int			(*poll)(struct napi_struct *, int);
338 #ifdef CONFIG_NETPOLL
339 	int			poll_owner;
340 #endif
341 	struct net_device	*dev;
342 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
343 	struct sk_buff		*skb;
344 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
345 	int			rx_count; /* length of rx_list */
346 	struct hrtimer		timer;
347 	struct list_head	dev_list;
348 	struct hlist_node	napi_hash_node;
349 	unsigned int		napi_id;
350 };
351 
352 enum {
353 	NAPI_STATE_SCHED,	/* Poll is scheduled */
354 	NAPI_STATE_MISSED,	/* reschedule a napi */
355 	NAPI_STATE_DISABLE,	/* Disable pending */
356 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
357 	NAPI_STATE_LISTED,	/* NAPI added to system lists */
358 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
359 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
360 };
361 
362 enum {
363 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
364 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
365 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
366 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
367 	NAPIF_STATE_LISTED	 = BIT(NAPI_STATE_LISTED),
368 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
369 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
370 };
371 
372 enum gro_result {
373 	GRO_MERGED,
374 	GRO_MERGED_FREE,
375 	GRO_HELD,
376 	GRO_NORMAL,
377 	GRO_DROP,
378 	GRO_CONSUMED,
379 };
380 typedef enum gro_result gro_result_t;
381 
382 /*
383  * enum rx_handler_result - Possible return values for rx_handlers.
384  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
385  * further.
386  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
387  * case skb->dev was changed by rx_handler.
388  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
389  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
390  *
391  * rx_handlers are functions called from inside __netif_receive_skb(), to do
392  * special processing of the skb, prior to delivery to protocol handlers.
393  *
394  * Currently, a net_device can only have a single rx_handler registered. Trying
395  * to register a second rx_handler will return -EBUSY.
396  *
397  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
398  * To unregister a rx_handler on a net_device, use
399  * netdev_rx_handler_unregister().
400  *
401  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
402  * do with the skb.
403  *
404  * If the rx_handler consumed the skb in some way, it should return
405  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
406  * the skb to be delivered in some other way.
407  *
408  * If the rx_handler changed skb->dev, to divert the skb to another
409  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
410  * new device will be called if it exists.
411  *
412  * If the rx_handler decides the skb should be ignored, it should return
413  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
414  * are registered on exact device (ptype->dev == skb->dev).
415  *
416  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
417  * delivered, it should return RX_HANDLER_PASS.
418  *
419  * A device without a registered rx_handler will behave as if rx_handler
420  * returned RX_HANDLER_PASS.
421  */
422 
423 enum rx_handler_result {
424 	RX_HANDLER_CONSUMED,
425 	RX_HANDLER_ANOTHER,
426 	RX_HANDLER_EXACT,
427 	RX_HANDLER_PASS,
428 };
429 typedef enum rx_handler_result rx_handler_result_t;
430 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
431 
432 void __napi_schedule(struct napi_struct *n);
433 void __napi_schedule_irqoff(struct napi_struct *n);
434 
napi_disable_pending(struct napi_struct * n)435 static inline bool napi_disable_pending(struct napi_struct *n)
436 {
437 	return test_bit(NAPI_STATE_DISABLE, &n->state);
438 }
439 
440 bool napi_schedule_prep(struct napi_struct *n);
441 
442 /**
443  *	napi_schedule - schedule NAPI poll
444  *	@n: NAPI context
445  *
446  * Schedule NAPI poll routine to be called if it is not already
447  * running.
448  */
napi_schedule(struct napi_struct * n)449 static inline void napi_schedule(struct napi_struct *n)
450 {
451 	if (napi_schedule_prep(n))
452 		__napi_schedule(n);
453 }
454 
455 /**
456  *	napi_schedule_irqoff - schedule NAPI poll
457  *	@n: NAPI context
458  *
459  * Variant of napi_schedule(), assuming hard irqs are masked.
460  */
napi_schedule_irqoff(struct napi_struct * n)461 static inline void napi_schedule_irqoff(struct napi_struct *n)
462 {
463 	if (napi_schedule_prep(n))
464 		__napi_schedule_irqoff(n);
465 }
466 
467 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
napi_reschedule(struct napi_struct * napi)468 static inline bool napi_reschedule(struct napi_struct *napi)
469 {
470 	if (napi_schedule_prep(napi)) {
471 		__napi_schedule(napi);
472 		return true;
473 	}
474 	return false;
475 }
476 
477 bool napi_complete_done(struct napi_struct *n, int work_done);
478 /**
479  *	napi_complete - NAPI processing complete
480  *	@n: NAPI context
481  *
482  * Mark NAPI processing as complete.
483  * Consider using napi_complete_done() instead.
484  * Return false if device should avoid rearming interrupts.
485  */
napi_complete(struct napi_struct * n)486 static inline bool napi_complete(struct napi_struct *n)
487 {
488 	return napi_complete_done(n, 0);
489 }
490 
491 /**
492  *	napi_disable - prevent NAPI from scheduling
493  *	@n: NAPI context
494  *
495  * Stop NAPI from being scheduled on this context.
496  * Waits till any outstanding processing completes.
497  */
498 void napi_disable(struct napi_struct *n);
499 
500 /**
501  *	napi_enable - enable NAPI scheduling
502  *	@n: NAPI context
503  *
504  * Resume NAPI from being scheduled on this context.
505  * Must be paired with napi_disable.
506  */
napi_enable(struct napi_struct * n)507 static inline void napi_enable(struct napi_struct *n)
508 {
509 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
510 	smp_mb__before_atomic();
511 	clear_bit(NAPI_STATE_SCHED, &n->state);
512 	clear_bit(NAPI_STATE_NPSVC, &n->state);
513 }
514 
515 /**
516  *	napi_synchronize - wait until NAPI is not running
517  *	@n: NAPI context
518  *
519  * Wait until NAPI is done being scheduled on this context.
520  * Waits till any outstanding processing completes but
521  * does not disable future activations.
522  */
napi_synchronize(const struct napi_struct * n)523 static inline void napi_synchronize(const struct napi_struct *n)
524 {
525 	if (IS_ENABLED(CONFIG_SMP))
526 		while (test_bit(NAPI_STATE_SCHED, &n->state))
527 			msleep(1);
528 	else
529 		barrier();
530 }
531 
532 /**
533  *	napi_if_scheduled_mark_missed - if napi is running, set the
534  *	NAPIF_STATE_MISSED
535  *	@n: NAPI context
536  *
537  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
538  * NAPI is scheduled.
539  **/
napi_if_scheduled_mark_missed(struct napi_struct * n)540 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
541 {
542 	unsigned long val, new;
543 
544 	do {
545 		val = READ_ONCE(n->state);
546 		if (val & NAPIF_STATE_DISABLE)
547 			return true;
548 
549 		if (!(val & NAPIF_STATE_SCHED))
550 			return false;
551 
552 		new = val | NAPIF_STATE_MISSED;
553 	} while (cmpxchg(&n->state, val, new) != val);
554 
555 	return true;
556 }
557 
558 enum netdev_queue_state_t {
559 	__QUEUE_STATE_DRV_XOFF,
560 	__QUEUE_STATE_STACK_XOFF,
561 	__QUEUE_STATE_FROZEN,
562 };
563 
564 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
565 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
566 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
567 
568 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
569 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
570 					QUEUE_STATE_FROZEN)
571 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
572 					QUEUE_STATE_FROZEN)
573 
574 /*
575  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
576  * netif_tx_* functions below are used to manipulate this flag.  The
577  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
578  * queue independently.  The netif_xmit_*stopped functions below are called
579  * to check if the queue has been stopped by the driver or stack (either
580  * of the XOFF bits are set in the state).  Drivers should not need to call
581  * netif_xmit*stopped functions, they should only be using netif_tx_*.
582  */
583 
584 struct netdev_queue {
585 /*
586  * read-mostly part
587  */
588 	struct net_device	*dev;
589 	struct Qdisc __rcu	*qdisc;
590 	struct Qdisc		*qdisc_sleeping;
591 #ifdef CONFIG_SYSFS
592 	struct kobject		kobj;
593 #endif
594 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
595 	int			numa_node;
596 #endif
597 	unsigned long		tx_maxrate;
598 	/*
599 	 * Number of TX timeouts for this queue
600 	 * (/sys/class/net/DEV/Q/trans_timeout)
601 	 */
602 	unsigned long		trans_timeout;
603 
604 	/* Subordinate device that the queue has been assigned to */
605 	struct net_device	*sb_dev;
606 #ifdef CONFIG_XDP_SOCKETS
607 	struct xsk_buff_pool    *pool;
608 #endif
609 /*
610  * write-mostly part
611  */
612 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
613 	int			xmit_lock_owner;
614 	/*
615 	 * Time (in jiffies) of last Tx
616 	 */
617 	unsigned long		trans_start;
618 
619 	unsigned long		state;
620 
621 #ifdef CONFIG_BQL
622 	struct dql		dql;
623 #endif
624 } ____cacheline_aligned_in_smp;
625 
626 extern int sysctl_fb_tunnels_only_for_init_net;
627 extern int sysctl_devconf_inherit_init_net;
628 
629 /*
630  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
631  *                                     == 1 : For initns only
632  *                                     == 2 : For none.
633  */
net_has_fallback_tunnels(const struct net * net)634 static inline bool net_has_fallback_tunnels(const struct net *net)
635 {
636 	return !IS_ENABLED(CONFIG_SYSCTL) ||
637 	       !sysctl_fb_tunnels_only_for_init_net ||
638 	       (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1);
639 }
640 
netdev_queue_numa_node_read(const struct netdev_queue * q)641 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
642 {
643 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
644 	return q->numa_node;
645 #else
646 	return NUMA_NO_NODE;
647 #endif
648 }
649 
netdev_queue_numa_node_write(struct netdev_queue * q,int node)650 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
651 {
652 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
653 	q->numa_node = node;
654 #endif
655 }
656 
657 #ifdef CONFIG_RPS
658 /*
659  * This structure holds an RPS map which can be of variable length.  The
660  * map is an array of CPUs.
661  */
662 struct rps_map {
663 	unsigned int len;
664 	struct rcu_head rcu;
665 	u16 cpus[];
666 };
667 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
668 
669 /*
670  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
671  * tail pointer for that CPU's input queue at the time of last enqueue, and
672  * a hardware filter index.
673  */
674 struct rps_dev_flow {
675 	u16 cpu;
676 	u16 filter;
677 	unsigned int last_qtail;
678 };
679 #define RPS_NO_FILTER 0xffff
680 
681 /*
682  * The rps_dev_flow_table structure contains a table of flow mappings.
683  */
684 struct rps_dev_flow_table {
685 	unsigned int mask;
686 	struct rcu_head rcu;
687 	struct rps_dev_flow flows[];
688 };
689 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
690     ((_num) * sizeof(struct rps_dev_flow)))
691 
692 /*
693  * The rps_sock_flow_table contains mappings of flows to the last CPU
694  * on which they were processed by the application (set in recvmsg).
695  * Each entry is a 32bit value. Upper part is the high-order bits
696  * of flow hash, lower part is CPU number.
697  * rps_cpu_mask is used to partition the space, depending on number of
698  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
699  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
700  * meaning we use 32-6=26 bits for the hash.
701  */
702 struct rps_sock_flow_table {
703 	u32	mask;
704 
705 	u32	ents[] ____cacheline_aligned_in_smp;
706 };
707 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
708 
709 #define RPS_NO_CPU 0xffff
710 
711 extern u32 rps_cpu_mask;
712 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
713 
rps_record_sock_flow(struct rps_sock_flow_table * table,u32 hash)714 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
715 					u32 hash)
716 {
717 	if (table && hash) {
718 		unsigned int index = hash & table->mask;
719 		u32 val = hash & ~rps_cpu_mask;
720 
721 		/* We only give a hint, preemption can change CPU under us */
722 		val |= raw_smp_processor_id();
723 
724 		if (table->ents[index] != val)
725 			table->ents[index] = val;
726 	}
727 }
728 
729 #ifdef CONFIG_RFS_ACCEL
730 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
731 			 u16 filter_id);
732 #endif
733 #endif /* CONFIG_RPS */
734 
735 /* This structure contains an instance of an RX queue. */
736 struct netdev_rx_queue {
737 #ifdef CONFIG_RPS
738 	struct rps_map __rcu		*rps_map;
739 	struct rps_dev_flow_table __rcu	*rps_flow_table;
740 #endif
741 	struct kobject			kobj;
742 	struct net_device		*dev;
743 	struct xdp_rxq_info		xdp_rxq;
744 #ifdef CONFIG_XDP_SOCKETS
745 	struct xsk_buff_pool            *pool;
746 #endif
747 } ____cacheline_aligned_in_smp;
748 
749 /*
750  * RX queue sysfs structures and functions.
751  */
752 struct rx_queue_attribute {
753 	struct attribute attr;
754 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
755 	ssize_t (*store)(struct netdev_rx_queue *queue,
756 			 const char *buf, size_t len);
757 };
758 
759 #ifdef CONFIG_XPS
760 /*
761  * This structure holds an XPS map which can be of variable length.  The
762  * map is an array of queues.
763  */
764 struct xps_map {
765 	unsigned int len;
766 	unsigned int alloc_len;
767 	struct rcu_head rcu;
768 	u16 queues[];
769 };
770 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
771 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
772        - sizeof(struct xps_map)) / sizeof(u16))
773 
774 /*
775  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
776  */
777 struct xps_dev_maps {
778 	struct rcu_head rcu;
779 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
780 };
781 
782 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
783 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
784 
785 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
786 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
787 
788 #endif /* CONFIG_XPS */
789 
790 #define TC_MAX_QUEUE	16
791 #define TC_BITMASK	15
792 /* HW offloaded queuing disciplines txq count and offset maps */
793 struct netdev_tc_txq {
794 	u16 count;
795 	u16 offset;
796 };
797 
798 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
799 /*
800  * This structure is to hold information about the device
801  * configured to run FCoE protocol stack.
802  */
803 struct netdev_fcoe_hbainfo {
804 	char	manufacturer[64];
805 	char	serial_number[64];
806 	char	hardware_version[64];
807 	char	driver_version[64];
808 	char	optionrom_version[64];
809 	char	firmware_version[64];
810 	char	model[256];
811 	char	model_description[256];
812 };
813 #endif
814 
815 #define MAX_PHYS_ITEM_ID_LEN 32
816 
817 /* This structure holds a unique identifier to identify some
818  * physical item (port for example) used by a netdevice.
819  */
820 struct netdev_phys_item_id {
821 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
822 	unsigned char id_len;
823 };
824 
netdev_phys_item_id_same(struct netdev_phys_item_id * a,struct netdev_phys_item_id * b)825 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
826 					    struct netdev_phys_item_id *b)
827 {
828 	return a->id_len == b->id_len &&
829 	       memcmp(a->id, b->id, a->id_len) == 0;
830 }
831 
832 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
833 				       struct sk_buff *skb,
834 				       struct net_device *sb_dev);
835 
836 enum tc_setup_type {
837 	TC_SETUP_QDISC_MQPRIO,
838 	TC_SETUP_CLSU32,
839 	TC_SETUP_CLSFLOWER,
840 	TC_SETUP_CLSMATCHALL,
841 	TC_SETUP_CLSBPF,
842 	TC_SETUP_BLOCK,
843 	TC_SETUP_QDISC_CBS,
844 	TC_SETUP_QDISC_RED,
845 	TC_SETUP_QDISC_PRIO,
846 	TC_SETUP_QDISC_MQ,
847 	TC_SETUP_QDISC_ETF,
848 	TC_SETUP_ROOT_QDISC,
849 	TC_SETUP_QDISC_GRED,
850 	TC_SETUP_QDISC_TAPRIO,
851 	TC_SETUP_FT,
852 	TC_SETUP_QDISC_ETS,
853 	TC_SETUP_QDISC_TBF,
854 	TC_SETUP_QDISC_FIFO,
855 };
856 
857 /* These structures hold the attributes of bpf state that are being passed
858  * to the netdevice through the bpf op.
859  */
860 enum bpf_netdev_command {
861 	/* Set or clear a bpf program used in the earliest stages of packet
862 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
863 	 * is responsible for calling bpf_prog_put on any old progs that are
864 	 * stored. In case of error, the callee need not release the new prog
865 	 * reference, but on success it takes ownership and must bpf_prog_put
866 	 * when it is no longer used.
867 	 */
868 	XDP_SETUP_PROG,
869 	XDP_SETUP_PROG_HW,
870 	/* BPF program for offload callbacks, invoked at program load time. */
871 	BPF_OFFLOAD_MAP_ALLOC,
872 	BPF_OFFLOAD_MAP_FREE,
873 	XDP_SETUP_XSK_POOL,
874 };
875 
876 struct bpf_prog_offload_ops;
877 struct netlink_ext_ack;
878 struct xdp_umem;
879 struct xdp_dev_bulk_queue;
880 struct bpf_xdp_link;
881 
882 enum bpf_xdp_mode {
883 	XDP_MODE_SKB = 0,
884 	XDP_MODE_DRV = 1,
885 	XDP_MODE_HW = 2,
886 	__MAX_XDP_MODE
887 };
888 
889 struct bpf_xdp_entity {
890 	struct bpf_prog *prog;
891 	struct bpf_xdp_link *link;
892 };
893 
894 struct netdev_bpf {
895 	enum bpf_netdev_command command;
896 	union {
897 		/* XDP_SETUP_PROG */
898 		struct {
899 			u32 flags;
900 			struct bpf_prog *prog;
901 			struct netlink_ext_ack *extack;
902 		};
903 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
904 		struct {
905 			struct bpf_offloaded_map *offmap;
906 		};
907 		/* XDP_SETUP_XSK_POOL */
908 		struct {
909 			struct xsk_buff_pool *pool;
910 			u16 queue_id;
911 		} xsk;
912 	};
913 };
914 
915 /* Flags for ndo_xsk_wakeup. */
916 #define XDP_WAKEUP_RX (1 << 0)
917 #define XDP_WAKEUP_TX (1 << 1)
918 
919 #ifdef CONFIG_XFRM_OFFLOAD
920 struct xfrmdev_ops {
921 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
922 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
923 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
924 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
925 				       struct xfrm_state *x);
926 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
927 };
928 #endif
929 
930 struct dev_ifalias {
931 	struct rcu_head rcuhead;
932 	char ifalias[];
933 };
934 
935 struct devlink;
936 struct tlsdev_ops;
937 
938 struct netdev_name_node {
939 	struct hlist_node hlist;
940 	struct list_head list;
941 	struct net_device *dev;
942 	const char *name;
943 };
944 
945 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
946 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
947 
948 struct netdev_net_notifier {
949 	struct list_head list;
950 	struct notifier_block *nb;
951 };
952 
953 /*
954  * This structure defines the management hooks for network devices.
955  * The following hooks can be defined; unless noted otherwise, they are
956  * optional and can be filled with a null pointer.
957  *
958  * int (*ndo_init)(struct net_device *dev);
959  *     This function is called once when a network device is registered.
960  *     The network device can use this for any late stage initialization
961  *     or semantic validation. It can fail with an error code which will
962  *     be propagated back to register_netdev.
963  *
964  * void (*ndo_uninit)(struct net_device *dev);
965  *     This function is called when device is unregistered or when registration
966  *     fails. It is not called if init fails.
967  *
968  * int (*ndo_open)(struct net_device *dev);
969  *     This function is called when a network device transitions to the up
970  *     state.
971  *
972  * int (*ndo_stop)(struct net_device *dev);
973  *     This function is called when a network device transitions to the down
974  *     state.
975  *
976  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
977  *                               struct net_device *dev);
978  *	Called when a packet needs to be transmitted.
979  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
980  *	the queue before that can happen; it's for obsolete devices and weird
981  *	corner cases, but the stack really does a non-trivial amount
982  *	of useless work if you return NETDEV_TX_BUSY.
983  *	Required; cannot be NULL.
984  *
985  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
986  *					   struct net_device *dev
987  *					   netdev_features_t features);
988  *	Called by core transmit path to determine if device is capable of
989  *	performing offload operations on a given packet. This is to give
990  *	the device an opportunity to implement any restrictions that cannot
991  *	be otherwise expressed by feature flags. The check is called with
992  *	the set of features that the stack has calculated and it returns
993  *	those the driver believes to be appropriate.
994  *
995  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
996  *                         struct net_device *sb_dev);
997  *	Called to decide which queue to use when device supports multiple
998  *	transmit queues.
999  *
1000  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1001  *	This function is called to allow device receiver to make
1002  *	changes to configuration when multicast or promiscuous is enabled.
1003  *
1004  * void (*ndo_set_rx_mode)(struct net_device *dev);
1005  *	This function is called device changes address list filtering.
1006  *	If driver handles unicast address filtering, it should set
1007  *	IFF_UNICAST_FLT in its priv_flags.
