• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the OpenSSL license (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 #ifndef _GNU_SOURCE
11 # define _GNU_SOURCE
12 #endif
13 #include "e_os.h"
14 #include <stdio.h>
15 #include "internal/cryptlib.h"
16 #include <openssl/rand.h>
17 #include <openssl/crypto.h>
18 #include "rand_local.h"
19 #include "crypto/rand.h"
20 #include <stdio.h>
21 #include "internal/dso.h"
22 #ifdef __linux
23 # include <sys/syscall.h>
24 # ifdef DEVRANDOM_WAIT
25 #  include <sys/shm.h>
26 #  include <sys/utsname.h>
27 # endif
28 #endif
29 #if (defined(__FreeBSD__) || defined(__NetBSD__)) && !defined(OPENSSL_SYS_UEFI)
30 # include <sys/types.h>
31 # include <sys/sysctl.h>
32 # include <sys/param.h>
33 #endif
34 #if defined(__OpenBSD__)
35 # include <sys/param.h>
36 #endif
37 
38 #if defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__)
39 # include <sys/types.h>
40 # include <sys/stat.h>
41 # include <fcntl.h>
42 # include <unistd.h>
43 # include <sys/time.h>
44 
45 static uint64_t get_time_stamp(void);
46 static uint64_t get_timer_bits(void);
47 
48 /* Macro to convert two thirty two bit values into a sixty four bit one */
49 # define TWO32TO64(a, b) ((((uint64_t)(a)) << 32) + (b))
50 
51 /*
52  * Check for the existence and support of POSIX timers.  The standard
53  * says that the _POSIX_TIMERS macro will have a positive value if they
54  * are available.
55  *
56  * However, we want an additional constraint: that the timer support does
57  * not require an extra library dependency.  Early versions of glibc
58  * require -lrt to be specified on the link line to access the timers,
59  * so this needs to be checked for.
60  *
61  * It is worse because some libraries define __GLIBC__ but don't
62  * support the version testing macro (e.g. uClibc).  This means
63  * an extra check is needed.
64  *
65  * The final condition is:
66  *      "have posix timers and either not glibc or glibc without -lrt"
67  *
68  * The nested #if sequences are required to avoid using a parameterised
69  * macro that might be undefined.
70  */
71 # undef OSSL_POSIX_TIMER_OKAY
72 # if defined(_POSIX_TIMERS) && _POSIX_TIMERS > 0
73 #  if defined(__GLIBC__)
74 #   if defined(__GLIBC_PREREQ)
75 #    if __GLIBC_PREREQ(2, 17)
76 #     define OSSL_POSIX_TIMER_OKAY
77 #    endif
78 #   endif
79 #  else
80 #   define OSSL_POSIX_TIMER_OKAY
81 #  endif
82 # endif
83 #endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS))
84           || defined(__DJGPP__) */
85 
86 #if defined(OPENSSL_RAND_SEED_NONE)
87 /* none means none. this simplifies the following logic */
88 # undef OPENSSL_RAND_SEED_OS
89 # undef OPENSSL_RAND_SEED_GETRANDOM
90 # undef OPENSSL_RAND_SEED_LIBRANDOM
91 # undef OPENSSL_RAND_SEED_DEVRANDOM
92 # undef OPENSSL_RAND_SEED_RDTSC
93 # undef OPENSSL_RAND_SEED_RDCPU
94 # undef OPENSSL_RAND_SEED_EGD
95 #endif
96 
97 #if (defined(OPENSSL_SYS_VXWORKS) || defined(OPENSSL_SYS_UEFI)) && \
98         !defined(OPENSSL_RAND_SEED_NONE)
99 # error "UEFI and VXWorks only support seeding NONE"
100 #endif
101 
102 #if defined(OPENSSL_SYS_VXWORKS)
103 /* empty implementation */
rand_pool_init(void)104 int rand_pool_init(void)
105 {
106     return 1;
107 }
108 
rand_pool_cleanup(void)109 void rand_pool_cleanup(void)
110 {
111 }
112 
rand_pool_keep_random_devices_open(int keep)113 void rand_pool_keep_random_devices_open(int keep)
114 {
115 }
116 
rand_pool_acquire_entropy(RAND_POOL * pool)117 size_t rand_pool_acquire_entropy(RAND_POOL *pool)
118 {
119     return rand_pool_entropy_available(pool);
120 }
121 #endif
122 
123 #if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) \
124     || defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_VXWORKS) \
125     || defined(OPENSSL_SYS_UEFI))
126 
127 # if defined(OPENSSL_SYS_VOS)
128 
129 #  ifndef OPENSSL_RAND_SEED_OS
130 #   error "Unsupported seeding method configured; must be os"
131 #  endif
132 
133 #  if defined(OPENSSL_SYS_VOS_HPPA) && defined(OPENSSL_SYS_VOS_IA32)
134 #   error "Unsupported HP-PA and IA32 at the same time."
