1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Redistribution and use in source and binary forms, with or without 3 // modification, are permitted provided that the following conditions are 4 // met: 5 // 6 // * Redistributions of source code must retain the above copyright 7 // notice, this list of conditions and the following disclaimer. 8 // * Redistributions in binary form must reproduce the above 9 // copyright notice, this list of conditions and the following 10 // disclaimer in the documentation and/or other materials provided 11 // with the distribution. 12 // * Neither the name of Google Inc. nor the names of its 13 // contributors may be used to endorse or promote products derived 14 // from this software without specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 #ifndef DOUBLE_CONVERSION_DOUBLE_TO_STRING_H_ 29 #define DOUBLE_CONVERSION_DOUBLE_TO_STRING_H_ 30 31 #include "utils.h" 32 33 namespace double_conversion { 34 35 class DoubleToStringConverter { 36 public: 37 // When calling ToFixed with a double > 10^kMaxFixedDigitsBeforePoint 38 // or a requested_digits parameter > kMaxFixedDigitsAfterPoint then the 39 // function returns false. 40 static const int kMaxFixedDigitsBeforePoint = 60; 41 static const int kMaxFixedDigitsAfterPoint = 100; 42 43 // When calling ToExponential with a requested_digits 44 // parameter > kMaxExponentialDigits then the function returns false. 45 static const int kMaxExponentialDigits = 120; 46 47 // When calling ToPrecision with a requested_digits 48 // parameter < kMinPrecisionDigits or requested_digits > kMaxPrecisionDigits 49 // then the function returns false. 50 static const int kMinPrecisionDigits = 1; 51 static const int kMaxPrecisionDigits = 120; 52 53 // The maximal number of digits that are needed to emit a double in base 10. 54 // A higher precision can be achieved by using more digits, but the shortest 55 // accurate representation of any double will never use more digits than 56 // kBase10MaximalLength. 57 // Note that DoubleToAscii null-terminates its input. So the given buffer 58 // should be at least kBase10MaximalLength + 1 characters long. 59 static const int kBase10MaximalLength = 17; 60 61 // The maximal number of digits that are needed to emit a single in base 10. 62 // A higher precision can be achieved by using more digits, but the shortest 63 // accurate representation of any single will never use more digits than 64 // kBase10MaximalLengthSingle. 65 static const int kBase10MaximalLengthSingle = 9; 66 67 // The length of the longest string that 'ToShortest' can produce when the 68 // converter is instantiated with EcmaScript defaults (see 69 // 'EcmaScriptConverter') 70 // This value does not include the trailing '\0' character. 71 // This amount of characters is needed for negative values that hit the 72 // 'decimal_in_shortest_low' limit. For example: "-0.0000033333333333333333" 73 static const int kMaxCharsEcmaScriptShortest = 25; 74 75 enum Flags { 76 NO_FLAGS = 0, 77 EMIT_POSITIVE_EXPONENT_SIGN = 1, 78 EMIT_TRAILING_DECIMAL_POINT = 2, 79 EMIT_TRAILING_ZERO_AFTER_POINT = 4, 80 UNIQUE_ZERO = 8, 81 NO_TRAILING_ZERO = 16 82 }; 83 84 // Flags should be a bit-or combination of the possible Flags-enum. 85 // - NO_FLAGS: no special flags. 86 // - EMIT_POSITIVE_EXPONENT_SIGN: when the number is converted into exponent 87 // form, emits a '+' for positive exponents. Example: 1.2e+2. 88 // - EMIT_TRAILING_DECIMAL_POINT: when the input number is an integer and is 89 // converted into decimal format then a trailing decimal point is appended. 90 // Example: 2345.0 is converted to "2345.". 91 // - EMIT_TRAILING_ZERO_AFTER_POINT: in addition to a trailing decimal point 92 // emits a trailing '0'-character. This flag requires the 93 // EMIT_TRAILING_DECIMAL_POINT flag. 94 // Example: 2345.0 is converted to "2345.0". 95 // - UNIQUE_ZERO: "-0.0" is converted to "0.0". 96 // - NO_TRAILING_ZERO: Trailing zeros are removed from the fractional portion 97 // of the result in precision mode. Matches printf's %g. 98 // When EMIT_TRAILING_ZERO_AFTER_POINT is also given, one trailing zero is 99 // preserved. 