1008  *
1009  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1010  *	This function  is called when the Media Access Control address
1011  *	needs to be changed. If this interface is not defined, the
1012  *	MAC address can not be changed.
1013  *
1014  * int (*ndo_validate_addr)(struct net_device *dev);
1015  *	Test if Media Access Control address is valid for the device.
1016  *
1017  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1018  *	Called when a user requests an ioctl which can't be handled by
1019  *	the generic interface code. If not defined ioctls return
1020  *	not supported error code.
1021  *
1022  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1023  *	Used to set network devices bus interface parameters. This interface
1024  *	is retained for legacy reasons; new devices should use the bus
1025  *	interface (PCI) for low level management.
1026  *
1027  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1028  *	Called when a user wants to change the Maximum Transfer Unit
1029  *	of a device.
1030  *
1031  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1032  *	Callback used when the transmitter has not made any progress
1033  *	for dev->watchdog ticks.
1034  *
1035  * void (*ndo_get_stats64)(struct net_device *dev,
1036  *                         struct rtnl_link_stats64 *storage);
1037  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1038  *	Called when a user wants to get the network device usage
1039  *	statistics. Drivers must do one of the following:
1040  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1041  *	   rtnl_link_stats64 structure passed by the caller.
1042  *	2. Define @ndo_get_stats to update a net_device_stats structure
1043  *	   (which should normally be dev->stats) and return a pointer to
1044  *	   it. The structure may be changed asynchronously only if each
1045  *	   field is written atomically.
1046  *	3. Update dev->stats asynchronously and atomically, and define
1047  *	   neither operation.
1048  *
1049  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1050  *	Return true if this device supports offload stats of this attr_id.
1051  *
1052  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1053  *	void *attr_data)
1054  *	Get statistics for offload operations by attr_id. Write it into the
1055  *	attr_data pointer.
1056  *
1057  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1058  *	If device supports VLAN filtering this function is called when a
1059  *	VLAN id is registered.
1060  *
1061  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1062  *	If device supports VLAN filtering this function is called when a
1063  *	VLAN id is unregistered.
1064  *
1065  * void (*ndo_poll_controller)(struct net_device *dev);
1066  *
1067  *	SR-IOV management functions.
1068  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1069  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1070  *			  u8 qos, __be16 proto);
1071  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1072  *			  int max_tx_rate);
1073  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1074  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1075  * int (*ndo_get_vf_config)(struct net_device *dev,
1076  *			    int vf, struct ifla_vf_info *ivf);
1077  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1078  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1079  *			  struct nlattr *port[]);
1080  *
1081  *      Enable or disable the VF ability to query its RSS Redirection Table and
1082  *      Hash Key. This is needed since on some devices VF share this information
1083  *      with PF and querying it may introduce a theoretical security risk.
1084  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1085  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1086  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1087  *		       void *type_data);
1088  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1089  *	This is always called from the stack with the rtnl lock held and netif
1090  *	tx queues stopped. This allows the netdevice to perform queue
1091  *	management safely.
1092  *
1093  *	Fiber Channel over Ethernet (FCoE) offload functions.
1094  * int (*ndo_fcoe_enable)(struct net_device *dev);
1095  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1096  *	so the underlying device can perform whatever needed configuration or
1097  *	initialization to support acceleration of FCoE traffic.
1098  *
1099  * int (*ndo_fcoe_disable)(struct net_device *dev);
1100  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1101  *	so the underlying device can perform whatever needed clean-ups to
1102  *	stop supporting acceleration of FCoE traffic.
1103  *
1104  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1105  *			     struct scatterlist *sgl, unsigned int sgc);
1106  *	Called when the FCoE Initiator wants to initialize an I/O that
1107  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1108  *	perform necessary setup and returns 1 to indicate the device is set up
1109  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1110  *
1111  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1112  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1113  *	indicated by the FC exchange id 'xid', so the underlying device can
1114  *	clean up and reuse resources for later DDP requests.
1115  *
1116  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1117  *			      struct scatterlist *sgl, unsigned int sgc);
1118  *	Called when the FCoE Target wants to initialize an I/O that
1119  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1120  *	perform necessary setup and returns 1 to indicate the device is set up
1121  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1122  *
1123  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1124  *			       struct netdev_fcoe_hbainfo *hbainfo);
1125  *	Called when the FCoE Protocol stack wants information on the underlying
1126  *	device. This information is utilized by the FCoE protocol stack to
1127  *	register attributes with Fiber Channel management service as per the
1128  *	FC-GS Fabric Device Management Information(FDMI) specification.
1129  *
1130  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1131  *	Called when the underlying device wants to override default World Wide
1132  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1133  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1134  *	protocol stack to use.
1135  *
1136  *	RFS acceleration.
1137  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1138  *			    u16 rxq_index, u32 flow_id);
1139  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1140  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1141  *	Return the filter ID on success, or a negative error code.
1142  *
1143  *	Slave management functions (for bridge, bonding, etc).
1144  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1145  *	Called to make another netdev an underling.
1146  *
1147  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1148  *	Called to release previously enslaved netdev.
1149  *
1150  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1151  *					    struct sk_buff *skb,
1152  *					    bool all_slaves);
1153  *	Get the xmit slave of master device. If all_slaves is true, function
1154  *	assume all the slaves can transmit.
1155  *
1156  *      Feature/offload setting functions.
1157  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1158  *		netdev_features_t features);
1159  *	Adjusts the requested feature flags according to device-specific
1160  *	constraints, and returns the resulting flags. Must not modify
1161  *	the device state.
1162  *
1163  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1164  *	Called to update device configuration to new features. Passed
1165  *	feature set might be less than what was returned by ndo_fix_features()).
1166  *	Must return >0 or -errno if it changed dev->features itself.
1167  *
1168  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1169  *		      struct net_device *dev,
1170  *		      const unsigned char *addr, u16 vid, u16 flags,
1171  *		      struct netlink_ext_ack *extack);
1172  *	Adds an FDB entry to dev for addr.
1173  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1174  *		      struct net_device *dev,
1175  *		      const unsigned char *addr, u16 vid)
1176  *	Deletes the FDB entry from dev coresponding to addr.
1177  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1178  *		       struct net_device *dev, struct net_device *filter_dev,
1179  *		       int *idx)
1180  *	Used to add FDB entries to dump requests. Implementers should add
1181  *	entries to skb and update idx with the number of entries.
1182  *
1183  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1184  *			     u16 flags, struct netlink_ext_ack *extack)
1185  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1186  *			     struct net_device *dev, u32 filter_mask,
1187  *			     int nlflags)
1188  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1189  *			     u16 flags);
1190  *
1191  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1192  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1193  *	which do not represent real hardware may define this to allow their
1194  *	userspace components to manage their virtual carrier state. Devices
1195  *	that determine carrier state from physical hardware properties (eg
1196  *	network cables) or protocol-dependent mechanisms (eg
1197  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1198  *
1199  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1200  *			       struct netdev_phys_item_id *ppid);
1201  *	Called to get ID of physical port of this device. If driver does
1202  *	not implement this, it is assumed that the hw is not able to have
1203  *	multiple net devices on single physical port.
1204  *
1205  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1206  *				 struct netdev_phys_item_id *ppid)
1207  *	Called to get the parent ID of the physical port of this device.
1208  *
1209  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1210  *			      struct udp_tunnel_info *ti);
1211  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1212  *	address family that a UDP tunnel is listnening to. It is called only
1213  *	when a new port starts listening. The operation is protected by the
1214  *	RTNL.
1215  *
1216  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1217  *			      struct udp_tunnel_info *ti);
1218  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1219  *	address family that the UDP tunnel is not listening to anymore. The
1220  *	operation is protected by the RTNL.
1221  *
1222  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1223  *				 struct net_device *dev)
1224  *	Called by upper layer devices to accelerate switching or other
1225  *	station functionality into hardware. 'pdev is the lowerdev
1226  *	to use for the offload and 'dev' is the net device that will
1227  *	back the offload. Returns a pointer to the private structure
1228  *	the upper layer will maintain.
1229  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1230  *	Called by upper layer device to delete the station created
1231  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1232  *	the station and priv is the structure returned by the add
1233  *	operation.
1234  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1235  *			     int queue_index, u32 maxrate);
1236  *	Called when a user wants to set a max-rate limitation of specific
1237  *	TX queue.
1238  * int (*ndo_get_iflink)(const struct net_device *dev);
1239  *	Called to get the iflink value of this device.
1240  * void (*ndo_change_proto_down)(struct net_device *dev,
1241  *				 bool proto_down);
1242  *	This function is used to pass protocol port error state information
1243  *	to the switch driver. The switch driver can react to the proto_down
1244  *      by doing a phys down on the associated switch port.
1245  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1246  *	This function is used to get egress tunnel information for given skb.
1247  *	This is useful for retrieving outer tunnel header parameters while
1248  *	sampling packet.
1249  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1250  *	This function is used to specify the headroom that the skb must
1251  *	consider when allocation skb during packet reception. Setting
1252  *	appropriate rx headroom value allows avoiding skb head copy on
1253  *	forward. Setting a negative value resets the rx headroom to the
1254  *	default value.
1255  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1256  *	This function is used to set or query state related to XDP on the
1257  *	netdevice and manage BPF offload. See definition of
1258  *	enum bpf_netdev_command for details.
1259  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1260  *			u32 flags);
1261  *	This function is used to submit @n XDP packets for transmit on a
1262  *	netdevice. Returns number of frames successfully transmitted, frames
1263  *	that got dropped are freed/returned via xdp_return_frame().
1264  *	Returns negative number, means general error invoking ndo, meaning
1265  *	no frames were xmit'ed and core-caller will free all frames.
1266  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1267  *      This function is used to wake up the softirq, ksoftirqd or kthread
1268  *	responsible for sending and/or receiving packets on a specific
1269  *	queue id bound to an AF_XDP socket. The flags field specifies if
1270  *	only RX, only Tx, or both should be woken up using the flags
1271  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1272  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1273  *	Get devlink port instance associated with a given netdev.
1274  *	Called with a reference on the netdevice and devlink locks only,
1275  *	rtnl_lock is not held.
1276  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1277  *			 int cmd);
1278  *	Add, change, delete or get information on an IPv4 tunnel.
1279  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1280  *	If a device is paired with a peer device, return the peer instance.
1281  *	The caller must be under RCU read context.
1282  */
1283 struct net_device_ops {
1284 	int			(*ndo_init)(struct net_device *dev);
1285 	void			(*ndo_uninit)(struct net_device *dev);
1286 	int			(*ndo_open)(struct net_device *dev);
1287 	int			(*ndo_stop)(struct net_device *dev);
1288 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1289 						  struct net_device *dev);
1290 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1291 						      struct net_device *dev,
1292 						      netdev_features_t features);
1293 	u16			(*ndo_select_queue)(struct net_device *dev,
1294 						    struct sk_buff *skb,
1295 						    struct net_device *sb_dev);
1296 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1297 						       int flags);
1298 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1299 	int			(*ndo_set_mac_address)(struct net_device *dev,
1300 						       void *addr);
1301 	int			(*ndo_validate_addr)(struct net_device *dev);
1302 	int			(*ndo_do_ioctl)(struct net_device *dev,
1303 					        struct ifreq *ifr, int cmd);
1304 	int			(*ndo_set_config)(struct net_device *dev,
1305 					          struct ifmap *map);
1306 	int			(*ndo_change_mtu)(struct net_device *dev,
1307 						  int new_mtu);
1308 	int			(*ndo_neigh_setup)(struct net_device *dev,
1309 						   struct neigh_parms *);
1310 	void			(*ndo_tx_timeout) (struct net_device *dev,
1311 						   unsigned int txqueue);
1312 
1313 	void			(*ndo_get_stats64)(struct net_device *dev,
1314 						   struct rtnl_link_stats64 *storage);
1315 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1316 	int			(*ndo_get_offload_stats)(int attr_id,
1317 							 const struct net_device *dev,
1318 							 void *attr_data);
1319 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1320 
1321 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1322 						       __be16 proto, u16 vid);
1323 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1324 						        __be16 proto, u16 vid);
1325 #ifdef CONFIG_NET_POLL_CONTROLLER
1326 	void                    (*ndo_poll_controller)(struct net_device *dev);
1327 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1328 						     struct netpoll_info *info);
1329 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1330 #endif
1331 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1332 						  int queue, u8 *mac);
1333 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1334 						   int queue, u16 vlan,
1335 						   u8 qos, __be16 proto);
1336 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1337 						   int vf, int min_tx_rate,
1338 						   int max_tx_rate);
1339 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1340 						       int vf, bool setting);
1341 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1342 						    int vf, bool setting);
1343 	int			(*ndo_get_vf_config)(struct net_device *dev,
1344 						     int vf,
1345 						     struct ifla_vf_info *ivf);
1346 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1347 							 int vf, int link_state);
1348 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1349 						    int vf,
1350 						    struct ifla_vf_stats
1351 						    *vf_stats);
1352 	int			(*ndo_set_vf_port)(struct net_device *dev,
1353 						   int vf,
1354 						   struct nlattr *port[]);
1355 	int			(*ndo_get_vf_port)(struct net_device *dev,
1356 						   int vf, struct sk_buff *skb);
1357 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1358 						   int vf,
1359 						   struct ifla_vf_guid *node_guid,
1360 						   struct ifla_vf_guid *port_guid);
1361 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1362 						   int vf, u64 guid,
1363 						   int guid_type);
1364 	int			(*ndo_set_vf_rss_query_en)(
1365 						   struct net_device *dev,
1366 						   int vf, bool setting);
1367 	int			(*ndo_setup_tc)(struct net_device *dev,
1368 						enum tc_setup_type type,
1369 						void *type_data);
1370 #if IS_ENABLED(CONFIG_FCOE)
1371 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1372 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1373 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1374 						      u16 xid,
1375 						      struct scatterlist *sgl,
1376 						      unsigned int sgc);
1377 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1378 						     u16 xid);
1379 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1380 						       u16 xid,
1381 						       struct scatterlist *sgl,
1382 						       unsigned int sgc);
1383 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1384 							struct netdev_fcoe_hbainfo *hbainfo);
1385 #endif
1386 
1387 #if IS_ENABLED(CONFIG_LIBFCOE)
1388 #define NETDEV_FCOE_WWNN 0
1389 #define NETDEV_FCOE_WWPN 1
1390 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1391 						    u64 *wwn, int type);
1392 #endif
1393 
1394 #ifdef CONFIG_RFS_ACCEL
1395 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1396 						     const struct sk_buff *skb,
1397 						     u16 rxq_index,
1398 						     u32 flow_id);
1399 #endif
1400 	int			(*ndo_add_slave)(struct net_device *dev,
1401 						 struct net_device *slave_dev,
1402 						 struct netlink_ext_ack *extack);
1403 	int			(*ndo_del_slave)(struct net_device *dev,
1404 						 struct net_device *slave_dev);
1405 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1406 						      struct sk_buff *skb,
1407 						      bool all_slaves);
1408 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1409 						    netdev_features_t features);
1410 	int			(*ndo_set_features)(struct net_device *dev,
1411 						    netdev_features_t features);
1412 	int			(*ndo_neigh_construct)(struct net_device *dev,
1413 						       struct neighbour *n);
1414 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1415 						     struct neighbour *n);
1416 
1417 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1418 					       struct nlattr *tb[],
1419 					       struct net_device *dev,
1420 					       const unsigned char *addr,
1421 					       u16 vid,
1422 					       u16 flags,
1423 					       struct netlink_ext_ack *extack);
1424 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1425 					       struct nlattr *tb[],
1426 					       struct net_device *dev,
1427 					       const unsigned char *addr,
1428 					       u16 vid);
1429 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1430 						struct netlink_callback *cb,
1431 						struct net_device *dev,
1432 						struct net_device *filter_dev,
1433 						int *idx);
1434 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1435 					       struct nlattr *tb[],
1436 					       struct net_device *dev,
1437 					       const unsigned char *addr,
1438 					       u16 vid, u32 portid, u32 seq,
1439 					       struct netlink_ext_ack *extack);
1440 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1441 						      struct nlmsghdr *nlh,
1442 						      u16 flags,
1443 						      struct netlink_ext_ack *extack);
1444 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1445 						      u32 pid, u32 seq,
1446 						      struct net_device *dev,
1447 						      u32 filter_mask,
1448 						      int nlflags);
1449 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1450 						      struct nlmsghdr *nlh,
1451 						      u16 flags);
1452 	int			(*ndo_change_carrier)(struct net_device *dev,
1453 						      bool new_carrier);
1454 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1455 							struct netdev_phys_item_id *ppid);
1456 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1457 							  struct netdev_phys_item_id *ppid);
1458 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1459 							  char *name, size_t len);
1460 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1461 						      struct udp_tunnel_info *ti);
1462 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1463 						      struct udp_tunnel_info *ti);
1464 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1465 							struct net_device *dev);
1466 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1467 							void *priv);
1468 
1469 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1470 						      int queue_index,
1471 						      u32 maxrate);
1472 	int			(*ndo_get_iflink)(const struct net_device *dev);
1473 	int			(*ndo_change_proto_down)(struct net_device *dev,
1474 							 bool proto_down);
1475 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1476 						       struct sk_buff *skb);
1477 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1478 						       int needed_headroom);
1479 	int			(*ndo_bpf)(struct net_device *dev,
1480 					   struct netdev_bpf *bpf);
1481 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1482 						struct xdp_frame **xdp,
1483 						u32 flags);
1484 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1485 						  u32 queue_id, u32 flags);
1486 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1487 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1488 						  struct ip_tunnel_parm *p, int cmd);
1489 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1490 };
1491 
1492 /**
1493  * enum net_device_priv_flags - &struct net_device priv_flags
1494  *
1495  * These are the &struct net_device, they are only set internally
1496  * by drivers and used in the kernel. These flags are invisible to
1497  * userspace; this means that the order of these flags can change
1498  * during any kernel release.
1499  *
1500  * You should have a pretty good reason to be extending these flags.
1501  *
1502  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1503  * @IFF_EBRIDGE: Ethernet bridging device
1504  * @IFF_BONDING: bonding master or slave
1505  * @IFF_ISATAP: ISATAP interface (RFC4214)
1506  * @IFF_WAN_HDLC: WAN HDLC device
1507  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1508  *	release skb->dst
1509  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1510  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1511  * @IFF_MACVLAN_PORT: device used as macvlan port
1512  * @IFF_BRIDGE_PORT: device used as bridge port
1513  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1514  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1515  * @IFF_UNICAST_FLT: Supports unicast filtering
1516  * @IFF_TEAM_PORT: device used as team port
1517  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1518  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1519  *	change when it's running
1520  * @IFF_MACVLAN: Macvlan device
1521  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1522  *	underlying stacked devices
1523  * @IFF_L3MDEV_MASTER: device is an L3 master device
1524  * @IFF_NO_QUEUE: device can run without qdisc attached
1525  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1526  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1527  * @IFF_TEAM: device is a team device
1528  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1529  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1530  *	entity (i.e. the master device for bridged veth)
1531  * @IFF_MACSEC: device is a MACsec device
1532  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1533  * @IFF_FAILOVER: device is a failover master device
1534  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1535  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1536  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1537  */
1538 enum netdev_priv_flags {
1539 	IFF_802_1Q_VLAN			= 1<<0,
1540 	IFF_EBRIDGE			= 1<<1,
1541 	IFF_BONDING			= 1<<2,
1542 	IFF_ISATAP			= 1<<3,
1543 	IFF_WAN_HDLC			= 1<<4,
1544 	IFF_XMIT_DST_RELEASE		= 1<<5,
1545 	IFF_DONT_BRIDGE			= 1<<6,
1546 	IFF_DISABLE_NETPOLL		= 1<<7,
1547 	IFF_MACVLAN_PORT		= 1<<8,
1548 	IFF_BRIDGE_PORT			= 1<<9,
1549 	IFF_OVS_DATAPATH		= 1<<10,
1550 	IFF_TX_SKB_SHARING		= 1<<11,
1551 	IFF_UNICAST_FLT			= 1<<12,
1552 	IFF_TEAM_PORT			= 1<<13,
1553 	IFF_SUPP_NOFCS			= 1<<14,
1554 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1555 	IFF_MACVLAN			= 1<<16,
1556 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1557 	IFF_L3MDEV_MASTER		= 1<<18,
1558 	IFF_NO_QUEUE			= 1<<19,
1559 	IFF_OPENVSWITCH			= 1<<20,
1560 	IFF_L3MDEV_SLAVE		= 1<<21,
1561 	IFF_TEAM			= 1<<22,
1562 	IFF_RXFH_CONFIGURED		= 1<<23,
1563 	IFF_PHONY_HEADROOM		= 1<<24,
1564 	IFF_MACSEC			= 1<<25,
1565 	IFF_NO_RX_HANDLER		= 1<<26,
1566 	IFF_FAILOVER			= 1<<27,
1567 	IFF_FAILOVER_SLAVE		= 1<<28,
1568 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1569 	IFF_LIVE_RENAME_OK		= 1<<30,
1570 };
1571 
1572 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1573 #define IFF_EBRIDGE			IFF_EBRIDGE
1574 #define IFF_BONDING			IFF_BONDING
1575 #define IFF_ISATAP			IFF_ISATAP
1576 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1577 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1578 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1579 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1580 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1581 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1582 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1583 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1584 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1585 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1586 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1587 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1588 #define IFF_MACVLAN			IFF_MACVLAN
1589 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1590 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1591 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1592 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1593 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1594 #define IFF_TEAM			IFF_TEAM
1595 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1596 #define IFF_MACSEC			IFF_MACSEC
1597 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1598 #define IFF_FAILOVER			IFF_FAILOVER
1599 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1600 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1601 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1602 
1603 /* Specifies the type of the struct net_device::ml_priv pointer */
1604 enum netdev_ml_priv_type {
1605 	ML_PRIV_NONE,
1606 	ML_PRIV_CAN,
1607 };
1608 
1609 /**
1610  *	struct net_device - The DEVICE structure.