135 #  endif
136 #  if !defined(OPENSSL_SYS_VOS_HPPA) && !defined(OPENSSL_SYS_VOS_IA32)
137 #   error "Must have one of HP-PA or IA32"
138 #  endif
139 
140 /*
141  * The following algorithm repeatedly samples the real-time clock (RTC) to
142  * generate a sequence of unpredictable data.  The algorithm relies upon the
143  * uneven execution speed of the code (due to factors such as cache misses,
144  * interrupts, bus activity, and scheduling) and upon the rather large
145  * relative difference between the speed of the clock and the rate at which
146  * it can be read.  If it is ported to an environment where execution speed
147  * is more constant or where the RTC ticks at a much slower rate, or the
148  * clock can be read with fewer instructions, it is likely that the results
149  * would be far more predictable.  This should only be used for legacy
150  * platforms.
151  *
152  * As a precaution, we assume only 2 bits of entropy per byte.
153  */
rand_pool_acquire_entropy(RAND_POOL * pool)154 size_t rand_pool_acquire_entropy(RAND_POOL *pool)
155 {
156     short int code;
157     int i, k;
158     size_t bytes_needed;
159     struct timespec ts;
160     unsigned char v;
161 #  ifdef OPENSSL_SYS_VOS_HPPA
162     long duration;
163     extern void s$sleep(long *_duration, short int *_code);
164 #  else
165     long long duration;
166     extern void s$sleep2(long long *_duration, short int *_code);
167 #  endif
168 
169     bytes_needed = rand_pool_bytes_needed(pool, 4 /*entropy_factor*/);
170 
171     for (i = 0; i < bytes_needed; i++) {
172         /*
173          * burn some cpu; hope for interrupts, cache collisions, bus
174          * interference, etc.
175          */
176         for (k = 0; k < 99; k++)
177             ts.tv_nsec = random();
178 
179 #  ifdef OPENSSL_SYS_VOS_HPPA
180         /* sleep for 1/1024 of a second (976 us).  */
181         duration = 1;
182         s$sleep(&duration, &code);
183 #  else
184         /* sleep for 1/65536 of a second (15 us).  */
185         duration = 1;
186         s$sleep2(&duration, &code);
187 #  endif
188 
189         /* Get wall clock time, take 8 bits. */
190         clock_gettime(CLOCK_REALTIME, &ts);
191         v = (unsigned char)(ts.tv_nsec & 0xFF);
192         rand_pool_add(pool, arg, &v, sizeof(v) , 2);
193     }
194     return rand_pool_entropy_available(pool);
195 }
196 
rand_pool_cleanup(void)197 void rand_pool_cleanup(void)
198 {
199 }
200 
rand_pool_keep_random_devices_open(int keep)201 void rand_pool_keep_random_devices_open(int keep)
202 {
203 }
204 
205 # else
206 
207 #  if defined(OPENSSL_RAND_SEED_EGD) && \
208         (defined(OPENSSL_NO_EGD) || !defined(DEVRANDOM_EGD))
209 #   error "Seeding uses EGD but EGD is turned off or no device given"
210 #  endif
211 
212 #  if defined(OPENSSL_RAND_SEED_DEVRANDOM) && !defined(DEVRANDOM)
213 #   error "Seeding uses urandom but DEVRANDOM is not configured"
214 #  endif
215 
216 #  if defined(OPENSSL_RAND_SEED_OS)
217 #   if !defined(DEVRANDOM)
218 #    error "OS seeding requires DEVRANDOM to be configured"
219 #   endif
220 #   define OPENSSL_RAND_SEED_GETRANDOM
221 #   define OPENSSL_RAND_SEED_DEVRANDOM
222 #  endif
223 
224 #  if defined(OPENSSL_RAND_SEED_LIBRANDOM)
225 #   error "librandom not (yet) supported"
226 #  endif
227 
228 #  if (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
229 /*
230  * sysctl_random(): Use sysctl() to read a random number from the kernel
231  * Returns the number of bytes returned in buf on success, -1 on failure.