100 // 101 // Infinity symbol and nan_symbol provide the string representation for these 102 // special values. If the string is NULL and the special value is encountered 103 // then the conversion functions return false. 104 // 105 // The exponent_character is used in exponential representations. It is 106 // usually 'e' or 'E'. 107 // 108 // When converting to the shortest representation the converter will 109 // represent input numbers in decimal format if they are in the interval 110 // [10^decimal_in_shortest_low; 10^decimal_in_shortest_high[ 111 // (lower boundary included, greater boundary excluded). 112 // Example: with decimal_in_shortest_low = -6 and 113 // decimal_in_shortest_high = 21: 114 // ToShortest(0.000001) -> "0.000001" 115 // ToShortest(0.0000001) -> "1e-7" 116 // ToShortest(111111111111111111111.0) -> "111111111111111110000" 117 // ToShortest(100000000000000000000.0) -> "100000000000000000000" 118 // ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21" 119 // 120 // When converting to precision mode the converter may add 121 // max_leading_padding_zeroes before returning the number in exponential 122 // format. 123 // Example with max_leading_padding_zeroes_in_precision_mode = 6. 124 // ToPrecision(0.0000012345, 2) -> "0.0000012" 125 // ToPrecision(0.00000012345, 2) -> "1.2e-7" 126 // Similarily the converter may add up to 127 // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid 128 // returning an exponential representation. A zero added by the 129 // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit. 130 // Examples for max_trailing_padding_zeroes_in_precision_mode = 1: 131 // ToPrecision(230.0, 2) -> "230" 132 // ToPrecision(230.0, 2) -> "230." with EMIT_TRAILING_DECIMAL_POINT. 133 // ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT. 134 // 135 // The min_exponent_width is used for exponential representations. 136 // The converter adds leading '0's to the exponent until the exponent 137 // is at least min_exponent_width digits long. 138 // The min_exponent_width is clamped to 5. 139 // As such, the exponent may never have more than 5 digits in total. 140 DoubleToStringConverter(int flags, 141 const char* infinity_symbol, 142 const char* nan_symbol, 143 char exponent_character, 144 int decimal_in_shortest_low, 145 int decimal_in_shortest_high, 146 int max_leading_padding_zeroes_in_precision_mode, 147 int max_trailing_padding_zeroes_in_precision_mode, 148 int min_exponent_width = 0) flags_(flags)149 : flags_(flags), 150 infinity_symbol_(infinity_symbol), 151 nan_symbol_(nan_symbol), 152 exponent_character_(exponent_character), 153 decimal_in_shortest_low_(decimal_in_shortest_low), 154 decimal_in_shortest_high_(decimal_in_shortest_high), 155 max_leading_padding_zeroes_in_precision_mode_( 156 max_leading_padding_zeroes_in_precision_mode), 157 max_trailing_padding_zeroes_in_precision_mode_( 158 max_trailing_padding_zeroes_in_precision_mode), 159 min_exponent_width_(min_exponent_width) { 160 // When 'trailing zero after the point' is set, then 'trailing point' 161 // must be set too. 162 DOUBLE_CONVERSION_ASSERT(((flags & EMIT_TRAILING_DECIMAL_POINT) != 0) || 163 !((flags & EMIT_TRAILING_ZERO_AFTER_POINT) != 0)); 164 } 165 166 // Returns a converter following the EcmaScript specification. 167 // 168 // Flags: UNIQUE_ZERO and EMIT_POSITIVE_EXPONENT_SIGN. 169 // Special values: "Infinity" and "NaN". 170 // Lower case 'e' for exponential values. 171 // decimal_in_shortest_low: -6 172 // decimal_in_shortest_high: 21 173 // max_leading_padding_zeroes_in_precision_mode: 6 174 // max_trailing_padding_zeroes_in_precision_mode: 0 175 static const DoubleToStringConverter& EcmaScriptConverter(); 176 177 // Computes the shortest string of digits that correctly represent the input 178 // number. Depending on decimal_in_shortest_low and decimal_in_shortest_high 179 // (see constructor) it then either returns a decimal representation, or an 180 // exponential representation. 181 // Example with decimal_in_shortest_low = -6, 182 // decimal_in_shortest_high = 21, 183 // EMIT_POSITIVE_EXPONENT_SIGN activated, and 184 // EMIT_TRAILING_DECIMAL_POINT deactived: 185 // ToShortest(0.000001) -> "0.000001" 186 // ToShortest(0.0000001) -> "1e-7" 187 // ToShortest(111111111111111111111.0) -> "111111111111111110000" 188 // ToShortest(100000000000000000000.0) -> "100000000000000000000" 189 // ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21" 190 // 191 // Note: the conversion may round the output if the returned string 192 // is accurate enough to uniquely identify the input-number. 