1611  *
1612  *	Actually, this whole structure is a big mistake.  It mixes I/O
1613  *	data with strictly "high-level" data, and it has to know about
1614  *	almost every data structure used in the INET module.
1615  *
1616  *	@name:	This is the first field of the "visible" part of this structure
1617  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1618  *		of the interface.
1619  *
1620  *	@name_node:	Name hashlist node
1621  *	@ifalias:	SNMP alias
1622  *	@mem_end:	Shared memory end
1623  *	@mem_start:	Shared memory start
1624  *	@base_addr:	Device I/O address
1625  *	@irq:		Device IRQ number
1626  *
1627  *	@state:		Generic network queuing layer state, see netdev_state_t
1628  *	@dev_list:	The global list of network devices
1629  *	@napi_list:	List entry used for polling NAPI devices
1630  *	@unreg_list:	List entry  when we are unregistering the
1631  *			device; see the function unregister_netdev
1632  *	@close_list:	List entry used when we are closing the device
1633  *	@ptype_all:     Device-specific packet handlers for all protocols
1634  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1635  *
1636  *	@adj_list:	Directly linked devices, like slaves for bonding
1637  *	@features:	Currently active device features
1638  *	@hw_features:	User-changeable features
1639  *
1640  *	@wanted_features:	User-requested features
1641  *	@vlan_features:		Mask of features inheritable by VLAN devices
1642  *
1643  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1644  *				This field indicates what encapsulation
1645  *				offloads the hardware is capable of doing,
1646  *				and drivers will need to set them appropriately.
1647  *
1648  *	@mpls_features:	Mask of features inheritable by MPLS
1649  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1650  *
1651  *	@ifindex:	interface index
1652  *	@group:		The group the device belongs to
1653  *
1654  *	@stats:		Statistics struct, which was left as a legacy, use
1655  *			rtnl_link_stats64 instead
1656  *
1657  *	@rx_dropped:	Dropped packets by core network,
1658  *			do not use this in drivers
1659  *	@tx_dropped:	Dropped packets by core network,
1660  *			do not use this in drivers
1661  *	@rx_nohandler:	nohandler dropped packets by core network on
1662  *			inactive devices, do not use this in drivers
1663  *	@carrier_up_count:	Number of times the carrier has been up
1664  *	@carrier_down_count:	Number of times the carrier has been down
1665  *
1666  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1667  *				instead of ioctl,
1668  *				see <net/iw_handler.h> for details.
1669  *	@wireless_data:	Instance data managed by the core of wireless extensions
1670  *
1671  *	@netdev_ops:	Includes several pointers to callbacks,
1672  *			if one wants to override the ndo_*() functions
1673  *	@ethtool_ops:	Management operations
1674  *	@l3mdev_ops:	Layer 3 master device operations
1675  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1676  *			discovery handling. Necessary for e.g. 6LoWPAN.
1677  *	@xfrmdev_ops:	Transformation offload operations
1678  *	@tlsdev_ops:	Transport Layer Security offload operations
1679  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1680  *			of Layer 2 headers.
1681  *
1682  *	@flags:		Interface flags (a la BSD)
1683  *	@priv_flags:	Like 'flags' but invisible to userspace,
1684  *			see if.h for the definitions
1685  *	@gflags:	Global flags ( kept as legacy )
1686  *	@padded:	How much padding added by alloc_netdev()
1687  *	@operstate:	RFC2863 operstate
1688  *	@link_mode:	Mapping policy to operstate
1689  *	@if_port:	Selectable AUI, TP, ...
1690  *	@dma:		DMA channel
1691  *	@mtu:		Interface MTU value
1692  *	@min_mtu:	Interface Minimum MTU value
1693  *	@max_mtu:	Interface Maximum MTU value
1694  *	@type:		Interface hardware type
1695  *	@hard_header_len: Maximum hardware header length.
1696  *	@min_header_len:  Minimum hardware header length
1697  *
1698  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1699  *			  cases can this be guaranteed
1700  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1701  *			  cases can this be guaranteed. Some cases also use
1702  *			  LL_MAX_HEADER instead to allocate the skb
1703  *
1704  *	interface address info:
1705  *
1706  * 	@perm_addr:		Permanent hw address
1707  * 	@addr_assign_type:	Hw address assignment type
1708  * 	@addr_len:		Hardware address length
1709  *	@upper_level:		Maximum depth level of upper devices.
1710  *	@lower_level:		Maximum depth level of lower devices.
1711  *	@neigh_priv_len:	Used in neigh_alloc()
1712  * 	@dev_id:		Used to differentiate devices that share
1713  * 				the same link layer address
1714  * 	@dev_port:		Used to differentiate devices that share
1715  * 				the same function
1716  *	@addr_list_lock:	XXX: need comments on this one
1717  *	@name_assign_type:	network interface name assignment type
1718  *	@uc_promisc:		Counter that indicates promiscuous mode
1719  *				has been enabled due to the need to listen to
1720  *				additional unicast addresses in a device that
1721  *				does not implement ndo_set_rx_mode()
1722  *	@uc:			unicast mac addresses
1723  *	@mc:			multicast mac addresses
1724  *	@dev_addrs:		list of device hw addresses
1725  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1726  *	@promiscuity:		Number of times the NIC is told to work in
1727  *				promiscuous mode; if it becomes 0 the NIC will
1728  *				exit promiscuous mode
1729  *	@allmulti:		Counter, enables or disables allmulticast mode
1730  *
1731  *	@vlan_info:	VLAN info
1732  *	@dsa_ptr:	dsa specific data
1733  *	@tipc_ptr:	TIPC specific data
1734  *	@atalk_ptr:	AppleTalk link
1735  *	@ip_ptr:	IPv4 specific data
1736  *	@dn_ptr:	DECnet specific data
1737  *	@ip6_ptr:	IPv6 specific data
1738  *	@ax25_ptr:	AX.25 specific data
1739  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1740  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1741  *			 device struct
1742  *	@mpls_ptr:	mpls_dev struct pointer
1743  *
1744  *	@dev_addr:	Hw address (before bcast,
1745  *			because most packets are unicast)
1746  *
1747  *	@_rx:			Array of RX queues
1748  *	@num_rx_queues:		Number of RX queues
1749  *				allocated at register_netdev() time
1750  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1751  *	@xdp_prog:		XDP sockets filter program pointer
1752  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1753  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1754  *				allow to avoid NIC hard IRQ, on busy queues.
1755  *
1756  *	@rx_handler:		handler for received packets
1757  *	@rx_handler_data: 	XXX: need comments on this one
1758  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1759  *				ingress processing
1760  *	@ingress_queue:		XXX: need comments on this one
1761  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1762  *	@broadcast:		hw bcast address
1763  *
1764  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1765  *			indexed by RX queue number. Assigned by driver.
1766  *			This must only be set if the ndo_rx_flow_steer
1767  *			operation is defined
1768  *	@index_hlist:		Device index hash chain
1769  *
1770  *	@_tx:			Array of TX queues
1771  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1772  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1773  *	@qdisc:			Root qdisc from userspace point of view
1774  *	@tx_queue_len:		Max frames per queue allowed
1775  *	@tx_global_lock: 	XXX: need comments on this one
1776  *	@xdp_bulkq:		XDP device bulk queue
1777  *	@xps_cpus_map:		all CPUs map for XPS device
1778  *	@xps_rxqs_map:		all RXQs map for XPS device
1779  *
1780  *	@xps_maps:	XXX: need comments on this one
1781  *	@miniq_egress:		clsact qdisc specific data for
1782  *				egress processing
1783  *	@qdisc_hash:		qdisc hash table
1784  *	@watchdog_timeo:	Represents the timeout that is used by
1785  *				the watchdog (see dev_watchdog())
1786  *	@watchdog_timer:	List of timers
1787  *
1788  *	@proto_down_reason:	reason a netdev interface is held down
1789  *	@pcpu_refcnt:		Number of references to this device
1790  *	@todo_list:		Delayed register/unregister
1791  *	@link_watch_list:	XXX: need comments on this one
1792  *
1793  *	@reg_state:		Register/unregister state machine
1794  *	@dismantle:		Device is going to be freed
1795  *	@rtnl_link_state:	This enum represents the phases of creating
1796  *				a new link
1797  *
1798  *	@needs_free_netdev:	Should unregister perform free_netdev?
1799  *	@priv_destructor:	Called from unregister
1800  *	@npinfo:		XXX: need comments on this one
1801  * 	@nd_net:		Network namespace this network device is inside
1802  *
1803  * 	@ml_priv:	Mid-layer private
1804  *	@ml_priv_type:  Mid-layer private type
1805  * 	@lstats:	Loopback statistics
1806  * 	@tstats:	Tunnel statistics
1807  * 	@dstats:	Dummy statistics
1808  * 	@vstats:	Virtual ethernet statistics
1809  *
1810  *	@garp_port:	GARP
1811  *	@mrp_port:	MRP
1812  *
1813  *	@dev:		Class/net/name entry
1814  *	@sysfs_groups:	Space for optional device, statistics and wireless
1815  *			sysfs groups
1816  *
1817  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1818  *	@rtnl_link_ops:	Rtnl_link_ops
1819  *
1820  *	@gso_max_size:	Maximum size of generic segmentation offload
1821  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1822  *			NIC for GSO
1823  *
1824  *	@dcbnl_ops:	Data Center Bridging netlink ops
1825  *	@num_tc:	Number of traffic classes in the net device
1826  *	@tc_to_txq:	XXX: need comments on this one
1827  *	@prio_tc_map:	XXX: need comments on this one
1828  *
1829  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1830  *
1831  *	@priomap:	XXX: need comments on this one
1832  *	@phydev:	Physical device may attach itself
1833  *			for hardware timestamping
1834  *	@sfp_bus:	attached &struct sfp_bus structure.
1835  *
1836  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1837  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1838  *
1839  *	@proto_down:	protocol port state information can be sent to the
1840  *			switch driver and used to set the phys state of the
1841  *			switch port.
1842  *
1843  *	@wol_enabled:	Wake-on-LAN is enabled
1844  *
1845  *	@net_notifier_list:	List of per-net netdev notifier block
1846  *				that follow this device when it is moved
1847  *				to another network namespace.
1848  *
1849  *	@macsec_ops:    MACsec offloading ops
1850  *
1851  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1852  *				offload capabilities of the device
1853  *	@udp_tunnel_nic:	UDP tunnel offload state
1854  *	@xdp_state:		stores info on attached XDP BPF programs
1855  *
1856  *	@nested_level:	Used as as a parameter of spin_lock_nested() of
1857  *			dev->addr_list_lock.
1858  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1859  *			keep a list of interfaces to be deleted.
1860  *
1861  *	FIXME: cleanup struct net_device such that network protocol info
1862  *	moves out.
1863  */
1864 
1865 struct net_device {
1866 	char			name[IFNAMSIZ];
1867 	struct netdev_name_node	*name_node;
1868 	struct dev_ifalias	__rcu *ifalias;
1869 	/*
1870 	 *	I/O specific fields
1871 	 *	FIXME: Merge these and struct ifmap into one
1872 	 */
1873 	unsigned long		mem_end;
1874 	unsigned long		mem_start;
1875 	unsigned long		base_addr;
1876 	int			irq;
1877 
1878 	/*
1879 	 *	Some hardware also needs these fields (state,dev_list,
1880 	 *	napi_list,unreg_list,close_list) but they are not
1881 	 *	part of the usual set specified in Space.c.
1882 	 */
1883 
1884 	unsigned long		state;
1885 
1886 	struct list_head	dev_list;
1887 	struct list_head	napi_list;
1888 	struct list_head	unreg_list;
1889 	struct list_head	close_list;
1890 	struct list_head	ptype_all;
1891 	struct list_head	ptype_specific;
1892 
1893 	struct {
1894 		struct list_head upper;
1895 		struct list_head lower;
1896 	} adj_list;
1897 
1898 	netdev_features_t	features;
1899 	netdev_features_t	hw_features;
1900 	netdev_features_t	wanted_features;
1901 	netdev_features_t	vlan_features;
1902 	netdev_features_t	hw_enc_features;
1903 	netdev_features_t	mpls_features;
1904 	netdev_features_t	gso_partial_features;
1905 
1906 	int			ifindex;
1907 	int			group;
1908 
1909 	struct net_device_stats	stats;
1910 
1911 	atomic_long_t		rx_dropped;
1912 	atomic_long_t		tx_dropped;
1913 	atomic_long_t		rx_nohandler;
1914 
1915 	/* Stats to monitor link on/off, flapping */
1916 	atomic_t		carrier_up_count;
1917 	atomic_t		carrier_down_count;
1918 
1919 #ifdef CONFIG_WIRELESS_EXT
1920 	const struct iw_handler_def *wireless_handlers;
1921 	struct iw_public_data	*wireless_data;
1922 #endif
1923 	const struct net_device_ops *netdev_ops;
1924 	const struct ethtool_ops *ethtool_ops;
1925 #ifdef CONFIG_NET_L3_MASTER_DEV
1926 	const struct l3mdev_ops	*l3mdev_ops;
1927 #endif
1928 #if IS_ENABLED(CONFIG_IPV6)
1929 	const struct ndisc_ops *ndisc_ops;
1930 #endif
1931 
1932 #ifdef CONFIG_XFRM_OFFLOAD
1933 	const struct xfrmdev_ops *xfrmdev_ops;
1934 #endif
1935 
1936 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1937 	const struct tlsdev_ops *tlsdev_ops;
1938 #endif
1939 
1940 	const struct header_ops *header_ops;
1941 
1942 	unsigned int		flags;
1943 	unsigned int		priv_flags;
1944 
1945 	unsigned short		gflags;
1946 	unsigned short		padded;
1947 
1948 	unsigned char		operstate;
1949 	unsigned char		link_mode;
1950 
1951 	unsigned char		if_port;
1952 	unsigned char		dma;
1953 
1954 	/* Note : dev->mtu is often read without holding a lock.
1955 	 * Writers usually hold RTNL.
1956 	 * It is recommended to use READ_ONCE() to annotate the reads,
1957 	 * and to use WRITE_ONCE() to annotate the writes.