232  */
sysctl_random(char * buf,size_t buflen)233 static ssize_t sysctl_random(char *buf, size_t buflen)
234 {
235     int mib[2];
236     size_t done = 0;
237     size_t len;
238 
239     /*
240      * Note: sign conversion between size_t and ssize_t is safe even
241      * without a range check, see comment in syscall_random()
242      */
243 
244     /*
245      * On FreeBSD old implementations returned longs, newer versions support
246      * variable sizes up to 256 byte. The code below would not work properly
247      * when the sysctl returns long and we want to request something not a
248      * multiple of longs, which should never be the case.
249      */
250 #if   defined(__FreeBSD__)
251     if (!ossl_assert(buflen % sizeof(long) == 0)) {
252         errno = EINVAL;
253         return -1;
254     }
255 #endif
256 
257     /*
258      * On NetBSD before 4.0 KERN_ARND was an alias for KERN_URND, and only
259      * filled in an int, leaving the rest uninitialized. Since NetBSD 4.0
260      * it returns a variable number of bytes with the current version supporting
261      * up to 256 bytes.
262      * Just return an error on older NetBSD versions.
263      */
264 #if   defined(__NetBSD__) && __NetBSD_Version__ < 400000000
265     errno = ENOSYS;
266     return -1;
267 #endif
268 
269     mib[0] = CTL_KERN;
270     mib[1] = KERN_ARND;
271 
272     do {
273         len = buflen > 256 ? 256 : buflen;
274         if (sysctl(mib, 2, buf, &len, NULL, 0) == -1)
275             return done > 0 ? done : -1;
276         done += len;
277         buf += len;
278         buflen -= len;
279     } while (buflen > 0);
280 
281     return done;
282 }
283 #  endif
284 
285 #  if defined(OPENSSL_RAND_SEED_GETRANDOM)
286 
287 #   if defined(__linux) && !defined(__NR_getrandom)
288 #    if defined(__arm__)
289 #     define __NR_getrandom    (__NR_SYSCALL_BASE+384)
290 #    elif defined(__i386__)
291 #     define __NR_getrandom    355
292 #    elif defined(__x86_64__)
293 #     if defined(__ILP32__)
294 #      define __NR_getrandom   (__X32_SYSCALL_BIT + 318)
295 #     else
296 #      define __NR_getrandom   318
297 #     endif
298 #    elif defined(__xtensa__)
299 #     define __NR_getrandom    338
300 #    elif defined(__s390__) || defined(__s390x__)
301 #     define __NR_getrandom    349
302 #    elif defined(__bfin__)
303 #     define __NR_getrandom    389
304 #    elif defined(__powerpc__)
305 #     define __NR_getrandom    359
306 #    elif defined(__mips__) || defined(__mips64)
307 #     if _MIPS_SIM == _MIPS_SIM_ABI32
308 #      define __NR_getrandom   (__NR_Linux + 353)
309 #     elif _MIPS_SIM == _MIPS_SIM_ABI64
310 #      define __NR_getrandom   (__NR_Linux + 313)
311 #     elif _MIPS_SIM == _MIPS_SIM_NABI32
312 #      define __NR_getrandom   (__NR_Linux + 317)
313 #     endif
314 #    elif defined(__hppa__)
315 #     define __NR_getrandom    (__NR_Linux + 339)
316 #    elif defined(__sparc__)
317 #     define __NR_getrandom    347
318 #    elif defined(__ia64__)
319 #     define __NR_getrandom    1339
320 #    elif defined(__alpha__)
321 #     define __NR_getrandom    511
322 #    elif defined(__sh__)
323 #     if defined(__SH5__)
324 #      define __NR_getrandom   373
325 #     else
326 #      define __NR_getrandom   384
327 #     endif
328 #    elif defined(__avr32__)
329 #     define __NR_getrandom    317
330 #    elif defined(__microblaze__)
331 #     define __NR_getrandom    385
332 #    elif defined(__m68k__)
333 #     define __NR_getrandom    352
334 #    elif defined(__cris__)
335 #     define __NR_getrandom    356
336 #    elif defined(__aarch64__)
337 #     define __NR_getrandom    278
338 #    else /* generic */
339 #     define __NR_getrandom    278
340 #    endif
341 #   endif
342 
343 /*
344  * syscall_random(): Try to get random data using a system call
345  * returns the number of bytes returned in buf, or < 0 on error.