193 // For example the most precise representation of the double 9e59 equals 194 // "899999999999999918767229449717619953810131273674690656206848", but 195 // the converter will return the shorter (but still correct) "9e59". 196 // 197 // Returns true if the conversion succeeds. The conversion always succeeds 198 // except when the input value is special and no infinity_symbol or 199 // nan_symbol has been given to the constructor. 200 // 201 // The length of the longest result is the maximum of the length of the 202 // following string representations (each with possible examples): 203 // - NaN and negative infinity: "NaN", "-Infinity", "-inf". 204 // - -10^(decimal_in_shortest_high - 1): 205 // "-100000000000000000000", "-1000000000000000.0" 206 // - the longest string in range [0; -10^decimal_in_shortest_low]. Generally, 207 // this string is 3 + kBase10MaximalLength - decimal_in_shortest_low. 208 // (Sign, '0', decimal point, padding zeroes for decimal_in_shortest_low, 209 // and the significant digits). 210 // "-0.0000033333333333333333", "-0.0012345678901234567" 211 // - the longest exponential representation. (A negative number with 212 // kBase10MaximalLength significant digits). 213 // "-1.7976931348623157e+308", "-1.7976931348623157E308" 214 // In addition, the buffer must be able to hold the trailing '\0' character. ToShortest(double value,StringBuilder * result_builder)215 bool ToShortest(double value, StringBuilder* result_builder) const { 216 return ToShortestIeeeNumber(value, result_builder, SHORTEST); 217 } 218 219 // Same as ToShortest, but for single-precision floats. ToShortestSingle(float value,StringBuilder * result_builder)220 bool ToShortestSingle(float value, StringBuilder* result_builder) const { 221 return ToShortestIeeeNumber(value, result_builder, SHORTEST_SINGLE); 222 } 223 224 225 // Computes a decimal representation with a fixed number of digits after the 226 // decimal point. The last emitted digit is rounded. 227 // 228 // Examples: 229 // ToFixed(3.12, 1) -> "3.1" 230 // ToFixed(3.1415, 3) -> "3.142" 231 // ToFixed(1234.56789, 4) -> "1234.5679" 232 // ToFixed(1.23, 5) -> "1.23000" 233 // ToFixed(0.1, 4) -> "0.1000" 234 // ToFixed(1e30, 2) -> "1000000000000000019884624838656.00" 235 // ToFixed(0.1, 30) -> "0.100000000000000005551115123126" 236 // ToFixed(0.1, 17) -> "0.10000000000000001" 237 // 238 // If requested_digits equals 0, then the tail of the result depends on 239 // the EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT. 240 // Examples, for requested_digits == 0, 241 // let EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT be 242 // - false and false: then 123.45 -> 123 243 // 0.678 -> 1 244 // - true and false: then 123.45 -> 123. 245 // 0.678 -> 1. 246 // - true and true: then 123.45 -> 123.0 247 // 0.678 -> 1.0 248 // 249 // Returns true if the conversion succeeds. The conversion always succeeds 250 // except for the following cases: 251 // - the input value is special and no infinity_symbol or nan_symbol has 252 // been provided to the constructor, 253 // - 'value' > 10^kMaxFixedDigitsBeforePoint, or 254 // - 'requested_digits' > kMaxFixedDigitsAfterPoint. 255 // The last two conditions imply that the result for non-special values never 256 // contains more than 257 // 1 + kMaxFixedDigitsBeforePoint + 1 + kMaxFixedDigitsAfterPoint characters 258 // (one additional character for the sign, and one for the decimal point). 259 // In addition, the buffer must be able to hold the trailing '\0' character. 260 bool ToFixed(double value, 261 int requested_digits, 262 StringBuilder* result_builder) const; 263 264 // Computes a representation in exponential format with requested_digits 265 // after the decimal point. The last emitted digit is rounded. 266 // If requested_digits equals -1, then the shortest exponential representation 267 // is computed. 268 // 269 // Examples with EMIT_POSITIVE_EXPONENT_SIGN deactivated, and 270 // exponent_character set to 'e'. 