1958 	 */
1959 	unsigned int		mtu;
1960 	unsigned int		min_mtu;
1961 	unsigned int		max_mtu;
1962 	unsigned short		type;
1963 	unsigned short		hard_header_len;
1964 	unsigned char		min_header_len;
1965 	unsigned char		name_assign_type;
1966 
1967 	unsigned short		needed_headroom;
1968 	unsigned short		needed_tailroom;
1969 
1970 	/* Interface address info. */
1971 	unsigned char		perm_addr[MAX_ADDR_LEN];
1972 	unsigned char		addr_assign_type;
1973 	unsigned char		addr_len;
1974 	unsigned char		upper_level;
1975 	unsigned char		lower_level;
1976 
1977 	unsigned short		neigh_priv_len;
1978 	unsigned short          dev_id;
1979 	unsigned short          dev_port;
1980 	spinlock_t		addr_list_lock;
1981 
1982 	struct netdev_hw_addr_list	uc;
1983 	struct netdev_hw_addr_list	mc;
1984 	struct netdev_hw_addr_list	dev_addrs;
1985 
1986 #ifdef CONFIG_SYSFS
1987 	struct kset		*queues_kset;
1988 #endif
1989 #ifdef CONFIG_LOCKDEP
1990 	struct list_head	unlink_list;
1991 #endif
1992 	unsigned int		promiscuity;
1993 	unsigned int		allmulti;
1994 	bool			uc_promisc;
1995 #ifdef CONFIG_LOCKDEP
1996 	unsigned char		nested_level;
1997 #endif
1998 
1999 
2000 	/* Protocol-specific pointers */
2001 
2002 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2003 	struct vlan_info __rcu	*vlan_info;
2004 #endif
2005 #if IS_ENABLED(CONFIG_NET_DSA)
2006 	struct dsa_port		*dsa_ptr;
2007 #endif
2008 #if IS_ENABLED(CONFIG_TIPC)
2009 	struct tipc_bearer __rcu *tipc_ptr;
2010 #endif
2011 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
2012 	void 			*atalk_ptr;
2013 #endif
2014 	struct in_device __rcu	*ip_ptr;
2015 #if IS_ENABLED(CONFIG_DECNET)
2016 	struct dn_dev __rcu     *dn_ptr;
2017 #endif
2018 	struct inet6_dev __rcu	*ip6_ptr;
2019 #if IS_ENABLED(CONFIG_NEWIP)
2020 	struct ninet_dev __rcu	*nip_ptr; /* NIP */
2021 #endif
2022 #if IS_ENABLED(CONFIG_AX25)
2023 	void			*ax25_ptr;
2024 #endif
2025 	struct wireless_dev	*ieee80211_ptr;
2026 	struct wpan_dev		*ieee802154_ptr;
2027 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2028 	struct mpls_dev __rcu	*mpls_ptr;
2029 #endif
2030 
2031 /*
2032  * Cache lines mostly used on receive path (including eth_type_trans())
2033  */
2034 	/* Interface address info used in eth_type_trans() */
2035 	unsigned char		*dev_addr;
2036 
2037 	struct netdev_rx_queue	*_rx;
2038 	unsigned int		num_rx_queues;
2039 	unsigned int		real_num_rx_queues;
2040 
2041 	struct bpf_prog __rcu	*xdp_prog;
2042 	unsigned long		gro_flush_timeout;
2043 	int			napi_defer_hard_irqs;
2044 	rx_handler_func_t __rcu	*rx_handler;
2045 	void __rcu		*rx_handler_data;
2046 
2047 #ifdef CONFIG_NET_CLS_ACT
2048 	struct mini_Qdisc __rcu	*miniq_ingress;
2049 #endif
2050 	struct netdev_queue __rcu *ingress_queue;
2051 #ifdef CONFIG_NETFILTER_INGRESS
2052 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2053 #endif
2054 
2055 	unsigned char		broadcast[MAX_ADDR_LEN];
2056 #ifdef CONFIG_RFS_ACCEL
2057 	struct cpu_rmap		*rx_cpu_rmap;
2058 #endif
2059 	struct hlist_node	index_hlist;
2060 
2061 /*
2062  * Cache lines mostly used on transmit path
2063  */
2064 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2065 	unsigned int		num_tx_queues;
2066 	unsigned int		real_num_tx_queues;
2067 	struct Qdisc		*qdisc;
2068 	unsigned int		tx_queue_len;
2069 	spinlock_t		tx_global_lock;
2070 
2071 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2072 
2073 #ifdef CONFIG_XPS
2074 	struct xps_dev_maps __rcu *xps_cpus_map;
2075 	struct xps_dev_maps __rcu *xps_rxqs_map;
2076 #endif
2077 #ifdef CONFIG_NET_CLS_ACT
2078 	struct mini_Qdisc __rcu	*miniq_egress;
2079 #endif
2080 
2081 #ifdef CONFIG_NET_SCHED
2082 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2083 #endif
2084 	/* These may be needed for future network-power-down code. */
2085 	struct timer_list	watchdog_timer;
2086 	int			watchdog_timeo;
2087 
2088 	u32                     proto_down_reason;
2089 
2090 	struct list_head	todo_list;
2091 	int __percpu		*pcpu_refcnt;
2092 
2093 	struct list_head	link_watch_list;
2094 
2095 	enum { NETREG_UNINITIALIZED=0,
2096 	       NETREG_REGISTERED,	/* completed register_netdevice */
2097 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2098 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2099 	       NETREG_RELEASED,		/* called free_netdev */
2100 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2101 	} reg_state:8;
2102 
2103 	bool dismantle;
2104 
2105 	enum {
2106 		RTNL_LINK_INITIALIZED,
2107 		RTNL_LINK_INITIALIZING,
2108 	} rtnl_link_state:16;
2109 
2110 	bool needs_free_netdev;
2111 	void (*priv_destructor)(struct net_device *dev);
2112 
2113 #ifdef CONFIG_NETPOLL
2114 	struct netpoll_info __rcu	*npinfo;
2115 #endif
2116 
2117 	possible_net_t			nd_net;
2118 
2119 	/* mid-layer private */
2120 	void				*ml_priv;
2121 	enum netdev_ml_priv_type	ml_priv_type;
2122 
2123 	union {
2124 		struct pcpu_lstats __percpu		*lstats;
2125 		struct pcpu_sw_netstats __percpu	*tstats;
2126 		struct pcpu_dstats __percpu		*dstats;
2127 	};
2128 
2129 #if IS_ENABLED(CONFIG_GARP)
2130 	struct garp_port __rcu	*garp_port;
2131 #endif
2132 #if IS_ENABLED(CONFIG_MRP)
2133 	struct mrp_port __rcu	*mrp_port;
2134 #endif
2135 
2136 	struct device		dev;
2137 	const struct attribute_group *sysfs_groups[4];
2138 	const struct attribute_group *sysfs_rx_queue_group;
2139 
2140 	const struct rtnl_link_ops *rtnl_link_ops;
2141 
2142 	/* for setting kernel sock attribute on TCP connection setup */
2143 #define GSO_MAX_SIZE		65536
2144 	unsigned int		gso_max_size;
2145 #define GSO_MAX_SEGS		65535
2146 	u16			gso_max_segs;
2147 
2148 #ifdef CONFIG_DCB
2149 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2150 #endif
2151 	s16			num_tc;
2152 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2153 	u8			prio_tc_map[TC_BITMASK + 1];
2154 
2155 #if IS_ENABLED(CONFIG_FCOE)
2156 	unsigned int		fcoe_ddp_xid;
2157 #endif
2158 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2159 	struct netprio_map __rcu *priomap;
2160 #endif
2161 	struct phy_device	*phydev;
2162 	struct sfp_bus		*sfp_bus;
2163 	struct lock_class_key	*qdisc_tx_busylock;
2164 	struct lock_class_key	*qdisc_running_key;
2165 	bool			proto_down;
2166 	unsigned		wol_enabled:1;
2167 
2168 	struct list_head	net_notifier_list;
2169 
2170 #if IS_ENABLED(CONFIG_MACSEC)
2171 	/* MACsec management functions */
2172 	const struct macsec_ops *macsec_ops;
2173 #endif
2174 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2175 	struct udp_tunnel_nic	*udp_tunnel_nic;
2176 
2177 	/* protected by rtnl_lock */
2178 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2179 };
2180 #define to_net_dev(d) container_of(d, struct net_device, dev)
2181 
netif_elide_gro(const struct net_device * dev)2182 static inline bool netif_elide_gro(const struct net_device *dev)
2183 {
2184 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2185 		return true;
2186 	return false;
2187 }
2188 
2189 #define	NETDEV_ALIGN		32
2190 
2191 static inline
netdev_get_prio_tc_map(const struct net_device * dev,u32 prio)2192 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2193 {
2194 	return dev->prio_tc_map[prio & TC_BITMASK];
2195 }
2196 
2197 static inline
netdev_set_prio_tc_map(struct net_device * dev,u8 prio,u8 tc)2198 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2199 {
2200 	if (tc >= dev->num_tc)
2201 		return -EINVAL;
2202 
2203 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2204 	return 0;
2205 }
2206 
2207 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2208 void netdev_reset_tc(struct net_device *dev);
2209 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2210 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2211 
2212 static inline
netdev_get_num_tc(struct net_device * dev)2213 int netdev_get_num_tc(struct net_device *dev)
2214 {
2215 	return dev->num_tc;
2216 }
2217 
net_prefetch(void * p)2218 static inline void net_prefetch(void *p)
2219 {
2220 	prefetch(p);
2221 #if L1_CACHE_BYTES < 128
2222 	prefetch((u8 *)p + L1_CACHE_BYTES);
2223 #endif
2224 }
2225 
net_prefetchw(void * p)2226 static inline void net_prefetchw(void *p)
2227 {
2228 	prefetchw(p);
2229 #if L1_CACHE_BYTES < 128
2230 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2231 #endif
2232 }
2233 
2234 void netdev_unbind_sb_channel(struct net_device *dev,
2235 			      struct net_device *sb_dev);
2236 int netdev_bind_sb_channel_queue(struct net_device *dev,
2237 				 struct net_device *sb_dev,
2238 				 u8 tc, u16 count, u16 offset);
2239 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
netdev_get_sb_channel(struct net_device * dev)2240 static inline int netdev_get_sb_channel(struct net_device *dev)
2241 {
2242 	return max_t(int, -dev->num_tc, 0);
2243 }
2244 
2245 static inline
netdev_get_tx_queue(const struct net_device * dev,unsigned int index)2246 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2247 					 unsigned int index)
2248 {
2249 	return &dev->_tx[index];
2250 }
2251 
skb_get_tx_queue(const struct net_device * dev,const struct sk_buff * skb)2252 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2253 						    const struct sk_buff *skb)
2254 {
2255 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2256 }
2257 
netdev_for_each_tx_queue(struct net_device * dev,void (* f)(struct net_device *,struct netdev_queue *,void *),void * arg)2258 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2259 					    void (*f)(struct net_device *,
2260 						      struct netdev_queue *,
2261 						      void *),
2262 					    void *arg)
2263 {
2264 	unsigned int i;
2265 
2266 	for (i = 0; i < dev->num_tx_queues; i++)
2267 		f(dev, &dev->_tx[i], arg);
2268 }
2269 
2270 #define netdev_lockdep_set_classes(dev)				\
2271 {								\
2272 	static struct lock_class_key qdisc_tx_busylock_key;	\
2273 	static struct lock_class_key qdisc_running_key;		\
2274 	static struct lock_class_key qdisc_xmit_lock_key;	\
2275 	static struct lock_class_key dev_addr_list_lock_key;	\
2276 	unsigned int i;						\
2277 								\
2278 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2279 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2280 	lockdep_set_class(&(dev)->addr_list_lock,		\
2281 			  &dev_addr_list_lock_key);		\
2282 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2283 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2284 				  &qdisc_xmit_lock_key);	\
2285 }
2286 
2287 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2288 		     struct net_device *sb_dev);
2289 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2290 					 struct sk_buff *skb,
2291 					 struct net_device *sb_dev);
2292 
2293 /* returns the headroom that the master device needs to take in account
2294  * when forwarding to this dev
2295  */
netdev_get_fwd_headroom(struct net_device * dev)2296 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2297 {
2298 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2299 }
2300 
netdev_set_rx_headroom(struct net_device * dev,int new_hr)2301 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2302 {
2303 	if (dev->netdev_ops->ndo_set_rx_headroom)
2304 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2305 }
2306 
2307 /* set the device rx headroom to the dev's default */
netdev_reset_rx_headroom(struct net_device * dev)2308 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2309 {
2310 	netdev_set_rx_headroom(dev, -1);
2311 }
2312 
netdev_get_ml_priv(struct net_device * dev,enum netdev_ml_priv_type type)2313 static inline void *netdev_get_ml_priv(struct net_device *dev,
2314 				       enum netdev_ml_priv_type type)
2315 {
2316 	if (dev->ml_priv_type != type)
2317 		return NULL;
2318 
2319 	return dev->ml_priv;
2320 }
2321 
netdev_set_ml_priv(struct net_device * dev,void * ml_priv,enum netdev_ml_priv_type type)2322 static inline void netdev_set_ml_priv(struct net_device *dev,
2323 				      void *ml_priv,
2324 				      enum netdev_ml_priv_type type)
2325 {
2326 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2327 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2328 	     dev->ml_priv_type, type);
2329 	WARN(!dev->ml_priv_type && dev->ml_priv,
2330 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2331 
2332 	dev->ml_priv = ml_priv;
2333 	dev->ml_priv_type = type;
2334 }
2335 
2336 /*
2337  * Net namespace inlines
2338  */
2339 static inline
dev_net(const struct net_device * dev)2340 struct net *dev_net(const struct net_device *dev)
2341 {
2342 	return read_pnet(&dev->nd_net);
2343 }
2344 
2345 static inline
dev_net_set(struct net_device * dev,struct net * net)2346 void dev_net_set(struct net_device *dev, struct net *net)
2347 {
2348 	write_pnet(&dev->nd_net, net);
2349 }
2350 
2351 /**
2352  *	netdev_priv - access network device private data
2353  *	@dev: network device
2354  *
2355  * Get network device private data
2356  */
netdev_priv(const struct net_device * dev)2357 static inline void *netdev_priv(const struct net_device *dev)
2358 {
2359 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2360 }
2361 
2362 /* Set the sysfs physical device reference for the network logical device
2363  * if set prior to registration will cause a symlink during initialization.
2364  */
2365 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2366 
2367 /* Set the sysfs device type for the network logical device to allow
2368  * fine-grained identification of different network device types. For
2369  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2370  */
2371 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2372 
2373 /* Default NAPI poll() weight
2374  * Device drivers are strongly advised to not use bigger value
2375  */
2376 #define NAPI_POLL_WEIGHT 64
2377 
2378 /**
2379  *	netif_napi_add - initialize a NAPI context
2380  *	@dev:  network device
2381  *	@napi: NAPI context
2382  *	@poll: polling function
2383  *	@weight: default weight
2384  *
2385  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2386  * *any* of the other NAPI-related functions.
2387  */
2388 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2389 		    int (*poll)(struct napi_struct *, int), int weight);
2390 
2391 /**
2392  *	netif_tx_napi_add - initialize a NAPI context
2393  *	@dev:  network device
2394  *	@napi: NAPI context
2395  *	@poll: polling function
2396  *	@weight: default weight
2397  *
2398  * This variant of netif_napi_add() should be used from drivers using NAPI
2399  * to exclusively poll a TX queue.
2400  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2401  */
netif_tx_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)2402 static inline void netif_tx_napi_add(struct net_device *dev,
2403 				     struct napi_struct *napi,
2404 				     int (*poll)(struct napi_struct *, int),
2405 				     int weight)
2406 {
2407 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2408 	netif_napi_add(dev, napi, poll, weight);
2409 }
2410 
2411 /**
2412  *  __netif_napi_del - remove a NAPI context
2413  *  @napi: NAPI context
2414  *
2415  * Warning: caller must observe RCU grace period before freeing memory
2416  * containing @napi. Drivers might want to call this helper to combine
2417  * all the needed RCU grace periods into a single one.
2418  */
2419 void __netif_napi_del(struct napi_struct *napi);
2420 
2421 /**
2422  *  netif_napi_del - remove a NAPI context
2423  *  @napi: NAPI context
2424  *
2425  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2426  */
netif_napi_del(struct napi_struct * napi)2427 static inline void netif_napi_del(struct napi_struct *napi)
2428 {
2429 	__netif_napi_del(napi);
2430 	synchronize_net();
2431 }
2432 
2433 struct napi_gro_cb {
2434 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2435 	void	*frag0;
2436 
2437 	/* Length of frag0. */
2438 	unsigned int frag0_len;
2439 
2440 	/* This indicates where we are processing relative to skb->data. */
2441 	int	data_offset;
2442 
2443 	/* This is non-zero if the packet cannot be merged with the new skb. */
2444 	u16	flush;
2445 
2446 	/* Save the IP ID here and check when we get to the transport layer */
2447 	u16	flush_id;
2448 
2449 	/* Number of segments aggregated. */
2450 	u16	count;
2451 
2452 	/* Start offset for remote checksum offload */
2453 	u16	gro_remcsum_start;
2454 
2455 	/* jiffies when first packet was created/queued */
2456 	unsigned long age;
2457 
2458 	/* Used in ipv6_gro_receive() and foo-over-udp */
2459 	u16	proto;
2460 
2461 	/* This is non-zero if the packet may be of the same flow. */
2462 	u8	same_flow:1;
2463 
2464 	/* Used in tunnel GRO receive */
2465 	u8	encap_mark:1;
2466 
2467 	/* GRO checksum is valid */
2468 	u8	csum_valid:1;
2469 
2470 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2471 	u8	csum_cnt:3;
2472 
2473 	/* Free the skb? */
2474 	u8	free:2;
2475 #define NAPI_GRO_FREE		  1
2476 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2477 
2478 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2479 	u8	is_ipv6:1;
2480 
2481 	/* Used in GRE, set in fou/gue_gro_receive */
2482 	u8	is_fou:1;
2483 
2484 	/* Used to determine if flush_id can be ignored */
2485 	u8	is_atomic:1;
2486 
2487 	/* Number of gro_receive callbacks this packet already went through */
2488 	u8 recursion_counter:4;
2489 
2490 	/* GRO is done by frag_list pointer chaining. */
2491 	u8	is_flist:1;
2492 
2493 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2494 	__wsum	csum;
2495 
2496 	/* used in skb_gro_receive() slow path */
2497 	struct sk_buff *last;
2498 };
2499 
2500 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2501 
2502 #define GRO_RECURSION_LIMIT 15
gro_recursion_inc_test(struct sk_buff * skb)2503 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2504 {
2505 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2506 }
2507 
2508 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
call_gro_receive(gro_receive_t cb,struct list_head * head,struct sk_buff * skb)2509 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2510 					       struct list_head *head,
2511 					       struct sk_buff *skb)
2512 {
2513 	if (unlikely(gro_recursion_inc_test(skb))) {
2514 		NAPI_GRO_CB(skb)->flush |= 1;
2515 		return NULL;
2516 	}
2517 
2518 	return cb(head, skb);
2519 }
2520 
2521 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2522 					    struct sk_buff *);
call_gro_receive_sk(gro_receive_sk_t cb,struct sock * sk,struct list_head * head,struct sk_buff * skb)2523 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2524 						  struct sock *sk,
2525 						  struct list_head *head,
2526 						  struct sk_buff *skb)
2527 {
2528 	if (unlikely(gro_recursion_inc_test(skb))) {
2529 		NAPI_GRO_CB(skb)->flush |= 1;
2530 		return NULL;
2531 	}
2532 
2533 	return cb(sk, head, skb);
2534 }
2535 
2536 struct packet_type {
2537 	__be16			type;	/* This is really htons(ether_type). */
2538 	bool			ignore_outgoing;
2539 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2540 	int			(*func) (struct sk_buff *,
2541 					 struct net_device *,
2542 					 struct packet_type *,
2543 					 struct net_device *);
2544 	void			(*list_func) (struct list_head *,
2545 					      struct packet_type *,
2546 					      struct net_device *);
2547 	bool			(*id_match)(struct packet_type *ptype,
2548 					    struct sock *sk);
2549 	struct net		*af_packet_net;
2550 	void			*af_packet_priv;
2551 	struct list_head	list;
2552 };
2553 
2554 struct offload_callbacks {
2555 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2556 						netdev_features_t features);
2557 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2558 						struct sk_buff *skb);
2559 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2560 };
2561 
2562 struct packet_offload {
2563 	__be16			 type;	/* This is really htons(ether_type). */
2564 	u16			 priority;
2565 	struct offload_callbacks callbacks;
2566 	struct list_head	 list;
2567 };
2568 
2569 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2570 struct pcpu_sw_netstats {
2571 	u64     rx_packets;
2572 	u64     rx_bytes;
2573 	u64     tx_packets;
2574 	u64     tx_bytes;
2575 	struct u64_stats_sync   syncp;
2576 } __aligned(4 * sizeof(u64));
2577 
2578 struct pcpu_lstats {
2579 	u64_stats_t packets;
2580 	u64_stats_t bytes;
2581 	struct u64_stats_sync syncp;
2582 } __aligned(2 * sizeof(u64));
2583 
2584 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2585 
dev_sw_netstats_rx_add(struct net_device * dev,unsigned int len)2586 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2587 {
2588 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2589 
2590 	u64_stats_update_begin(&tstats->syncp);
2591 	tstats->rx_bytes += len;
2592 	tstats->rx_packets++;
2593 	u64_stats_update_end(&tstats->syncp);
2594 }
2595 
dev_lstats_add(struct net_device * dev,unsigned int len)2596 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2597 {
2598 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2599 
2600 	u64_stats_update_begin(&lstats->syncp);
2601 	u64_stats_add(&lstats->bytes, len);
2602 	u64_stats_inc(&lstats->packets);
2603 	u64_stats_update_end(&lstats->syncp);
2604 }
2605 
2606 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2607 ({									\
2608 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2609 	if (pcpu_stats)	{						\
2610 		int __cpu;						\
2611 		for_each_possible_cpu(__cpu) {				\
2612 			typeof(type) *stat;				\
2613 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2614 			u64_stats_init(&stat->syncp);			\
2615 		}							\
2616 	}								\
2617 	pcpu_stats;							\
2618 })
2619 
2620 #define netdev_alloc_pcpu_stats(type)					\
2621 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2622 
2623 enum netdev_lag_tx_type {
2624 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2625 	NETDEV_LAG_TX_TYPE_RANDOM,
2626 	NETDEV_LAG_TX_TYPE_BROADCAST,
2627 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2628 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2629 	NETDEV_LAG_TX_TYPE_HASH,
2630 };
2631 
2632 enum netdev_lag_hash {
2633 	NETDEV_LAG_HASH_NONE,
2634 	NETDEV_LAG_HASH_L2,
2635 	NETDEV_LAG_HASH_L34,
2636 	NETDEV_LAG_HASH_L23,
2637 	NETDEV_LAG_HASH_E23,
2638 	NETDEV_LAG_HASH_E34,
2639 	NETDEV_LAG_HASH_UNKNOWN,
2640 };
2641 
2642 struct netdev_lag_upper_info {
2643 	enum netdev_lag_tx_type tx_type;
2644 	enum netdev_lag_hash hash_type;
2645 };
2646 
2647 struct netdev_lag_lower_state_info {
2648 	u8 link_up : 1,
2649 	   tx_enabled : 1;
2650 };
2651 
2652 #include <linux/notifier.h>
2653 
2654 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2655  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2656  * adding new types.