346  */
syscall_random(void * buf,size_t buflen)347 static ssize_t syscall_random(void *buf, size_t buflen)
348 {
349     /*
350      * Note: 'buflen' equals the size of the buffer which is used by the
351      * get_entropy() callback of the RAND_DRBG. It is roughly bounded by
352      *
353      *   2 * RAND_POOL_FACTOR * (RAND_DRBG_STRENGTH / 8) = 2^14
354      *
355      * which is way below the OSSL_SSIZE_MAX limit. Therefore sign conversion
356      * between size_t and ssize_t is safe even without a range check.
357      */
358 
359     /*
360      * Do runtime detection to find getentropy().
361      *
362      * Known OSs that should support this:
363      * - Darwin since 16 (OSX 10.12, IOS 10.0).
364      * - Solaris since 11.3
365      * - OpenBSD since 5.6
366      * - Linux since 3.17 with glibc 2.25
367      * - FreeBSD since 12.0 (1200061)
368      *
369      * Note: Sometimes getentropy() can be provided but not implemented
370      * internally. So we need to check errno for ENOSYS
371      */
372 #  if defined(__GNUC__) && __GNUC__>=2 && defined(__ELF__) && !defined(__hpux)
373     extern int getentropy(void *buffer, size_t length) __attribute__((weak));
374 
375     if (getentropy != NULL) {
376         if (getentropy(buf, buflen) == 0)
377             return (ssize_t)buflen;
378         if (errno != ENOSYS)
379             return -1;
380     }
381 #  elif defined(OPENSSL_APPLE_CRYPTO_RANDOM)
382     if (CCRandomGenerateBytes(buf, buflen) == kCCSuccess)
383 	    return (ssize_t)buflen;
384 
385     return -1;
386 #  else
387     union {
388         void *p;
389         int (*f)(void *buffer, size_t length);
390     } p_getentropy;
391 
392     /*
393      * We could cache the result of the lookup, but we normally don't
394      * call this function often.
395      */
396     ERR_set_mark();
397     p_getentropy.p = DSO_global_lookup("getentropy");
398     ERR_pop_to_mark();
399     if (p_getentropy.p != NULL)
400         return p_getentropy.f(buf, buflen) == 0 ? (ssize_t)buflen : -1;
401 #  endif
402 
403     /* Linux supports this since version 3.17 */
404 #  if defined(__linux) && defined(__NR_getrandom)
405     return syscall(__NR_getrandom, buf, buflen, 0);
406 #  elif (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
407     return sysctl_random(buf, buflen);
408 #  else
409     errno = ENOSYS;
410     return -1;
411 #  endif
412 }
413 #  endif    /* defined(OPENSSL_RAND_SEED_GETRANDOM) */
414 
415 #  if defined(OPENSSL_RAND_SEED_DEVRANDOM)
416 static const char *random_device_paths[] = { DEVRANDOM };
417 static struct random_device {
418     int fd;
419     dev_t dev;
420     ino_t ino;
421     mode_t mode;
422     dev_t rdev;
423 } random_devices[OSSL_NELEM(random_device_paths)];
424 static int keep_random_devices_open = 1;
425 
426 #   if defined(__linux) && defined(DEVRANDOM_WAIT) \
427        && defined(OPENSSL_RAND_SEED_GETRANDOM)
428 static void *shm_addr;
429 
cleanup_shm(void)430 static void cleanup_shm(void)
431 {
432     shmdt(shm_addr);
433 }
434 
435 /*
436  * Ensure that the system randomness source has been adequately seeded.