271 // ToExponential(3.12, 1) -> "3.1e0" 272 // ToExponential(5.0, 3) -> "5.000e0" 273 // ToExponential(0.001, 2) -> "1.00e-3" 274 // ToExponential(3.1415, -1) -> "3.1415e0" 275 // ToExponential(3.1415, 4) -> "3.1415e0" 276 // ToExponential(3.1415, 3) -> "3.142e0" 277 // ToExponential(123456789000000, 3) -> "1.235e14" 278 // ToExponential(1000000000000000019884624838656.0, -1) -> "1e30" 279 // ToExponential(1000000000000000019884624838656.0, 32) -> 280 // "1.00000000000000001988462483865600e30" 281 // ToExponential(1234, 0) -> "1e3" 282 // 283 // Returns true if the conversion succeeds. The conversion always succeeds 284 // except for the following cases: 285 // - the input value is special and no infinity_symbol or nan_symbol has 286 // been provided to the constructor, 287 // - 'requested_digits' > kMaxExponentialDigits. 288 // 289 // The last condition implies that the result never contains more than 290 // kMaxExponentialDigits + 8 characters (the sign, the digit before the 291 // decimal point, the decimal point, the exponent character, the 292 // exponent's sign, and at most 3 exponent digits). 293 // In addition, the buffer must be able to hold the trailing '\0' character. 294 bool ToExponential(double value, 295 int requested_digits, 296 StringBuilder* result_builder) const; 297 298 299 // Computes 'precision' leading digits of the given 'value' and returns them 300 // either in exponential or decimal format, depending on 301 // max_{leading|trailing}_padding_zeroes_in_precision_mode (given to the 302 // constructor). 303 // The last computed digit is rounded. 304 // 305 // Example with max_leading_padding_zeroes_in_precision_mode = 6. 306 // ToPrecision(0.0000012345, 2) -> "0.0000012" 307 // ToPrecision(0.00000012345, 2) -> "1.2e-7" 308 // Similarily the converter may add up to 309 // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid 310 // returning an exponential representation. A zero added by the 311 // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit. 312 // Examples for max_trailing_padding_zeroes_in_precision_mode = 1: 313 // ToPrecision(230.0, 2) -> "230" 314 // ToPrecision(230.0, 2) -> "230." with EMIT_TRAILING_DECIMAL_POINT. 315 // ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT. 316 // Examples for max_trailing_padding_zeroes_in_precision_mode = 3, and no 317 // EMIT_TRAILING_ZERO_AFTER_POINT: 318 // ToPrecision(123450.0, 6) -> "123450" 319 // ToPrecision(123450.0, 5) -> "123450" 320 // ToPrecision(123450.0, 4) -> "123500" 321 // ToPrecision(123450.0, 3) -> "123000" 322 // ToPrecision(123450.0, 2) -> "1.2e5" 323 // 324 // Returns true if the conversion succeeds. The conversion always succeeds 325 // except for the following cases: 326 // - the input value is special and no infinity_symbol or nan_symbol has 327 // been provided to the constructor, 328 // - precision < kMinPericisionDigits 329 // - precision > kMaxPrecisionDigits 330 // 331 // The last condition implies that the result never contains more than 332 // kMaxPrecisionDigits + 7 characters (the sign, the decimal point, the 333 // exponent character, the exponent's sign, and at most 3 exponent digits). 334 // In addition, the buffer must be able to hold the trailing '\0' character. 335 bool ToPrecision(double value, 336 int precision, 337 StringBuilder* result_builder) const; 338 339 enum DtoaMode { 340 // Produce the shortest correct representation. 341 // For example the output of 0.299999999999999988897 is (the less accurate 342 // but correct) 0.3. 343 SHORTEST, 344 // Same as SHORTEST, but for single-precision floats. 345 SHORTEST_SINGLE, 346 // Produce a fixed number of digits after the decimal point. 347 // For instance fixed(0.1, 4) becomes 0.1000 348 // If the input number is big, the output will be big. 349 FIXED, 350 // Fixed number of digits (independent of the decimal point). 351 PRECISION 352 }; 353 354 // Converts the given double 'v' to digit characters. 'v' must not be NaN, 355 // +Infinity, or -Infinity. In SHORTEST_SINGLE-mode this restriction also 356 // applies to 'v' after it has been casted to a single-precision float. That 357 // is, in this mode static_cast<float>(v) must not be NaN, +Infinity or 358 // -Infinity. 