2657  */
2658 enum netdev_cmd {
2659 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2660 	NETDEV_DOWN,
2661 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2662 				   detected a hardware crash and restarted
2663 				   - we can use this eg to kick tcp sessions
2664 				   once done */
2665 	NETDEV_CHANGE,		/* Notify device state change */
2666 	NETDEV_REGISTER,
2667 	NETDEV_UNREGISTER,
2668 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2669 	NETDEV_CHANGEADDR,	/* notify after the address change */
2670 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2671 	NETDEV_GOING_DOWN,
2672 	NETDEV_CHANGENAME,
2673 	NETDEV_FEAT_CHANGE,
2674 	NETDEV_BONDING_FAILOVER,
2675 	NETDEV_PRE_UP,
2676 	NETDEV_PRE_TYPE_CHANGE,
2677 	NETDEV_POST_TYPE_CHANGE,
2678 	NETDEV_POST_INIT,
2679 	NETDEV_RELEASE,
2680 	NETDEV_NOTIFY_PEERS,
2681 	NETDEV_JOIN,
2682 	NETDEV_CHANGEUPPER,
2683 	NETDEV_RESEND_IGMP,
2684 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2685 	NETDEV_CHANGEINFODATA,
2686 	NETDEV_BONDING_INFO,
2687 	NETDEV_PRECHANGEUPPER,
2688 	NETDEV_CHANGELOWERSTATE,
2689 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2690 	NETDEV_UDP_TUNNEL_DROP_INFO,
2691 	NETDEV_CHANGE_TX_QUEUE_LEN,
2692 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2693 	NETDEV_CVLAN_FILTER_DROP_INFO,
2694 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2695 	NETDEV_SVLAN_FILTER_DROP_INFO,
2696 };
2697 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2698 
2699 int register_netdevice_notifier(struct notifier_block *nb);
2700 int unregister_netdevice_notifier(struct notifier_block *nb);
2701 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2702 int unregister_netdevice_notifier_net(struct net *net,
2703 				      struct notifier_block *nb);
2704 int register_netdevice_notifier_dev_net(struct net_device *dev,
2705 					struct notifier_block *nb,
2706 					struct netdev_net_notifier *nn);
2707 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2708 					  struct notifier_block *nb,
2709 					  struct netdev_net_notifier *nn);
2710 
2711 struct netdev_notifier_info {
2712 	struct net_device	*dev;
2713 	struct netlink_ext_ack	*extack;
2714 };
2715 
2716 struct netdev_notifier_info_ext {
2717 	struct netdev_notifier_info info; /* must be first */
2718 	union {
2719 		u32 mtu;
2720 	} ext;
2721 };
2722 
2723 struct netdev_notifier_change_info {
2724 	struct netdev_notifier_info info; /* must be first */
2725 	unsigned int flags_changed;
2726 };
2727 
2728 struct netdev_notifier_changeupper_info {
2729 	struct netdev_notifier_info info; /* must be first */
2730 	struct net_device *upper_dev; /* new upper dev */
2731 	bool master; /* is upper dev master */
2732 	bool linking; /* is the notification for link or unlink */
2733 	void *upper_info; /* upper dev info */
2734 };
2735 
2736 struct netdev_notifier_changelowerstate_info {
2737 	struct netdev_notifier_info info; /* must be first */
2738 	void *lower_state_info; /* is lower dev state */
2739 };
2740 
2741 struct netdev_notifier_pre_changeaddr_info {
2742 	struct netdev_notifier_info info; /* must be first */
2743 	const unsigned char *dev_addr;
2744 };
2745 
netdev_notifier_info_init(struct netdev_notifier_info * info,struct net_device * dev)2746 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2747 					     struct net_device *dev)
2748 {
2749 	info->dev = dev;
2750 	info->extack = NULL;
2751 }
2752 
2753 static inline struct net_device *
netdev_notifier_info_to_dev(const struct netdev_notifier_info * info)2754 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2755 {
2756 	return info->dev;
2757 }
2758 
2759 static inline struct netlink_ext_ack *
netdev_notifier_info_to_extack(const struct netdev_notifier_info * info)2760 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2761 {
2762 	return info->extack;
2763 }
2764 
2765 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2766 
2767 
2768 extern rwlock_t				dev_base_lock;		/* Device list lock */
2769 
2770 #define for_each_netdev(net, d)		\
2771 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2772 #define for_each_netdev_reverse(net, d)	\
2773 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2774 #define for_each_netdev_rcu(net, d)		\
2775 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2776 #define for_each_netdev_safe(net, d, n)	\
2777 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2778 #define for_each_netdev_continue(net, d)		\
2779 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2780 #define for_each_netdev_continue_reverse(net, d)		\
2781 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2782 						     dev_list)
2783 #define for_each_netdev_continue_rcu(net, d)		\
2784 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2785 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2786 		for_each_netdev_rcu(&init_net, slave)	\
2787 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2788 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2789 
next_net_device(struct net_device * dev)2790 static inline struct net_device *next_net_device(struct net_device *dev)
2791 {
2792 	struct list_head *lh;
2793 	struct net *net;
2794 
2795 	net = dev_net(dev);
2796 	lh = dev->dev_list.next;
2797 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2798 }
2799 
next_net_device_rcu(struct net_device * dev)2800 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2801 {
2802 	struct list_head *lh;
2803 	struct net *net;
2804 
2805 	net = dev_net(dev);
2806 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2807 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2808 }
2809 
first_net_device(struct net * net)2810 static inline struct net_device *first_net_device(struct net *net)
2811 {
2812 	return list_empty(&net->dev_base_head) ? NULL :
2813 		net_device_entry(net->dev_base_head.next);
2814 }
2815 
first_net_device_rcu(struct net * net)2816 static inline struct net_device *first_net_device_rcu(struct net *net)
2817 {
2818 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2819 
2820 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2821 }
2822 
2823 int netdev_boot_setup_check(struct net_device *dev);
2824 unsigned long netdev_boot_base(const char *prefix, int unit);
2825 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2826 				       const char *hwaddr);
2827 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2828 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2829 void dev_add_pack(struct packet_type *pt);
2830 void dev_remove_pack(struct packet_type *pt);
2831 void __dev_remove_pack(struct packet_type *pt);
2832 void dev_add_offload(struct packet_offload *po);
2833 void dev_remove_offload(struct packet_offload *po);
2834 
2835 int dev_get_iflink(const struct net_device *dev);
2836 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2837 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2838 				      unsigned short mask);
2839 struct net_device *dev_get_by_name(struct net *net, const char *name);
2840 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2841 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2842 int dev_alloc_name(struct net_device *dev, const char *name);
2843 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2844 void dev_close(struct net_device *dev);
2845 void dev_close_many(struct list_head *head, bool unlink);
2846 void dev_disable_lro(struct net_device *dev);
2847 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2848 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2849 		     struct net_device *sb_dev);
2850 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2851 		       struct net_device *sb_dev);
2852 
2853 int dev_queue_xmit(struct sk_buff *skb);
2854 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2855 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2856 
dev_direct_xmit(struct sk_buff * skb,u16 queue_id)2857 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
2858 {
2859 	int ret;
2860 
2861 	ret = __dev_direct_xmit(skb, queue_id);
2862 	if (!dev_xmit_complete(ret))
2863 		kfree_skb(skb);
2864 	return ret;
2865 }
2866 
2867 int register_netdevice(struct net_device *dev);
2868 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2869 void unregister_netdevice_many(struct list_head *head);
unregister_netdevice(struct net_device * dev)2870 static inline void unregister_netdevice(struct net_device *dev)
2871 {
2872 	unregister_netdevice_queue(dev, NULL);
2873 }
2874 
2875 int netdev_refcnt_read(const struct net_device *dev);
2876 void free_netdev(struct net_device *dev);
2877 void netdev_freemem(struct net_device *dev);
2878 int init_dummy_netdev(struct net_device *dev);
2879 
2880 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2881 					 struct sk_buff *skb,
2882 					 bool all_slaves);
2883 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2884 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2885 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2886 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2887 int netdev_get_name(struct net *net, char *name, int ifindex);
2888 int dev_restart(struct net_device *dev);
2889 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2890 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2891 
skb_gro_offset(const struct sk_buff * skb)2892 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2893 {
2894 	return NAPI_GRO_CB(skb)->data_offset;
2895 }
2896 
skb_gro_len(const struct sk_buff * skb)2897 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2898 {
2899 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2900 }
2901 
skb_gro_pull(struct sk_buff * skb,unsigned int len)2902 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2903 {
2904 	NAPI_GRO_CB(skb)->data_offset += len;
2905 }
2906 
skb_gro_header_fast(struct sk_buff * skb,unsigned int offset)2907 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2908 					unsigned int offset)
2909 {
2910 	return NAPI_GRO_CB(skb)->frag0 + offset;
2911 }
2912 
skb_gro_header_hard(struct sk_buff * skb,unsigned int hlen)2913 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2914 {
2915 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2916 }
2917 
skb_gro_frag0_invalidate(struct sk_buff * skb)2918 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2919 {
2920 	NAPI_GRO_CB(skb)->frag0 = NULL;
2921 	NAPI_GRO_CB(skb)->frag0_len = 0;
2922 }
2923 
skb_gro_header_slow(struct sk_buff * skb,unsigned int hlen,unsigned int offset)2924 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2925 					unsigned int offset)
2926 {
2927 	if (!pskb_may_pull(skb, hlen))
2928 		return NULL;
2929 
2930 	skb_gro_frag0_invalidate(skb);
2931 	return skb->data + offset;
2932 }
2933 
skb_gro_network_header(struct sk_buff * skb)2934 static inline void *skb_gro_network_header(struct sk_buff *skb)
2935 {
2936 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2937 	       skb_network_offset(skb);
2938 }
2939 
skb_gro_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)2940 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2941 					const void *start, unsigned int len)
2942 {
2943 	if (NAPI_GRO_CB(skb)->csum_valid)
2944 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2945 						  csum_partial(start, len, 0));
2946 }
2947 
2948 /* GRO checksum functions. These are logical equivalents of the normal
2949  * checksum functions (in skbuff.h) except that they operate on the GRO
2950  * offsets and fields in sk_buff.
2951  */
2952 
2953 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2954 
skb_at_gro_remcsum_start(struct sk_buff * skb)2955 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2956 {
2957 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2958 }
2959 
__skb_gro_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)2960 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2961 						      bool zero_okay,
2962 						      __sum16 check)
2963 {
2964 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2965 		skb_checksum_start_offset(skb) <
2966 		 skb_gro_offset(skb)) &&
2967 		!skb_at_gro_remcsum_start(skb) &&
2968 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2969 		(!zero_okay || check));
2970 }
2971 
__skb_gro_checksum_validate_complete(struct sk_buff * skb,__wsum psum)2972 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2973 							   __wsum psum)
2974 {
2975 	if (NAPI_GRO_CB(skb)->csum_valid &&
2976 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2977 		return 0;
2978 
2979 	NAPI_GRO_CB(skb)->csum = psum;
2980 
2981 	return __skb_gro_checksum_complete(skb);
2982 }
2983 
skb_gro_incr_csum_unnecessary(struct sk_buff * skb)2984 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2985 {
2986 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2987 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2988 		NAPI_GRO_CB(skb)->csum_cnt--;
2989 	} else {
2990 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2991 		 * verified a new top level checksum or an encapsulated one
2992 		 * during GRO. This saves work if we fallback to normal path.
2993 		 */
2994 		__skb_incr_checksum_unnecessary(skb);
2995 	}
2996 }
2997 
2998 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2999 				    compute_pseudo)			\
3000 ({									\
3001 	__sum16 __ret = 0;						\
3002 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
3003 		__ret = __skb_gro_checksum_validate_complete(skb,	\
3004 				compute_pseudo(skb, proto));		\
3005 	if (!__ret)							\
3006 		skb_gro_incr_csum_unnecessary(skb);			\
3007 	__ret;								\
3008 })
3009 
3010 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
3011 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
3012 
3013 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
3014 					     compute_pseudo)		\
3015 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
3016 
3017 #define skb_gro_checksum_simple_validate(skb)				\
3018 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
3019 
__skb_gro_checksum_convert_check(struct sk_buff * skb)3020 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
3021 {
3022 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
3023 		!NAPI_GRO_CB(skb)->csum_valid);
3024 }
3025 
__skb_gro_checksum_convert(struct sk_buff * skb,__wsum pseudo)3026 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
3027 					      __wsum pseudo)
3028 {
3029 	NAPI_GRO_CB(skb)->csum = ~pseudo;
3030 	NAPI_GRO_CB(skb)->csum_valid = 1;
3031 }
3032 
3033 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)	\
3034 do {									\
3035 	if (__skb_gro_checksum_convert_check(skb))			\
3036 		__skb_gro_checksum_convert(skb, 			\
3037 					   compute_pseudo(skb, proto));	\
3038 } while (0)
3039 
3040 struct gro_remcsum {
3041 	int offset;
3042 	__wsum delta;
3043 };
3044 
skb_gro_remcsum_init(struct gro_remcsum * grc)3045 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
3046 {
3047 	grc->offset = 0;
3048 	grc->delta = 0;
3049 }
3050 
skb_gro_remcsum_process(struct sk_buff * skb,void * ptr,unsigned int off,size_t hdrlen,int start,int offset,struct gro_remcsum * grc,bool nopartial)3051 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
3052 					    unsigned int off, size_t hdrlen,
3053 					    int start, int offset,
3054 					    struct gro_remcsum *grc,
3055 					    bool nopartial)
3056 {
3057 	__wsum delta;
3058 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
3059 
3060 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
3061 
3062 	if (!nopartial) {
3063 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
3064 		return ptr;
3065 	}
3066 
3067 	ptr = skb_gro_header_fast(skb, off);
3068 	if (skb_gro_header_hard(skb, off + plen)) {
3069 		ptr = skb_gro_header_slow(skb, off + plen, off);
3070 		if (!ptr)
3071 			return NULL;
3072 	}
3073 
3074 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
3075 			       start, offset);
3076 
3077 	/* Adjust skb->csum since we changed the packet */
3078 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
3079 
3080 	grc->offset = off + hdrlen + offset;
3081 	grc->delta = delta;
3082 
3083 	return ptr;
3084 }
3085 
skb_gro_remcsum_cleanup(struct sk_buff * skb,struct gro_remcsum * grc)3086 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
3087 					   struct gro_remcsum *grc)
3088 {
3089 	void *ptr;
3090 	size_t plen = grc->offset + sizeof(u16);
3091 
3092 	if (!grc->delta)
3093 		return;
3094 
3095 	ptr = skb_gro_header_fast(skb, grc->offset);
3096 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3097 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
3098 		if (!ptr)
3099 			return;
3100 	}
3101 
3102 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
3103 }
3104 
3105 #ifdef CONFIG_XFRM_OFFLOAD
skb_gro_flush_final(struct sk_buff * skb,struct sk_buff * pp,int flush)3106 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3107 {
3108 	if (PTR_ERR(pp) != -EINPROGRESS)
3109 		NAPI_GRO_CB(skb)->flush |= flush;
3110 }
skb_gro_flush_final_remcsum(struct sk_buff * skb,struct sk_buff * pp,int flush,struct gro_remcsum * grc)3111 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3112 					       struct sk_buff *pp,
3113 					       int flush,
3114 					       struct gro_remcsum *grc)
3115 {
3116 	if (PTR_ERR(pp) != -EINPROGRESS) {
3117 		NAPI_GRO_CB(skb)->flush |= flush;
3118 		skb_gro_remcsum_cleanup(skb, grc);
3119 		skb->remcsum_offload = 0;
3120 	}
3121 }
3122 #else
skb_gro_flush_final(struct sk_buff * skb,struct sk_buff * pp,int flush)3123 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3124 {
3125 	NAPI_GRO_CB(skb)->flush |= flush;
3126 }
skb_gro_flush_final_remcsum(struct sk_buff * skb,struct sk_buff * pp,int flush,struct gro_remcsum * grc)3127 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3128 					       struct sk_buff *pp,
3129 					       int flush,
3130 					       struct gro_remcsum *grc)
3131 {
3132 	NAPI_GRO_CB(skb)->flush |= flush;
3133 	skb_gro_remcsum_cleanup(skb, grc);
3134 	skb->remcsum_offload = 0;
3135 }
3136 #endif
3137 
dev_hard_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,unsigned int len)3138 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3139 				  unsigned short type,
3140 				  const void *daddr, const void *saddr,
3141 				  unsigned int len)
3142 {
3143 	if (!dev->header_ops || !dev->header_ops->create)
3144 		return 0;
3145 
3146 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3147 }
3148 
dev_parse_header(const struct sk_buff * skb,unsigned char * haddr)3149 static inline int dev_parse_header(const struct sk_buff *skb,
3150 				   unsigned char *haddr)
3151 {
3152 	const struct net_device *dev = skb->dev;
3153 
3154 	if (!dev->header_ops || !dev->header_ops->parse)
3155 		return 0;
3156 	return dev->header_ops->parse(skb, haddr);
3157 }
3158 
dev_parse_header_protocol(const struct sk_buff * skb)3159 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3160 {
3161 	const struct net_device *dev = skb->dev;
3162 
3163 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3164 		return 0;
3165 	return dev->header_ops->parse_protocol(skb);
3166 }
3167 
3168 /* ll_header must have at least hard_header_len allocated */
dev_validate_header(const struct net_device * dev,char * ll_header,int len)3169 static inline bool dev_validate_header(const struct net_device *dev,
3170 				       char *ll_header, int len)
3171 {
3172 	if (likely(len >= dev->hard_header_len))
3173 		return true;
3174 	if (len < dev->min_header_len)
3175 		return false;
3176 
3177 	if (capable(CAP_SYS_RAWIO)) {
3178 		memset(ll_header + len, 0, dev->hard_header_len - len);
3179 		return true;
3180 	}
3181 
3182 	if (dev->header_ops && dev->header_ops->validate)
3183 		return dev->header_ops->validate(ll_header, len);
3184 
3185 	return false;
3186 }
3187 
dev_has_header(const struct net_device * dev)3188 static inline bool dev_has_header(const struct net_device *dev)
3189 {
3190 	return dev->header_ops && dev->header_ops->create;
3191 }
3192 
3193 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3194 			   int len, int size);
3195 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
unregister_gifconf(unsigned int family)3196 static inline int unregister_gifconf(unsigned int family)
3197 {
3198 	return register_gifconf(family, NULL);
3199 }
3200 
3201 #ifdef CONFIG_NET_FLOW_LIMIT
3202 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3203 struct sd_flow_limit {
3204 	u64			count;
3205 	unsigned int		num_buckets;
3206 	unsigned int		history_head;
3207 	u16			history[FLOW_LIMIT_HISTORY];
3208 	u8			buckets[];
3209 };
3210 
3211 extern int netdev_flow_limit_table_len;
3212 #endif /* CONFIG_NET_FLOW_LIMIT */
3213 
3214 /*
3215  * Incoming packets are placed on per-CPU queues
3216  */
3217 struct softnet_data {
3218 	struct list_head	poll_list;
3219 	struct sk_buff_head	process_queue;
3220 
3221 	/* stats */
3222 	unsigned int		processed;
3223 	unsigned int		time_squeeze;
3224 	unsigned int		received_rps;
3225 #ifdef CONFIG_RPS
3226 	struct softnet_data	*rps_ipi_list;
3227 #endif
3228 #ifdef CONFIG_NET_FLOW_LIMIT
3229 	struct sd_flow_limit __rcu *flow_limit;
3230 #endif
3231 	struct Qdisc		*output_queue;
3232 	struct Qdisc		**output_queue_tailp;
3233 	struct sk_buff		*completion_queue;
3234 #ifdef CONFIG_XFRM_OFFLOAD
3235 	struct sk_buff_head	xfrm_backlog;
3236 #endif
3237 	/* written and read only by owning cpu: */
3238 	struct {
3239 		u16 recursion;
3240 		u8  more;
3241 	} xmit;
3242 #ifdef CONFIG_RPS
3243 	/* input_queue_head should be written by cpu owning this struct,
3244 	 * and only read by other cpus. Worth using a cache line.
3245 	 */
3246 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3247 
3248 	/* Elements below can be accessed between CPUs for RPS/RFS */
3249 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3250 	struct softnet_data	*rps_ipi_next;
3251 	unsigned int		cpu;
3252 	unsigned int		input_queue_tail;
3253 #endif
3254 	unsigned int		dropped;
3255 	struct sk_buff_head	input_pkt_queue;
3256 	struct napi_struct	backlog;
3257 
3258 };
3259 
input_queue_head_incr(struct softnet_data * sd)3260 static inline void input_queue_head_incr(struct softnet_data *sd)
3261 {
3262 #ifdef CONFIG_RPS
3263 	sd->input_queue_head++;
3264 #endif
3265 }
3266 
input_queue_tail_incr_save(struct softnet_data * sd,unsigned int * qtail)3267 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3268 					      unsigned int *qtail)
3269 {
3270 #ifdef CONFIG_RPS
3271 	*qtail = ++sd->input_queue_tail;
3272 #endif
3273 }
3274 
3275 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3276 
dev_recursion_level(void)3277 static inline int dev_recursion_level(void)
3278 {
3279 	return this_cpu_read(softnet_data.xmit.recursion);
3280 }
3281 
3282 #define XMIT_RECURSION_LIMIT	8
dev_xmit_recursion(void)3283 static inline bool dev_xmit_recursion(void)
3284 {
3285 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3286 			XMIT_RECURSION_LIMIT);
3287 }
3288 
dev_xmit_recursion_inc(void)3289 static inline void dev_xmit_recursion_inc(void)
3290 {
3291 	__this_cpu_inc(softnet_data.xmit.recursion);
3292 }
3293 
dev_xmit_recursion_dec(void)3294 static inline void dev_xmit_recursion_dec(void)
3295 {
3296 	__this_cpu_dec(softnet_data.xmit.recursion);
3297 }
3298 
3299 void __netif_schedule(struct Qdisc *q);
3300 void netif_schedule_queue(struct netdev_queue *txq);
3301 
netif_tx_schedule_all(struct net_device * dev)3302 static inline void netif_tx_schedule_all(struct net_device *dev)
3303 {
3304 	unsigned int i;
3305 
3306 	for (i = 0; i < dev->num_tx_queues; i++)
3307 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3308 }
3309 
netif_tx_start_queue(struct netdev_queue * dev_queue)3310 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3311 {
3312 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3313 }
3314 
3315 /**
3316  *	netif_start_queue - allow transmit
3317  *	@dev: network device
3318  *
3319  *	Allow upper layers to call the device hard_start_xmit routine.
3320  */
netif_start_queue(struct net_device * dev)3321 static inline void netif_start_queue(struct net_device *dev)
3322 {
3323 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3324 }
3325 
netif_tx_start_all_queues(struct net_device * dev)3326 static inline void netif_tx_start_all_queues(struct net_device *dev)
3327 {
3328 	unsigned int i;
3329 
3330 	for (i = 0; i < dev->num_tx_queues; i++) {
3331 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3332 		netif_tx_start_queue(txq);
3333 	}
3334 }
3335 
3336 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3337 
3338 /**
3339  *	netif_wake_queue - restart transmit
3340  *	@dev: network device
3341  *
3342  *	Allow upper layers to call the device hard_start_xmit routine.
3343  *	Used for flow control when transmit resources are available.