437  * This is done by having the first start of libcrypto, wait until the device
438  * /dev/random becomes able to supply a byte of entropy.  Subsequent starts
439  * of the library and later reseedings do not need to do this.
440  */
wait_random_seeded(void)441 static int wait_random_seeded(void)
442 {
443     static int seeded = OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID < 0;
444     static const int kernel_version[] = { DEVRANDOM_SAFE_KERNEL };
445     int kernel[2];
446     int shm_id, fd, r;
447     char c, *p;
448     struct utsname un;
449     fd_set fds;
450 
451     if (!seeded) {
452         /* See if anything has created the global seeded indication */
453         if ((shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1, 0)) == -1) {
454             /*
455              * Check the kernel's version and fail if it is too recent.
456              *
457              * Linux kernels from 4.8 onwards do not guarantee that
458              * /dev/urandom is properly seeded when /dev/random becomes
459              * readable.  However, such kernels support the getentropy(2)
460              * system call and this should always succeed which renders
461              * this alternative but essentially identical source moot.
462              */
463             if (uname(&un) == 0) {
464                 kernel[0] = atoi(un.release);
465                 p = strchr(un.release, '.');
466                 kernel[1] = p == NULL ? 0 : atoi(p + 1);
467                 if (kernel[0] > kernel_version[0]
468                     || (kernel[0] == kernel_version[0]
469                         && kernel[1] >= kernel_version[1])) {
470                     return 0;
471                 }
472             }
473             /* Open /dev/random and wait for it to be readable */
474             if ((fd = open(DEVRANDOM_WAIT, O_RDONLY)) != -1) {
475                 if (DEVRANDM_WAIT_USE_SELECT && fd < FD_SETSIZE) {
476                     FD_ZERO(&fds);
477                     FD_SET(fd, &fds);
478                     while ((r = select(fd + 1, &fds, NULL, NULL, NULL)) < 0
479                            && errno == EINTR);
480                 } else {
481                     while ((r = read(fd, &c, 1)) < 0 && errno == EINTR);
482                 }
483                 close(fd);
484                 if (r == 1) {
485                     seeded = 1;
486                     /* Create the shared memory indicator */
487                     shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1,
488                                     IPC_CREAT | S_IRUSR | S_IRGRP | S_IROTH);
489                 }
490             }
491         }
492         if (shm_id != -1) {
493             seeded = 1;
494             /*
495              * Map the shared memory to prevent its premature destruction.
496              * If this call fails, it isn't a big problem.
497              */
498             shm_addr = shmat(shm_id, NULL, SHM_RDONLY);
499             if (shm_addr != (void *)-1)
500                 OPENSSL_atexit(&cleanup_shm);
501         }
502     }
503     return seeded;
504 }
505 #   else /* defined __linux && DEVRANDOM_WAIT && OPENSSL_RAND_SEED_GETRANDOM */
wait_random_seeded(void)506 static int wait_random_seeded(void)
507 {
508     return 1;
509 }
510 #   endif
511 
512 /*
513  * Verify that the file descriptor associated with the random source is
514  * still valid. The rationale for doing this is the fact that it is not
515  * uncommon for daemons to close all open file handles when daemonizing.
516  * So the handle might have been closed or even reused for opening
517  * another file.