359 // 360 // The result should be interpreted as buffer * 10^(point-length). 361 // 362 // The digits are written to the buffer in the platform's charset, which is 363 // often UTF-8 (with ASCII-range digits) but may be another charset, such 364 // as EBCDIC. 365 // 366 // The output depends on the given mode: 367 // - SHORTEST: produce the least amount of digits for which the internal 368 // identity requirement is still satisfied. If the digits are printed 369 // (together with the correct exponent) then reading this number will give 370 // 'v' again. The buffer will choose the representation that is closest to 371 // 'v'. If there are two at the same distance, than the one farther away 372 // from 0 is chosen (halfway cases - ending with 5 - are rounded up). 373 // In this mode the 'requested_digits' parameter is ignored. 374 // - SHORTEST_SINGLE: same as SHORTEST but with single-precision. 375 // - FIXED: produces digits necessary to print a given number with 376 // 'requested_digits' digits after the decimal point. The produced digits 377 // might be too short in which case the caller has to fill the remainder 378 // with '0's. 379 // Example: toFixed(0.001, 5) is allowed to return buffer="1", point=-2. 380 // Halfway cases are rounded towards +/-Infinity (away from 0). The call 381 // toFixed(0.15, 2) thus returns buffer="2", point=0. 382 // The returned buffer may contain digits that would be truncated from the 383 // shortest representation of the input. 384 // - PRECISION: produces 'requested_digits' where the first digit is not '0'. 385 // Even though the length of produced digits usually equals 386 // 'requested_digits', the function is allowed to return fewer digits, in 387 // which case the caller has to fill the missing digits with '0's. 388 // Halfway cases are again rounded away from 0. 389 // DoubleToAscii expects the given buffer to be big enough to hold all 390 // digits and a terminating null-character. In SHORTEST-mode it expects a 391 // buffer of at least kBase10MaximalLength + 1. In all other modes the 392 // requested_digits parameter and the padding-zeroes limit the size of the 393 // output. Don't forget the decimal point, the exponent character and the 394 // terminating null-character when computing the maximal output size. 395 // The given length is only used in debug mode to ensure the buffer is big 396 // enough. 397 static void DoubleToAscii(double v, 398 DtoaMode mode, 399 int requested_digits, 400 char* buffer, 401 int buffer_length, 402 bool* sign, 403 int* length, 404 int* point); 405 406 private: 407 // Implementation for ToShortest and ToShortestSingle. 408 bool ToShortestIeeeNumber(double value, 409 StringBuilder* result_builder, 410 DtoaMode mode) const; 411 412 // If the value is a special value (NaN or Infinity) constructs the 413 // corresponding string using the configured infinity/nan-symbol. 414 // If either of them is NULL or the value is not special then the 415 // function returns false. 416 bool HandleSpecialValues(double value, StringBuilder* result_builder) const; 417 // Constructs an exponential representation (i.e. 1.234e56). 418 // The given exponent assumes a decimal point after the first decimal digit. 419 void CreateExponentialRepresentation(const char* decimal_digits, 420 int length, 421 int exponent, 422 StringBuilder* result_builder) const; 423 // Creates a decimal representation (i.e 1234.5678). 424 void CreateDecimalRepresentation(const char* decimal_digits, 425 int length, 426 int decimal_point, 427 int digits_after_point, 428 StringBuilder* result_builder) const; 429 430 const int flags_; 431 const char* const infinity_symbol_; 432 const char* const nan_symbol_; 433 const char exponent_character_; 434 const int decimal_in_shortest_low_; 435 const int decimal_in_shortest_high_; 436 const int max_leading_padding_zeroes_in_precision_mode_; 437 const int max_trailing_padding_zeroes_in_precision_mode_; 438 const int min_exponent_width_; 439 440 DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS(DoubleToStringConverter); 441 }; 442 443 } // namespace double_conversion 444 445 #endif // DOUBLE_CONVERSION_DOUBLE_TO_STRING_H_ 446