3344  */
netif_wake_queue(struct net_device * dev)3345 static inline void netif_wake_queue(struct net_device *dev)
3346 {
3347 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3348 }
3349 
netif_tx_wake_all_queues(struct net_device * dev)3350 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3351 {
3352 	unsigned int i;
3353 
3354 	for (i = 0; i < dev->num_tx_queues; i++) {
3355 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3356 		netif_tx_wake_queue(txq);
3357 	}
3358 }
3359 
netif_tx_stop_queue(struct netdev_queue * dev_queue)3360 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3361 {
3362 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3363 }
3364 
3365 /**
3366  *	netif_stop_queue - stop transmitted packets
3367  *	@dev: network device
3368  *
3369  *	Stop upper layers calling the device hard_start_xmit routine.
3370  *	Used for flow control when transmit resources are unavailable.
3371  */
netif_stop_queue(struct net_device * dev)3372 static inline void netif_stop_queue(struct net_device *dev)
3373 {
3374 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3375 }
3376 
3377 void netif_tx_stop_all_queues(struct net_device *dev);
3378 
netif_tx_queue_stopped(const struct netdev_queue * dev_queue)3379 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3380 {
3381 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3382 }
3383 
3384 /**
3385  *	netif_queue_stopped - test if transmit queue is flowblocked
3386  *	@dev: network device
3387  *
3388  *	Test if transmit queue on device is currently unable to send.
3389  */
netif_queue_stopped(const struct net_device * dev)3390 static inline bool netif_queue_stopped(const struct net_device *dev)
3391 {
3392 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3393 }
3394 
netif_xmit_stopped(const struct netdev_queue * dev_queue)3395 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3396 {
3397 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3398 }
3399 
3400 static inline bool
netif_xmit_frozen_or_stopped(const struct netdev_queue * dev_queue)3401 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3402 {
3403 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3404 }
3405 
3406 static inline bool
netif_xmit_frozen_or_drv_stopped(const struct netdev_queue * dev_queue)3407 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3408 {
3409 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3410 }
3411 
3412 /**
3413  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3414  *	@dev_queue: pointer to transmit queue
3415  *
3416  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3417  * to give appropriate hint to the CPU.
3418  */
netdev_txq_bql_enqueue_prefetchw(struct netdev_queue * dev_queue)3419 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3420 {
3421 #ifdef CONFIG_BQL
3422 	prefetchw(&dev_queue->dql.num_queued);
3423 #endif
3424 }
3425 
3426 /**
3427  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3428  *	@dev_queue: pointer to transmit queue
3429  *
3430  * BQL enabled drivers might use this helper in their TX completion path,
3431  * to give appropriate hint to the CPU.
3432  */
netdev_txq_bql_complete_prefetchw(struct netdev_queue * dev_queue)3433 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3434 {
3435 #ifdef CONFIG_BQL
3436 	prefetchw(&dev_queue->dql.limit);
3437 #endif
3438 }
3439 
netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes)3440 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3441 					unsigned int bytes)
3442 {
3443 #ifdef CONFIG_BQL
3444 	dql_queued(&dev_queue->dql, bytes);
3445 
3446 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3447 		return;
3448 
3449 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3450 
3451 	/*
3452 	 * The XOFF flag must be set before checking the dql_avail below,
3453 	 * because in netdev_tx_completed_queue we update the dql_completed
3454 	 * before checking the XOFF flag.
3455 	 */
3456 	smp_mb();
3457 
3458 	/* check again in case another CPU has just made room avail */
3459 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3460 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3461 #endif
3462 }
3463 
3464 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3465  * that they should not test BQL status themselves.
3466  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3467  * skb of a batch.
3468  * Returns true if the doorbell must be used to kick the NIC.
3469  */
__netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes,bool xmit_more)3470 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3471 					  unsigned int bytes,
3472 					  bool xmit_more)
3473 {
3474 	if (xmit_more) {
3475 #ifdef CONFIG_BQL
3476 		dql_queued(&dev_queue->dql, bytes);
3477 #endif
3478 		return netif_tx_queue_stopped(dev_queue);
3479 	}
3480 	netdev_tx_sent_queue(dev_queue, bytes);
3481 	return true;
3482 }
3483 
3484 /**
3485  * 	netdev_sent_queue - report the number of bytes queued to hardware
3486  * 	@dev: network device
3487  * 	@bytes: number of bytes queued to the hardware device queue
3488  *
3489  * 	Report the number of bytes queued for sending/completion to the network
3490  * 	device hardware queue. @bytes should be a good approximation and should
3491  * 	exactly match netdev_completed_queue() @bytes
3492  */
netdev_sent_queue(struct net_device * dev,unsigned int bytes)3493 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3494 {
3495 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3496 }
3497 
__netdev_sent_queue(struct net_device * dev,unsigned int bytes,bool xmit_more)3498 static inline bool __netdev_sent_queue(struct net_device *dev,
3499 				       unsigned int bytes,
3500 				       bool xmit_more)
3501 {
3502 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3503 				      xmit_more);
3504 }
3505 
netdev_tx_completed_queue(struct netdev_queue * dev_queue,unsigned int pkts,unsigned int bytes)3506 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3507 					     unsigned int pkts, unsigned int bytes)
3508 {
3509 #ifdef CONFIG_BQL
3510 	if (unlikely(!bytes))
3511 		return;
3512 
3513 	dql_completed(&dev_queue->dql, bytes);
3514 
3515 	/*
3516 	 * Without the memory barrier there is a small possiblity that
3517 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3518 	 * be stopped forever
3519 	 */
3520 	smp_mb();
3521 
3522 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3523 		return;
3524 
3525 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3526 		netif_schedule_queue(dev_queue);
3527 #endif
3528 }
3529 
3530 /**
3531  * 	netdev_completed_queue - report bytes and packets completed by device
3532  * 	@dev: network device
3533  * 	@pkts: actual number of packets sent over the medium
3534  * 	@bytes: actual number of bytes sent over the medium
3535  *
3536  * 	Report the number of bytes and packets transmitted by the network device
3537  * 	hardware queue over the physical medium, @bytes must exactly match the
3538  * 	@bytes amount passed to netdev_sent_queue()
3539  */
netdev_completed_queue(struct net_device * dev,unsigned int pkts,unsigned int bytes)3540 static inline void netdev_completed_queue(struct net_device *dev,
3541 					  unsigned int pkts, unsigned int bytes)
3542 {
3543 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3544 }
3545 
netdev_tx_reset_queue(struct netdev_queue * q)3546 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3547 {
3548 #ifdef CONFIG_BQL
3549 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3550 	dql_reset(&q->dql);
3551 #endif
3552 }
3553 
3554 /**
3555  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3556  * 	@dev_queue: network device
3557  *
3558  * 	Reset the bytes and packet count of a network device and clear the
3559  * 	software flow control OFF bit for this network device
3560  */
netdev_reset_queue(struct net_device * dev_queue)3561 static inline void netdev_reset_queue(struct net_device *dev_queue)
3562 {
3563 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3564 }
3565 
3566 /**
3567  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3568  * 	@dev: network device
3569  * 	@queue_index: given tx queue index
3570  *
3571  * 	Returns 0 if given tx queue index >= number of device tx queues,
3572  * 	otherwise returns the originally passed tx queue index.
3573  */
netdev_cap_txqueue(struct net_device * dev,u16 queue_index)3574 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3575 {
3576 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3577 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3578 				     dev->name, queue_index,
3579 				     dev->real_num_tx_queues);
3580 		return 0;
3581 	}
3582 
3583 	return queue_index;
3584 }
3585 
3586 /**
3587  *	netif_running - test if up
3588  *	@dev: network device
3589  *
3590  *	Test if the device has been brought up.
3591  */
netif_running(const struct net_device * dev)3592 static inline bool netif_running(const struct net_device *dev)
3593 {
3594 	return test_bit(__LINK_STATE_START, &dev->state);
3595 }
3596 
3597 /*
3598  * Routines to manage the subqueues on a device.  We only need start,
3599  * stop, and a check if it's stopped.  All other device management is
3600  * done at the overall netdevice level.
3601  * Also test the device if we're multiqueue.
3602  */
3603 
3604 /**
3605  *	netif_start_subqueue - allow sending packets on subqueue
3606  *	@dev: network device
3607  *	@queue_index: sub queue index
3608  *
3609  * Start individual transmit queue of a device with multiple transmit queues.
3610  */
netif_start_subqueue(struct net_device * dev,u16 queue_index)3611 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3612 {
3613 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3614 
3615 	netif_tx_start_queue(txq);
3616 }
3617 
3618 /**
3619  *	netif_stop_subqueue - stop sending packets on subqueue
3620  *	@dev: network device
3621  *	@queue_index: sub queue index
3622  *
3623  * Stop individual transmit queue of a device with multiple transmit queues.
3624  */
netif_stop_subqueue(struct net_device * dev,u16 queue_index)3625 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3626 {
3627 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3628 	netif_tx_stop_queue(txq);
3629 }
3630 
3631 /**
3632  *	netif_subqueue_stopped - test status of subqueue
3633  *	@dev: network device
3634  *	@queue_index: sub queue index
3635  *
3636  * Check individual transmit queue of a device with multiple transmit queues.
3637  */
__netif_subqueue_stopped(const struct net_device * dev,u16 queue_index)3638 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3639 					    u16 queue_index)
3640 {
3641 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3642 
3643 	return netif_tx_queue_stopped(txq);
3644 }
3645 
netif_subqueue_stopped(const struct net_device * dev,struct sk_buff * skb)3646 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3647 					  struct sk_buff *skb)
3648 {
3649 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3650 }
3651 
3652 /**
3653  *	netif_wake_subqueue - allow sending packets on subqueue
3654  *	@dev: network device
3655  *	@queue_index: sub queue index
3656  *
3657  * Resume individual transmit queue of a device with multiple transmit queues.
3658  */
netif_wake_subqueue(struct net_device * dev,u16 queue_index)3659 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3660 {
3661 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3662 
3663 	netif_tx_wake_queue(txq);
3664 }
3665 
3666 #ifdef CONFIG_XPS
3667 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3668 			u16 index);
3669 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3670 			  u16 index, bool is_rxqs_map);
3671 
3672 /**
3673  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3674  *	@j: CPU/Rx queue index
3675  *	@mask: bitmask of all cpus/rx queues
3676  *	@nr_bits: number of bits in the bitmask
3677  *
3678  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3679  */
netif_attr_test_mask(unsigned long j,const unsigned long * mask,unsigned int nr_bits)3680 static inline bool netif_attr_test_mask(unsigned long j,
3681 					const unsigned long *mask,
3682 					unsigned int nr_bits)
3683 {
3684 	cpu_max_bits_warn(j, nr_bits);
3685 	return test_bit(j, mask);
3686 }
3687 
3688 /**
3689  *	netif_attr_test_online - Test for online CPU/Rx queue
3690  *	@j: CPU/Rx queue index
3691  *	@online_mask: bitmask for CPUs/Rx queues that are online
3692  *	@nr_bits: number of bits in the bitmask
3693  *
3694  * Returns true if a CPU/Rx queue is online.
3695  */
netif_attr_test_online(unsigned long j,const unsigned long * online_mask,unsigned int nr_bits)3696 static inline bool netif_attr_test_online(unsigned long j,
3697 					  const unsigned long *online_mask,
3698 					  unsigned int nr_bits)
3699 {
3700 	cpu_max_bits_warn(j, nr_bits);
3701 
3702 	if (online_mask)
3703 		return test_bit(j, online_mask);
3704 
3705 	return (j < nr_bits);
3706 }
3707 
3708 /**
3709  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3710  *	@n: CPU/Rx queue index
3711  *	@srcp: the cpumask/Rx queue mask pointer
3712  *	@nr_bits: number of bits in the bitmask
3713  *
3714  * Returns >= nr_bits if no further CPUs/Rx queues set.
3715  */
netif_attrmask_next(int n,const unsigned long * srcp,unsigned int nr_bits)3716 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3717 					       unsigned int nr_bits)
3718 {
3719 	/* -1 is a legal arg here. */
3720 	if (n != -1)
3721 		cpu_max_bits_warn(n, nr_bits);
3722 
3723 	if (srcp)
3724 		return find_next_bit(srcp, nr_bits, n + 1);
3725 
3726 	return n + 1;
3727 }
3728 
3729 /**
3730  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3731  *	@n: CPU/Rx queue index
3732  *	@src1p: the first CPUs/Rx queues mask pointer
3733  *	@src2p: the second CPUs/Rx queues mask pointer
3734  *	@nr_bits: number of bits in the bitmask
3735  *
3736  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3737  */
netif_attrmask_next_and(int n,const unsigned long * src1p,const unsigned long * src2p,unsigned int nr_bits)3738 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3739 					  const unsigned long *src2p,
3740 					  unsigned int nr_bits)
3741 {
3742 	/* -1 is a legal arg here. */
3743 	if (n != -1)
3744 		cpu_max_bits_warn(n, nr_bits);
3745 
3746 	if (src1p && src2p)
3747 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3748 	else if (src1p)
3749 		return find_next_bit(src1p, nr_bits, n + 1);
3750 	else if (src2p)
3751 		return find_next_bit(src2p, nr_bits, n + 1);
3752 
3753 	return n + 1;
3754 }
3755 #else
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)3756 static inline int netif_set_xps_queue(struct net_device *dev,
3757 				      const struct cpumask *mask,
3758 				      u16 index)
3759 {
3760 	return 0;
3761 }
3762 
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,bool is_rxqs_map)3763 static inline int __netif_set_xps_queue(struct net_device *dev,
3764 					const unsigned long *mask,
3765 					u16 index, bool is_rxqs_map)
3766 {
3767 	return 0;
3768 }
3769 #endif
3770 
3771 /**
3772  *	netif_is_multiqueue - test if device has multiple transmit queues
3773  *	@dev: network device
3774  *
3775  * Check if device has multiple transmit queues
3776  */
netif_is_multiqueue(const struct net_device * dev)3777 static inline bool netif_is_multiqueue(const struct net_device *dev)
3778 {
3779 	return dev->num_tx_queues > 1;
3780 }
3781 
3782 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3783 
3784 #ifdef CONFIG_SYSFS
3785 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3786 #else
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxqs)3787 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3788 						unsigned int rxqs)
3789 {
3790 	dev->real_num_rx_queues = rxqs;
3791 	return 0;
3792 }
3793 #endif
3794 
3795 static inline struct netdev_rx_queue *
__netif_get_rx_queue(struct net_device * dev,unsigned int rxq)3796 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3797 {
3798 	return dev->_rx + rxq;
3799 }
3800 
3801 #ifdef CONFIG_SYSFS
get_netdev_rx_queue_index(struct netdev_rx_queue * queue)3802 static inline unsigned int get_netdev_rx_queue_index(
3803 		struct netdev_rx_queue *queue)
3804 {
3805 	struct net_device *dev = queue->dev;
3806 	int index = queue - dev->_rx;
3807 
3808 	BUG_ON(index >= dev->num_rx_queues);
3809 	return index;
3810 }
3811 #endif
3812 
3813 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3814 int netif_get_num_default_rss_queues(void);
3815 
3816 enum skb_free_reason {
3817 	SKB_REASON_CONSUMED,
3818 	SKB_REASON_DROPPED,
3819 };
3820 
3821 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3822 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3823 
3824 /*
3825  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3826  * interrupt context or with hardware interrupts being disabled.
3827  * (in_irq() || irqs_disabled())
3828  *
3829  * We provide four helpers that can be used in following contexts :
3830  *
3831  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3832  *  replacing kfree_skb(skb)
3833  *
3834  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3835  *  Typically used in place of consume_skb(skb) in TX completion path
3836  *
3837  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3838  *  replacing kfree_skb(skb)
3839  *
3840  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3841  *  and consumed a packet. Used in place of consume_skb(skb)
3842  */
dev_kfree_skb_irq(struct sk_buff * skb)3843 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3844 {
3845 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3846 }
3847 
dev_consume_skb_irq(struct sk_buff * skb)3848 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3849 {
3850 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3851 }
3852 
dev_kfree_skb_any(struct sk_buff * skb)3853 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3854 {
3855 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3856 }
3857 
dev_consume_skb_any(struct sk_buff * skb)3858 static inline void dev_consume_skb_any(struct sk_buff *skb)
3859 {
3860 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3861 }
3862 
3863 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3864 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3865 int netif_rx(struct sk_buff *skb);
3866 int netif_rx_ni(struct sk_buff *skb);
3867 int netif_rx_any_context(struct sk_buff *skb);
3868 int netif_receive_skb(struct sk_buff *skb);
3869 int netif_receive_skb_core(struct sk_buff *skb);
3870 void netif_receive_skb_list(struct list_head *head);
3871 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3872 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3873 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3874 gro_result_t napi_gro_frags(struct napi_struct *napi);
3875 struct packet_offload *gro_find_receive_by_type(__be16 type);
3876 struct packet_offload *gro_find_complete_by_type(__be16 type);
3877 
napi_free_frags(struct napi_struct * napi)3878 static inline void napi_free_frags(struct napi_struct *napi)
3879 {
3880 	kfree_skb(napi->skb);
3881 	napi->skb = NULL;
3882 }
3883 
3884 bool netdev_is_rx_handler_busy(struct net_device *dev);
3885 int netdev_rx_handler_register(struct net_device *dev,
3886 			       rx_handler_func_t *rx_handler,
3887 			       void *rx_handler_data);
3888 void netdev_rx_handler_unregister(struct net_device *dev);
3889 
3890 bool dev_valid_name(const char *name);
is_socket_ioctl_cmd(unsigned int cmd)3891 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3892 {
3893 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3894 }
3895 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3896 		bool *need_copyout);
3897 int dev_ifconf(struct net *net, struct ifconf *, int);
3898 int dev_ethtool(struct net *net, struct ifreq *);
3899 unsigned int dev_get_flags(const struct net_device *);
3900 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3901 		       struct netlink_ext_ack *extack);
3902 int dev_change_flags(struct net_device *dev, unsigned int flags,
3903 		     struct netlink_ext_ack *extack);
3904 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3905 			unsigned int gchanges);
3906 int dev_change_name(struct net_device *, const char *);
3907 int dev_set_alias(struct net_device *, const char *, size_t);
3908 int dev_get_alias(const struct net_device *, char *, size_t);
3909 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3910 int __dev_set_mtu(struct net_device *, int);
3911 int dev_validate_mtu(struct net_device *dev, int mtu,
3912 		     struct netlink_ext_ack *extack);
3913 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3914 		    struct netlink_ext_ack *extack);
3915 int dev_set_mtu(struct net_device *, int);
3916 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3917 void dev_set_group(struct net_device *, int);
3918 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3919 			      struct netlink_ext_ack *extack);
3920 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3921 			struct netlink_ext_ack *extack);
3922 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3923 			     struct netlink_ext_ack *extack);
3924 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3925 int dev_change_carrier(struct net_device *, bool new_carrier);
3926 int dev_get_phys_port_id(struct net_device *dev,
3927 			 struct netdev_phys_item_id *ppid);
3928 int dev_get_phys_port_name(struct net_device *dev,
3929 			   char *name, size_t len);
3930 int dev_get_port_parent_id(struct net_device *dev,
3931 			   struct netdev_phys_item_id *ppid, bool recurse);
3932 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3933 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3934 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3935 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3936 				  u32 value);
3937 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3938 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3939 				    struct netdev_queue *txq, int *ret);
3940 
3941 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3942 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3943 		      int fd, int expected_fd, u32 flags);
3944 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3945 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3946 
3947 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3948 
3949 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3950 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3951 bool is_skb_forwardable(const struct net_device *dev,
3952 			const struct sk_buff *skb);
3953 
____dev_forward_skb(struct net_device * dev,struct sk_buff * skb)3954 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3955 					       struct sk_buff *skb)
3956 {
3957 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3958 	    unlikely(!is_skb_forwardable(dev, skb))) {
3959 		atomic_long_inc(&dev->rx_dropped);
3960 		kfree_skb(skb);
3961 		return NET_RX_DROP;
3962 	}
3963 
3964 	skb_scrub_packet(skb, true);
3965 	skb->priority = 0;
3966 	return 0;
3967 }
3968 
3969 bool dev_nit_active(struct net_device *dev);
3970 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3971 
3972 extern int		netdev_budget;
3973 extern unsigned int	netdev_budget_usecs;
3974 
3975 /* Called by rtnetlink.c:rtnl_unlock() */
3976 void netdev_run_todo(void);
3977 
3978 /**
3979  *	dev_put - release reference to device
3980  *	@dev: network device
3981  *
3982  * Release reference to device to allow it to be freed.
3983  */
dev_put(struct net_device * dev)3984 static inline void dev_put(struct net_device *dev)
3985 {
3986 	if (dev)
3987 		this_cpu_dec(*dev->pcpu_refcnt);
3988 }
3989 
3990 /**
3991  *	dev_hold - get reference to device
3992  *	@dev: network device
3993  *
3994  * Hold reference to device to keep it from being freed.
3995  */
dev_hold(struct net_device * dev)3996 static inline void dev_hold(struct net_device *dev)
3997 {
3998 	if (dev)
3999 		this_cpu_inc(*dev->pcpu_refcnt);
4000 }
4001 
4002 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4003  * and _off may be called from IRQ context, but it is caller
4004  * who is responsible for serialization of these calls.
4005  *
4006  * The name carrier is inappropriate, these functions should really be
4007  * called netif_lowerlayer_*() because they represent the state of any
4008  * kind of lower layer not just hardware media.
4009  */
4010 
4011 void linkwatch_init_dev(struct net_device *dev);
4012 void linkwatch_fire_event(struct net_device *dev);
4013 void linkwatch_forget_dev(struct net_device *dev);
4014 
4015 /**
4016  *	netif_carrier_ok - test if carrier present
4017  *	@dev: network device
4018  *
4019  * Check if carrier is present on device
4020  */
netif_carrier_ok(const struct net_device * dev)4021 static inline bool netif_carrier_ok(const struct net_device *dev)
4022 {
4023 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4024 }
4025 
4026 unsigned long dev_trans_start(struct net_device *dev);
4027 
4028 void __netdev_watchdog_up(struct net_device *dev);
4029 
4030 void netif_carrier_on(struct net_device *dev);
4031 
4032 void netif_carrier_off(struct net_device *dev);
4033 
4034 /**
4035  *	netif_dormant_on - mark device as dormant.
4036  *	@dev: network device
4037  *
4038  * Mark device as dormant (as per RFC2863).
4039  *
4040  * The dormant state indicates that the relevant interface is not
4041  * actually in a condition to pass packets (i.e., it is not 'up') but is
4042  * in a "pending" state, waiting for some external event.  For "on-
4043  * demand" interfaces, this new state identifies the situation where the
4044  * interface is waiting for events to place it in the up state.
4045  */
netif_dormant_on(struct net_device * dev)4046 static inline void netif_dormant_on(struct net_device *dev)
4047 {
4048 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4049 		linkwatch_fire_event(dev);
4050 }
4051 
4052 /**
4053  *	netif_dormant_off - set device as not dormant.
4054  *	@dev: network device
4055  *
4056  * Device is not in dormant state.
4057  */
netif_dormant_off(struct net_device * dev)4058 static inline void netif_dormant_off(struct net_device *dev)
4059 {
4060 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4061 		linkwatch_fire_event(dev);
4062 }
4063 
4064 /**
4065  *	netif_dormant - test if device is dormant
4066  *	@dev: network device
4067  *
4068  * Check if device is dormant.
4069  */
netif_dormant(const struct net_device * dev)4070 static inline bool netif_dormant(const struct net_device *dev)
4071 {
4072 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4073 }
4074 
4075 
4076 /**
4077  *	netif_testing_on - mark device as under test.
4078  *	@dev: network device
4079  *
4080  * Mark device as under test (as per RFC2863).
4081  *
4082  * The testing state indicates that some test(s) must be performed on
4083  * the interface. After completion, of the test, the interface state
4084  * will change to up, dormant, or down, as appropriate.
4085  */
netif_testing_on(struct net_device * dev)4086 static inline void netif_testing_on(struct net_device *dev)
4087 {
4088 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4089 		linkwatch_fire_event(dev);
4090 }
4091 
4092 /**
4093  *	netif_testing_off - set device as not under test.
4094  *	@dev: network device
4095  *
4096  * Device is not in testing state.
4097  */
netif_testing_off(struct net_device * dev)4098 static inline void netif_testing_off(struct net_device *dev)
4099 {
4100 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4101 		linkwatch_fire_event(dev);
4102 }
4103 
4104 /**
4105  *	netif_testing - test if device is under test
4106  *	@dev: network device
4107  *
4108  * Check if device is under test
4109  */
netif_testing(const struct net_device * dev)4110 static inline bool netif_testing(const struct net_device *dev)
4111 {
4112 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4113 }
4114 
4115 
4116 /**
4117  *	netif_oper_up - test if device is operational
4118  *	@dev: network device
4119  *
4120  * Check if carrier is operational
4121  */
netif_oper_up(const struct net_device * dev)4122 static inline bool netif_oper_up(const struct net_device *dev)
4123 {
4124 	return (dev->operstate == IF_OPER_UP ||
4125 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4126 }
4127 
4128 /**
4129  *	netif_device_present - is device available or removed
4130  *	@dev: network device
4131  *
4132  * Check if device has not been removed from system.
4133  */
netif_device_present(struct net_device * dev)4134 static inline bool netif_device_present(struct net_device *dev)
4135 {
4136 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4137 }
4138 
4139 void netif_device_detach(struct net_device *dev);
4140 
4141 void netif_device_attach(struct net_device *dev);
4142 
4143 /*
4144  * Network interface message level settings
4145  */
4146 
4147 enum {
4148 	NETIF_MSG_DRV_BIT,
4149 	NETIF_MSG_PROBE_BIT,
4150 	NETIF_MSG_LINK_BIT,
4151 	NETIF_MSG_TIMER_BIT,
4152 	NETIF_MSG_IFDOWN_BIT,
4153 	NETIF_MSG_IFUP_BIT,
4154 	NETIF_MSG_RX_ERR_BIT,
4155 	NETIF_MSG_TX_ERR_BIT,
4156 	NETIF_MSG_TX_QUEUED_BIT,
4157 	NETIF_MSG_INTR_BIT,
4158 	NETIF_MSG_TX_DONE_BIT,
4159 	NETIF_MSG_RX_STATUS_BIT,
4160 	NETIF_MSG_PKTDATA_BIT,
4161 	NETIF_MSG_HW_BIT,
4162 	NETIF_MSG_WOL_BIT,
4163 
4164 	/* When you add a new bit above, update netif_msg_class_names array
4165 	 * in net/ethtool/common.c
4166 	 */
4167 	NETIF_MSG_CLASS_COUNT,
4168 };
4169 /* Both ethtool_ops interface and internal driver implementation use u32 */
4170 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4171 
4172 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4173 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4174 
4175 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4176 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4177 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4178 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4179 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4180 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4181 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4182 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4183 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4184 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4185 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4186 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4187 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4188 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4189 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4190 
4191 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4192 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4193 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4194 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4195 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4196 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4197 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4198 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4199 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4200 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4201 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4202 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4203 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4204 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4205 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4206 
netif_msg_init(int debug_value,int default_msg_enable_bits)4207 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4208 {
4209 	/* use default */
4210 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4211 		return default_msg_enable_bits;
4212 	if (debug_value == 0)	/* no output */
4213 		return 0;
4214 	/* set low N bits */
4215 	return (1U << debug_value) - 1;
4216 }
4217 
__netif_tx_lock(struct netdev_queue * txq,int cpu)4218 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4219 {
4220 	spin_lock(&txq->_xmit_lock);
4221 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4222 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4223 }
4224 
__netif_tx_acquire(struct netdev_queue * txq)4225 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4226 {
4227 	__acquire(&txq->_xmit_lock);
4228 	return true;
4229 }
4230 
__netif_tx_release(struct netdev_queue * txq)4231 static inline void __netif_tx_release(struct netdev_queue *txq)
4232 {
4233 	__release(&txq->_xmit_lock);
4234 }
4235 
__netif_tx_lock_bh(struct netdev_queue * txq)4236 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4237 {
4238 	spin_lock_bh(&txq->_xmit_lock);
4239 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4240 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4241 }
4242 
__netif_tx_trylock(struct netdev_queue * txq)4243 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4244 {
4245 	bool ok = spin_trylock(&txq->_xmit_lock);
4246 
4247 	if (likely(ok)) {
4248 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4249 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4250 	}
4251 	return ok;
4252 }
4253 
__netif_tx_unlock(struct netdev_queue * txq)4254 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4255 {
4256 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4257 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4258 	spin_unlock(&txq->_xmit_lock);
4259 }
4260 
__netif_tx_unlock_bh(struct netdev_queue * txq)4261 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4262 {
4263 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4264 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4265 	spin_unlock_bh(&txq->_xmit_lock);
4266 }
4267 
txq_trans_update(struct netdev_queue * txq)4268 static inline void txq_trans_update(struct netdev_queue *txq)
4269 {
4270 	if (txq->xmit_lock_owner != -1)
4271 		txq->trans_start = jiffies;
4272 }
4273 
4274 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
netif_trans_update(struct net_device * dev)4275 static inline void netif_trans_update(struct net_device *dev)
4276 {
4277 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4278 
4279 	if (txq->trans_start != jiffies)
4280 		txq->trans_start = jiffies;
4281 }
4282 
4283 /**
4284  *	netif_tx_lock - grab network device transmit lock
4285  *	@dev: network device
4286  *
4287  * Get network device transmit lock
4288  */
netif_tx_lock(struct net_device * dev)4289 static inline void netif_tx_lock(struct net_device *dev)
4290 {
4291 	unsigned int i;
4292 	int cpu;
4293 
4294 	spin_lock(&dev->tx_global_lock);
4295 	cpu = smp_processor_id();
4296 	for (i = 0; i < dev->num_tx_queues; i++) {
4297 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4298 
4299 		/* We are the only thread of execution doing a
4300 		 * freeze, but we have to grab the _xmit_lock in
4301 		 * order to synchronize with threads which are in
4302 		 * the ->hard_start_xmit() handler and already
4303 		 * checked the frozen bit.
4304 		 */
4305 		__netif_tx_lock(txq, cpu);
4306 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4307 		__netif_tx_unlock(txq);
4308 	}
4309 }
4310 
netif_tx_lock_bh(struct net_device * dev)4311 static inline void netif_tx_lock_bh(struct net_device *dev)
4312 {
4313 	local_bh_disable();
4314 	netif_tx_lock(dev);
4315 }
4316 
netif_tx_unlock(struct net_device * dev)4317 static inline void netif_tx_unlock(struct net_device *dev)
4318 {
4319 	unsigned int i;
4320 
4321 	for (i = 0; i < dev->num_tx_queues; i++) {
4322 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4323 
4324 		/* No need to grab the _xmit_lock here.  If the
4325 		 * queue is not stopped for another reason, we
4326 		 * force a schedule.
4327 		 */
4328 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4329 		netif_schedule_queue(txq);
4330 	}
4331 	spin_unlock(&dev->tx_global_lock);
4332 }
4333 
netif_tx_unlock_bh(struct net_device * dev)4334 static inline void netif_tx_unlock_bh(struct net_device *dev)
4335 {
4336 	netif_tx_unlock(dev);
4337 	local_bh_enable();
4338 }
4339 
4340 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4341 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4342 		__netif_tx_lock(txq, cpu);		\
4343 	} else {					\
4344 		__netif_tx_acquire(txq);		\
4345 	}						\
4346 }
4347 
4348 #define HARD_TX_TRYLOCK(dev, txq)			\
4349 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4350 		__netif_tx_trylock(txq) :		\
4351 		__netif_tx_acquire(txq))
4352 
4353 #define HARD_TX_UNLOCK(dev, txq) {			\
4354 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4355 		__netif_tx_unlock(txq);			\
4356 	} else {					\
4357 		__netif_tx_release(txq);		\
4358 	}						\
4359 }
4360 
netif_tx_disable(struct net_device * dev)4361 static inline void netif_tx_disable(struct net_device *dev)
4362 {
4363 	unsigned int i;
4364 	int cpu;
4365 
4366 	local_bh_disable();
4367 	cpu = smp_processor_id();
4368 	spin_lock(&dev->tx_global_lock);
4369 	for (i = 0; i < dev->num_tx_queues; i++) {
4370 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4371 
4372 		__netif_tx_lock(txq, cpu);
4373 		netif_tx_stop_queue(txq);
4374 		__netif_tx_unlock(txq);
4375 	}
4376 	spin_unlock(&dev->tx_global_lock);
4377 	local_bh_enable();
4378 }
4379 
netif_addr_lock(struct net_device * dev)4380 static inline void netif_addr_lock(struct net_device *dev)
4381 {
4382 	unsigned char nest_level = 0;
4383 
4384 #ifdef CONFIG_LOCKDEP
4385 	nest_level = dev->nested_level;
4386 #endif
4387 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4388 }
4389 
netif_addr_lock_bh(struct net_device * dev)4390 static inline void netif_addr_lock_bh(struct net_device *dev)
4391 {
4392 	unsigned char nest_level = 0;
4393 
4394 #ifdef CONFIG_LOCKDEP
4395 	nest_level = dev->nested_level;
4396 #endif
4397 	local_bh_disable();
4398 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4399 }
4400 
netif_addr_unlock(struct net_device * dev)4401 static inline void netif_addr_unlock(struct net_device *dev)
4402 {
4403 	spin_unlock(&dev->addr_list_lock);
4404 }
4405 
netif_addr_unlock_bh(struct net_device * dev)4406 static inline void netif_addr_unlock_bh(struct net_device *dev)
4407 {
4408 	spin_unlock_bh(&dev->addr_list_lock);
4409 }
4410 
4411 /*
4412  * dev_addrs walker. Should be used only for read access. Call with
4413  * rcu_read_lock held.
4414  */
4415 #define for_each_dev_addr(dev, ha) \
4416 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4417 
4418 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4419 
4420 void ether_setup(struct net_device *dev);
4421 
4422 /* Support for loadable net-drivers */
4423 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4424 				    unsigned char name_assign_type,
4425 				    void (*setup)(struct net_device *),
4426 				    unsigned int txqs, unsigned int rxqs);
4427 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4428 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4429 
4430 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4431 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4432 			 count)
4433 
4434 int register_netdev(struct net_device *dev);
4435 void unregister_netdev(struct net_device *dev);
4436 
4437 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4438 
4439 /* General hardware address lists handling functions */
4440 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4441 		   struct netdev_hw_addr_list *from_list, int addr_len);
4442 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4443 		      struct netdev_hw_addr_list *from_list, int addr_len);
4444 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4445 		       struct net_device *dev,
4446 		       int (*sync)(struct net_device *, const unsigned char *),
4447 		       int (*unsync)(struct net_device *,
4448 				     const unsigned char *));
4449 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4450 			   struct net_device *dev,
4451 			   int (*sync)(struct net_device *,
4452 				       const unsigned char *, int),
4453 			   int (*unsync)(struct net_device *,
4454 					 const unsigned char *, int));
4455 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4456 			      struct net_device *dev,
4457 			      int (*unsync)(struct net_device *,
4458 					    const unsigned char *, int));
4459 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4460 			  struct net_device *dev,
4461 			  int (*unsync)(struct net_device *,
4462 					const unsigned char *));
4463 void __hw_addr_init(struct netdev_hw_addr_list *list);
4464 
4465 /* Functions used for device addresses handling */
4466 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4467 		 unsigned char addr_type);
4468 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4469 		 unsigned char addr_type);
4470 void dev_addr_flush(struct net_device *dev);
4471 int dev_addr_init(struct net_device *dev);
4472 
4473 /* Functions used for unicast addresses handling */
4474 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4475 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4476 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4477 int dev_uc_sync(struct net_device *to, struct net_device *from);
4478 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4479 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4480 void dev_uc_flush(struct net_device *dev);
4481 void dev_uc_init(struct net_device *dev);
4482 
4483 /**
4484  *  __dev_uc_sync - Synchonize device's unicast list
4485  *  @dev:  device to sync
4486  *  @sync: function to call if address should be added
4487  *  @unsync: function to call if address should be removed
4488  *
4489  *  Add newly added addresses to the interface, and release
4490  *  addresses that have been deleted.
4491  */
__dev_uc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4492 static inline int __dev_uc_sync(struct net_device *dev,
4493 				int (*sync)(struct net_device *,
4494 					    const unsigned char *),
4495 				int (*unsync)(struct net_device *,
4496 					      const unsigned char *))
4497 {
4498 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4499 }
4500 
4501 /**
4502  *  __dev_uc_unsync - Remove synchronized addresses from device
4503  *  @dev:  device to sync
4504  *  @unsync: function to call if address should be removed
4505  *
4506  *  Remove all addresses that were added to the device by dev_uc_sync().
4507  */
__dev_uc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4508 static inline void __dev_uc_unsync(struct net_device *dev,
4509 				   int (*unsync)(struct net_device *,
4510 						 const unsigned char *))
4511 {
4512 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4513 }
4514 
4515 /* Functions used for multicast addresses handling */
4516 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4517 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4518 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4519 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4520 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4521 int dev_mc_sync(struct net_device *to, struct net_device *from);
4522 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4523 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4524 void dev_mc_flush(struct net_device *dev);
4525 void dev_mc_init(struct net_device *dev);
4526 
4527 /**
4528  *  __dev_mc_sync - Synchonize device's multicast list
4529  *  @dev:  device to sync
4530  *  @sync: function to call if address should be added
4531  *  @unsync: function to call if address should be removed
4532  *
4533  *  Add newly added addresses to the interface, and release
4534  *  addresses that have been deleted.
4535  */
__dev_mc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4536 static inline int __dev_mc_sync(struct net_device *dev,
4537 				int (*sync)(struct net_device *,
4538 					    const unsigned char *),
4539 				int (*unsync)(struct net_device *,
4540 					      const unsigned char *))
4541 {
4542 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4543 }
4544 
4545 /**
4546  *  __dev_mc_unsync - Remove synchronized addresses from device
4547  *  @dev:  device to sync
4548  *  @unsync: function to call if address should be removed
4549  *
4550  *  Remove all addresses that were added to the device by dev_mc_sync().
4551  */
__dev_mc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4552 static inline void __dev_mc_unsync(struct net_device *dev,
4553 				   int (*unsync)(struct net_device *,
4554 						 const unsigned char *))
4555 {
4556 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4557 }
4558 
4559 /* Functions used for secondary unicast and multicast support */
4560 void dev_set_rx_mode(struct net_device *dev);
4561 void __dev_set_rx_mode(struct net_device *dev);
4562 int dev_set_promiscuity(struct net_device *dev, int inc);
4563 int dev_set_allmulti(struct net_device *dev, int inc);
4564 void netdev_state_change(struct net_device *dev);
4565 void netdev_notify_peers(struct net_device *dev);
4566 void netdev_features_change(struct net_device *dev);
4567 /* Load a device via the kmod */
4568 void dev_load(struct net *net, const char *name);
4569 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4570 					struct rtnl_link_stats64 *storage);
4571 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4572 			     const struct net_device_stats *netdev_stats);
4573 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4574 			   const struct pcpu_sw_netstats __percpu *netstats);
4575 
4576 extern int		netdev_max_backlog;
4577 extern int		netdev_tstamp_prequeue;
4578 extern int		weight_p;
4579 extern int		dev_weight_rx_bias;
4580 extern int		dev_weight_tx_bias;
4581 extern int		dev_rx_weight;
4582 extern int		dev_tx_weight;
4583 extern int		gro_normal_batch;
4584 
4585 enum {
4586 	NESTED_SYNC_IMM_BIT,
4587 	NESTED_SYNC_TODO_BIT,
4588 };
4589 
4590 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4591 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4592 
4593 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4594 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4595 
4596 struct netdev_nested_priv {
4597 	unsigned char flags;
4598 	void *data;
4599 };
4600 
4601 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4602 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4603 						     struct list_head **iter);
4604 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4605 						     struct list_head **iter);
4606 
4607 #ifdef CONFIG_LOCKDEP
4608 static LIST_HEAD(net_unlink_list);
4609 
net_unlink_todo(struct net_device * dev)4610 static inline void net_unlink_todo(struct net_device *dev)
4611 {
4612 	if (list_empty(&dev->unlink_list))
4613 		list_add_tail(&dev->unlink_list, &net_unlink_list);
4614 }
4615 #endif
4616 
4617 /* iterate through upper list, must be called under RCU read lock */
4618 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4619 	for (iter = &(dev)->adj_list.upper, \
4620 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4621 	     updev; \
4622 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4623 
4624 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4625 				  int (*fn)(struct net_device *upper_dev,
4626 					    struct netdev_nested_priv *priv),
4627 				  struct netdev_nested_priv *priv);
4628 
4629 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4630 				  struct net_device *upper_dev);
4631 
4632 bool netdev_has_any_upper_dev(struct net_device *dev);
4633 
4634 void *netdev_lower_get_next_private(struct net_device *dev,
4635 				    struct list_head **iter);
4636 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4637 					struct list_head **iter);
4638 
4639 #define netdev_for_each_lower_private(dev, priv, iter) \
4640 	for (iter = (dev)->adj_list.lower.next, \
4641 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4642 	     priv; \
4643 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4644 
4645 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4646 	for (iter = &(dev)->adj_list.lower, \
4647 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4648 	     priv; \
4649 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4650 
4651 void *netdev_lower_get_next(struct net_device *dev,
4652 				struct list_head **iter);
4653 
4654 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4655 	for (iter = (dev)->adj_list.lower.next, \
4656 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4657 	     ldev; \
4658 	     ldev = netdev_lower_get_next(dev, &(iter)))
4659 
4660 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4661 					     struct list_head **iter);
4662 int netdev_walk_all_lower_dev(struct net_device *dev,
4663 			      int (*fn)(struct net_device *lower_dev,
4664 					struct netdev_nested_priv *priv),
4665 			      struct netdev_nested_priv *priv);
4666 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4667 				  int (*fn)(struct net_device *lower_dev,
4668 					    struct netdev_nested_priv *priv),
4669 				  struct netdev_nested_priv *priv);
4670 
4671 void *netdev_adjacent_get_private(struct list_head *adj_list);
4672 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4673 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4674 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4675 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4676 			  struct netlink_ext_ack *extack);
4677 int netdev_master_upper_dev_link(struct net_device *dev,
4678 				 struct net_device *upper_dev,
4679 				 void *upper_priv, void *upper_info,
4680 				 struct netlink_ext_ack *extack);
4681 void netdev_upper_dev_unlink(struct net_device *dev,
4682 			     struct net_device *upper_dev);
4683 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4684 				   struct net_device *new_dev,
4685 				   struct net_device *dev,
4686 				   struct netlink_ext_ack *extack);
4687 void netdev_adjacent_change_commit(struct net_device *old_dev,
4688 				   struct net_device *new_dev,
4689 				   struct net_device *dev);
4690 void netdev_adjacent_change_abort(struct net_device *old_dev,
4691 				  struct net_device *new_dev,
4692 				  struct net_device *dev);
4693 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4694 void *netdev_lower_dev_get_private(struct net_device *dev,
4695 				   struct net_device *lower_dev);
4696 void netdev_lower_state_changed(struct net_device *lower_dev,
4697 				void *lower_state_info);
4698 
4699 /* RSS keys are 40 or 52 bytes long */
4700 #define NETDEV_RSS_KEY_LEN 52
4701 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4702 void netdev_rss_key_fill(void *buffer, size_t len);
4703 
4704 int skb_checksum_help(struct sk_buff *skb);
4705 int skb_crc32c_csum_help(struct sk_buff *skb);
4706 int skb_csum_hwoffload_help(struct sk_buff *skb,
4707 			    const netdev_features_t features);
4708 
4709 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4710 				  netdev_features_t features, bool tx_path);
4711 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4712 				    netdev_features_t features);
4713 
4714 struct netdev_bonding_info {
4715 	ifslave	slave;
4716 	ifbond	master;
4717 };
4718 
4719 struct netdev_notifier_bonding_info {
4720 	struct netdev_notifier_info info; /* must be first */
4721 	struct netdev_bonding_info  bonding_info;
4722 };
4723 
4724 void netdev_bonding_info_change(struct net_device *dev,
4725 				struct netdev_bonding_info *bonding_info);
4726 
4727 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4728 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4729 #else
ethtool_notify(struct net_device * dev,unsigned int cmd,const void * data)4730 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4731 				  const void *data)
4732 {
4733 }
4734 #endif
4735 
4736 static inline
skb_gso_segment(struct sk_buff * skb,netdev_features_t features)4737 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4738 {
4739 	return __skb_gso_segment(skb, features, true);
4740 }
4741 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4742 
can_checksum_protocol(netdev_features_t features,__be16 protocol)4743 static inline bool can_checksum_protocol(netdev_features_t features,
4744 					 __be16 protocol)
4745 {
4746 	if (protocol == htons(ETH_P_FCOE))
4747 		return !!(features & NETIF_F_FCOE_CRC);
4748 
4749 	/* Assume this is an IP checksum (not SCTP CRC) */
4750 
4751 	if (features & NETIF_F_HW_CSUM) {
4752 		/* Can checksum everything */
4753 		return true;
4754 	}
4755 
4756 	switch (protocol) {
4757 	case htons(ETH_P_IP):
4758 		return !!(features & NETIF_F_IP_CSUM);
4759 	case htons(ETH_P_IPV6):
4760 		return !!(features & NETIF_F_IPV6_CSUM);
4761 	default:
4762 		return false;
4763 	}
4764 }
4765 
4766 #ifdef CONFIG_BUG
4767 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4768 #else
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)4769 static inline void netdev_rx_csum_fault(struct net_device *dev,
4770 					struct sk_buff *skb)
4771 {
4772 }
4773 #endif
4774 /* rx skb timestamps */
4775 void net_enable_timestamp(void);
4776 void net_disable_timestamp(void);
4777 
4778 #ifdef CONFIG_PROC_FS
4779 int __init dev_proc_init(void);
4780 #else
4781 #define dev_proc_init() 0
4782 #endif
4783 
__netdev_start_xmit(const struct net_device_ops * ops,struct sk_buff * skb,struct net_device * dev,bool more)4784 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4785 					      struct sk_buff *skb, struct net_device *dev,
4786 					      bool more)
4787 {
4788 	__this_cpu_write(softnet_data.xmit.more, more);
4789 	return ops->ndo_start_xmit(skb, dev);
4790 }
4791 
netdev_xmit_more(void)4792 static inline bool netdev_xmit_more(void)
4793 {
4794 	return __this_cpu_read(softnet_data.xmit.more);
4795 }
4796 
netdev_start_xmit(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)4797 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4798 					    struct netdev_queue *txq, bool more)
4799 {
4800 	const struct net_device_ops *ops = dev->netdev_ops;
4801 	netdev_tx_t rc;
4802 
4803 	rc = __netdev_start_xmit(ops, skb, dev, more);
4804 	if (rc == NETDEV_TX_OK)
4805 		txq_trans_update(txq);
4806 
4807 	return rc;
4808 }
4809 
4810 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4811 				const void *ns);
4812 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4813 				 const void *ns);
4814 
4815 extern const struct kobj_ns_type_operations net_ns_type_operations;
4816 
4817 const char *netdev_drivername(const struct net_device *dev);
4818 
4819 void linkwatch_run_queue(void);
4820 
netdev_intersect_features(netdev_features_t f1,netdev_features_t f2)4821 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4822 							  netdev_features_t f2)
4823 {
4824 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4825 		if (f1 & NETIF_F_HW_CSUM)
4826 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4827 		else
4828 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4829 	}
4830 
4831 	return f1 & f2;
4832 }
4833 
netdev_get_wanted_features(struct net_device * dev)4834 static inline netdev_features_t netdev_get_wanted_features(
4835 	struct net_device *dev)
4836 {
4837 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4838 }
4839 netdev_features_t netdev_increment_features(netdev_features_t all,
4840 	netdev_features_t one, netdev_features_t mask);
4841 
4842 /* Allow TSO being used on stacked device :
4843  * Performing the GSO segmentation before last device
4844  * is a performance improvement.
4845  */
netdev_add_tso_features(netdev_features_t features,netdev_features_t mask)4846 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4847 							netdev_features_t mask)
4848 {
4849 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4850 }
4851 
4852 int __netdev_update_features(struct net_device *dev);
4853 void netdev_update_features(struct net_device *dev);
4854 void netdev_change_features(struct net_device *dev);
4855 
4856 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4857 					struct net_device *dev);
4858 
4859 netdev_features_t passthru_features_check(struct sk_buff *skb,
4860 					  struct net_device *dev,
4861 					  netdev_features_t features);
4862 netdev_features_t netif_skb_features(struct sk_buff *skb);
4863 
net_gso_ok(netdev_features_t features,int gso_type)4864 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4865 {
4866 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4867 
4868 	/* check flags correspondence */
4869 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4870 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4871 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4872 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4873 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4874 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4875 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4876 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4877 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4878 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4879 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4880 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4881 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4882 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4883 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4884 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4885 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4886 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4887 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4888 
4889 	return (features & feature) == feature;
4890 }
4891 
skb_gso_ok(struct sk_buff * skb,netdev_features_t features)4892 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4893 {
4894 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4895 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4896 }
4897 
netif_needs_gso(struct sk_buff * skb,netdev_features_t features)4898 static inline bool netif_needs_gso(struct sk_buff *skb,
4899 				   netdev_features_t features)
4900 {
4901 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4902 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4903 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4904 }
4905 
netif_set_gso_max_size(struct net_device * dev,unsigned int size)4906 static inline void netif_set_gso_max_size(struct net_device *dev,
4907 					  unsigned int size)
4908 {
4909 	dev->gso_max_size = size;
4910 }
4911 
skb_gso_error_unwind(struct sk_buff * skb,__be16 protocol,int pulled_hlen,u16 mac_offset,int mac_len)4912 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4913 					int pulled_hlen, u16 mac_offset,
4914 					int mac_len)
4915 {
4916 	skb->protocol = protocol;
4917 	skb->encapsulation = 1;
4918 	skb_push(skb, pulled_hlen);
4919 	skb_reset_transport_header(skb);
4920 	skb->mac_header = mac_offset;
4921 	skb->network_header = skb->mac_header + mac_len;
4922 	skb->mac_len = mac_len;
4923 }
4924 
netif_is_macsec(const struct net_device * dev)4925 static inline bool netif_is_macsec(const struct net_device *dev)
4926 {
4927 	return dev->priv_flags & IFF_MACSEC;
4928 }
4929 
netif_is_macvlan(const struct net_device * dev)4930 static inline bool netif_is_macvlan(const struct net_device *dev)
4931 {
4932 	return dev->priv_flags & IFF_MACVLAN;
4933 }
4934 
netif_is_macvlan_port(const struct net_device * dev)4935 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4936 {
4937 	return dev->priv_flags & IFF_MACVLAN_PORT;
4938 }
4939 
netif_is_bond_master(const struct net_device * dev)4940 static inline bool netif_is_bond_master(const struct net_device *dev)
4941 {
4942 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4943 }
4944 
netif_is_bond_slave(const struct net_device * dev)4945 static inline bool netif_is_bond_slave(const struct net_device *dev)
4946 {
4947 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4948 }
4949 
netif_supports_nofcs(struct net_device * dev)4950 static inline bool netif_supports_nofcs(struct net_device *dev)
4951 {
4952 	return dev->priv_flags & IFF_SUPP_NOFCS;
4953 }
4954 
netif_has_l3_rx_handler(const struct net_device * dev)4955 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4956 {
4957 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4958 }
4959 
netif_is_l3_master(const struct net_device * dev)4960 static inline bool netif_is_l3_master(const struct net_device *dev)
4961 {
4962 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4963 }
4964 
netif_is_l3_slave(const struct net_device * dev)4965 static inline bool netif_is_l3_slave(const struct net_device *dev)
4966 {
4967 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4968 }
4969 
netif_is_bridge_master(const struct net_device * dev)4970 static inline bool netif_is_bridge_master(const struct net_device *dev)
4971 {
4972 	return dev->priv_flags & IFF_EBRIDGE;
4973 }
4974 
netif_is_bridge_port(const struct net_device * dev)4975 static inline bool netif_is_bridge_port(const struct net_device *dev)
4976 {
4977 	return dev->priv_flags & IFF_BRIDGE_PORT;
4978 }
4979 
netif_is_ovs_master(const struct net_device * dev)4980 static inline bool netif_is_ovs_master(const struct net_device *dev)
4981 {
4982 	return dev->priv_flags & IFF_OPENVSWITCH;
4983 }
4984 
netif_is_ovs_port(const struct net_device * dev)4985 static inline bool netif_is_ovs_port(const struct net_device *dev)
4986 {
4987 	return dev->priv_flags & IFF_OVS_DATAPATH;
4988 }
4989 
netif_is_any_bridge_port(const struct net_device * dev)4990 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
4991 {
4992 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
4993 }
4994 
netif_is_team_master(const struct net_device * dev)4995 static inline bool netif_is_team_master(const struct net_device *dev)
4996 {
4997 	return dev->priv_flags & IFF_TEAM;
4998 }
4999 
netif_is_team_port(const struct net_device * dev)5000 static inline bool netif_is_team_port(const struct net_device *dev)
5001 {
5002 	return dev->priv_flags & IFF_TEAM_PORT;
5003 }
5004 
netif_is_lag_master(const struct net_device * dev)5005 static inline bool netif_is_lag_master(const struct net_device *dev)
5006 {
5007 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5008 }
5009 
netif_is_lag_port(const struct net_device * dev)5010 static inline bool netif_is_lag_port(const struct net_device *dev)
5011 {
5012 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5013 }
5014 
netif_is_rxfh_configured(const struct net_device * dev)5015 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5016 {
5017 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5018 }
5019 
netif_is_failover(const struct net_device * dev)5020 static inline bool netif_is_failover(const struct net_device *dev)
5021 {
5022 	return dev->priv_flags & IFF_FAILOVER;
5023 }
5024 
netif_is_failover_slave(const struct net_device * dev)5025 static inline bool netif_is_failover_slave(const struct net_device *dev)
5026 {
5027 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5028 }
5029 
5030 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
netif_keep_dst(struct net_device * dev)5031 static inline void netif_keep_dst(struct net_device *dev)
5032 {
5033 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5034 }
5035 
5036 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
netif_reduces_vlan_mtu(struct net_device * dev)5037 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5038 {
5039 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5040 	return dev->priv_flags & IFF_MACSEC;
5041 }
5042 
5043 extern struct pernet_operations __net_initdata loopback_net_ops;
5044 
5045 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5046 
5047 /* netdev_printk helpers, similar to dev_printk */
5048 
netdev_name(const struct net_device * dev)5049 static inline const char *netdev_name(const struct net_device *dev)
5050 {
5051 	if (!dev->name[0] || strchr(dev->name, '%'))
5052 		return "(unnamed net_device)";
5053 	return dev->name;
5054 }
5055 
netdev_unregistering(const struct net_device * dev)5056 static inline bool netdev_unregistering(const struct net_device *dev)
5057 {
5058 	return dev->reg_state == NETREG_UNREGISTERING;
5059 }
5060 
netdev_reg_state(const struct net_device * dev)5061 static inline const char *netdev_reg_state(const struct net_device *dev)
5062 {
5063 	switch (dev->reg_state) {
5064 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5065 	case NETREG_REGISTERED: return "";
5066 	case NETREG_UNREGISTERING: return " (unregistering)";
5067 	case NETREG_UNREGISTERED: return " (unregistered)";
5068 	case NETREG_RELEASED: return " (released)";
5069 	case NETREG_DUMMY: return " (dummy)";
5070 	}
5071 
5072 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5073 	return " (unknown)";
5074 }
5075 
5076 __printf(3, 4) __cold
5077 void netdev_printk(const char *level, const struct net_device *dev,
5078 		   const char *format, ...);
5079 __printf(2, 3) __cold
5080 void netdev_emerg(const struct net_device *dev, const char *format, ...);
5081 __printf(2, 3) __cold
5082 void netdev_alert(const struct net_device *dev, const char *format, ...);
5083 __printf(2, 3) __cold
5084 void netdev_crit(const struct net_device *dev, const char *format, ...);
5085 __printf(2, 3) __cold
5086 void netdev_err(const struct net_device *dev, const char *format, ...);
5087 __printf(2, 3) __cold
5088 void netdev_warn(const struct net_device *dev, const char *format, ...);
5089 __printf(2, 3) __cold
5090 void netdev_notice(const struct net_device *dev, const char *format, ...);
5091 __printf(2, 3) __cold
5092 void netdev_info(const struct net_device *dev, const char *format, ...);
5093 
5094 #define netdev_level_once(level, dev, fmt, ...)			\
5095 do {								\
5096 	static bool __print_once __read_mostly;			\
5097 								\
5098 	if (!__print_once) {					\
5099 		__print_once = true;				\
5100 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
5101 	}							\
5102 } while (0)
5103 
5104 #define netdev_emerg_once(dev, fmt, ...) \
5105 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5106 #define netdev_alert_once(dev, fmt, ...) \
5107 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5108 #define netdev_crit_once(dev, fmt, ...) \
5109 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5110 #define netdev_err_once(dev, fmt, ...) \
5111 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5112 #define netdev_warn_once(dev, fmt, ...) \
5113 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5114 #define netdev_notice_once(dev, fmt, ...) \
5115 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5116 #define netdev_info_once(dev, fmt, ...) \
5117 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5118 
5119 #define MODULE_ALIAS_NETDEV(device) \
5120 	MODULE_ALIAS("netdev-" device)
5121 
5122 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5123 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5124 #define netdev_dbg(__dev, format, args...)			\
5125 do {								\
5126 	dynamic_netdev_dbg(__dev, format, ##args);		\
5127 } while (0)
5128 #elif defined(DEBUG)
5129 #define netdev_dbg(__dev, format, args...)			\
5130 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
5131 #else
5132 #define netdev_dbg(__dev, format, args...)			\
5133 ({								\
5134 	if (0)							\
5135 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5136 })
5137 #endif
5138 
5139 #if defined(VERBOSE_DEBUG)
5140 #define netdev_vdbg	netdev_dbg
5141 #else
5142 
5143 #define netdev_vdbg(dev, format, args...)			\
5144 ({								\
5145 	if (0)							\
5146 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
5147 	0;							\
5148 })
5149 #endif
5150 
5151 /*
5152  * netdev_WARN() acts like dev_printk(), but with the key difference
5153  * of using a WARN/WARN_ON to get the message out, including the
5154  * file/line information and a backtrace.
5155  */
5156 #define netdev_WARN(dev, format, args...)			\
5157 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5158 	     netdev_reg_state(dev), ##args)
5159 
5160 #define netdev_WARN_ONCE(dev, format, args...)				\
5161 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5162 		  netdev_reg_state(dev), ##args)
5163 
5164 /* netif printk helpers, similar to netdev_printk */
5165 
5166 #define netif_printk(priv, type, level, dev, fmt, args...)	\
5167 do {					  			\
5168 	if (netif_msg_##type(priv))				\
5169 		netdev_printk(level, (dev), fmt, ##args);	\
5170 } while (0)
5171 
5172 #define netif_level(level, priv, type, dev, fmt, args...)	\
5173 do {								\
5174 	if (netif_msg_##type(priv))				\
5175 		netdev_##level(dev, fmt, ##args);		\
5176 } while (0)
5177 
5178 #define netif_emerg(priv, type, dev, fmt, args...)		\
5179 	netif_level(emerg, priv, type, dev, fmt, ##args)
5180 #define netif_alert(priv, type, dev, fmt, args...)		\
5181 	netif_level(alert, priv, type, dev, fmt, ##args)
5182 #define netif_crit(priv, type, dev, fmt, args...)		\
5183 	netif_level(crit, priv, type, dev, fmt, ##args)
5184 #define netif_err(priv, type, dev, fmt, args...)		\
5185 	netif_level(err, priv, type, dev, fmt, ##args)
5186 #define netif_warn(priv, type, dev, fmt, args...)		\
5187 	netif_level(warn, priv, type, dev, fmt, ##args)
5188 #define netif_notice(priv, type, dev, fmt, args...)		\
5189 	netif_level(notice, priv, type, dev, fmt, ##args)
5190 #define netif_info(priv, type, dev, fmt, args...)		\
5191 	netif_level(info, priv, type, dev, fmt, ##args)
5192 
5193 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5194 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5195 #define netif_dbg(priv, type, netdev, format, args...)		\
5196 do {								\
5197 	if (netif_msg_##type(priv))				\
5198 		dynamic_netdev_dbg(netdev, format, ##args);	\
5199 } while (0)
5200 #elif defined(DEBUG)
5201 #define netif_dbg(priv, type, dev, format, args...)		\
5202 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5203 #else
5204 #define netif_dbg(priv, type, dev, format, args...)			\
5205 ({									\
5206 	if (0)								\
5207 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5208 	0;								\
5209 })
5210 #endif
5211 
5212 /* if @cond then downgrade to debug, else print at @level */
5213 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5214 	do {                                                              \
5215 		if (cond)                                                 \
5216 			netif_dbg(priv, type, netdev, fmt, ##args);       \
5217 		else                                                      \
5218 			netif_ ## level(priv, type, netdev, fmt, ##args); \
5219 	} while (0)
5220 
5221 #if defined(VERBOSE_DEBUG)
5222 #define netif_vdbg	netif_dbg
5223 #else
5224 #define netif_vdbg(priv, type, dev, format, args...)		\
5225 ({								\
5226 	if (0)							\
5227 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5228 	0;							\
5229 })
5230 #endif
5231 
5232 /*
5233  *	The list of packet types we will receive (as opposed to discard)
5234  *	and the routines to invoke.
5235  *
5236  *	Why 16. Because with 16 the only overlap we get on a hash of the
5237  *	low nibble of the protocol value is RARP/SNAP/X.25.
5238  *
5239  *		0800	IP
5240  *		0001	802.3
5241  *		0002	AX.25
5242  *		0004	802.2
5243  *		8035	RARP
5244  *		0005	SNAP
5245  *		0805	X.25
5246  *		0806	ARP
5247  *		8137	IPX
5248  *		0009	Localtalk
5249  *		86DD	IPv6
5250  */
5251 #define PTYPE_HASH_SIZE	(16)
5252 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5253 
5254 extern struct net_device *blackhole_netdev;
5255 
5256 #endif	/* _LINUX_NETDEVICE_H */
5257