518  */
check_random_device(struct random_device * rd)519 static int check_random_device(struct random_device * rd)
520 {
521     struct stat st;
522 
523     return rd->fd != -1
524            && fstat(rd->fd, &st) != -1
525            && rd->dev == st.st_dev
526            && rd->ino == st.st_ino
527            && ((rd->mode ^ st.st_mode) & ~(S_IRWXU | S_IRWXG | S_IRWXO)) == 0
528            && rd->rdev == st.st_rdev;
529 }
530 
531 /*
532  * Open a random device if required and return its file descriptor or -1 on error
533  */
get_random_device(size_t n)534 static int get_random_device(size_t n)
535 {
536     struct stat st;
537     struct random_device * rd = &random_devices[n];
538 
539     /* reuse existing file descriptor if it is (still) valid */
540     if (check_random_device(rd))
541         return rd->fd;
542 
543     /* open the random device ... */
544     if ((rd->fd = open(random_device_paths[n], O_RDONLY)) == -1)
545         return rd->fd;
546 
547     /* ... and cache its relevant stat(2) data */
548     if (fstat(rd->fd, &st) != -1) {
549         rd->dev = st.st_dev;
550         rd->ino = st.st_ino;
551         rd->mode = st.st_mode;
552         rd->rdev = st.st_rdev;
553     } else {
554         close(rd->fd);
555         rd->fd = -1;
556     }
557 
558     return rd->fd;
559 }
560 
561 /*
562  * Close a random device making sure it is a random device
563  */
close_random_device(size_t n)564 static void close_random_device(size_t n)
565 {
566     struct random_device * rd = &random_devices[n];
567 
568     if (check_random_device(rd))
569         close(rd->fd);
570     rd->fd = -1;
571 }
572 
rand_pool_init(void)573 int rand_pool_init(void)
574 {
575     size_t i;
576 
577     for (i = 0; i < OSSL_NELEM(random_devices); i++)
578         random_devices[i].fd = -1;
579 
580     return 1;
581 }
582 
rand_pool_cleanup(void)583 void rand_pool_cleanup(void)
584 {
585     size_t i;
586 
587     for (i = 0; i < OSSL_NELEM(random_devices); i++)
588         close_random_device(i);
589 }
590 
rand_pool_keep_random_devices_open(int keep)591 void rand_pool_keep_random_devices_open(int keep)
592 {
593     if (!keep)
594         rand_pool_cleanup();
595 
596     keep_random_devices_open = keep;
597 }
598 
599 #  else     /* !defined(OPENSSL_RAND_SEED_DEVRANDOM) */
600 
rand_pool_init(void)601 int rand_pool_init(void)
602 {
603     return 1;
604 }
605 
rand_pool_cleanup(void)606 void rand_pool_cleanup(void)
607 {
608 }
609 
rand_pool_keep_random_devices_open(int keep)610 void rand_pool_keep_random_devices_open(int keep)
611 {
612 }
613 
614 #  endif    /* defined(OPENSSL_RAND_SEED_DEVRANDOM) */
615 
616 /*
617  * Try the various seeding methods in turn, exit when successful.
618  *
619  * TODO(DRBG): If more than one entropy source is available, is it
620  * preferable to stop as soon as enough entropy has been collected
621  * (as favored by @rsalz) or should one rather be defensive and add
622  * more entropy than requested and/or from different sources?
623  *
624  * Currently, the user can select multiple entropy sources in the
625  * configure step, yet in practice only the first available source
626  * will be used. A more flexible solution has been requested, but
627  * currently it is not clear how this can be achieved without
628  * overengineering the problem. There are many parameters which
629  * could be taken into account when selecting the order and amount
630  * of input from the different entropy sources (trust, quality,
631  * possibility of blocking).
632  */
rand_pool_acquire_entropy(RAND_POOL * pool)633 size_t rand_pool_acquire_entropy(RAND_POOL *pool)
634 {
635 #  if defined(OPENSSL_RAND_SEED_NONE)
636     return rand_pool_entropy_available(pool);
637 #  else
638     size_t entropy_available;
639 
640 #   if defined(OPENSSL_RAND_SEED_GETRANDOM)
641     {
642         size_t bytes_needed;
643         unsigned char *buffer;
644         ssize_t bytes;
645         /* Maximum allowed number of consecutive unsuccessful attempts */
646         int attempts = 3;
647 
648         bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
649         while (bytes_needed != 0 && attempts-- > 0) {
650             buffer = rand_pool_add_begin(pool, bytes_needed);
651             bytes = syscall_random(buffer, bytes_needed);
652             if (bytes > 0) {
653                 rand_pool_add_end(pool, bytes, 8 * bytes);
654                 bytes_needed -= bytes;
655                 attempts = 3; /* reset counter after successful attempt */
656             } else if (bytes < 0 && errno != EINTR) {
657                 break;
658             }
659         }
660     }
661     entropy_available = rand_pool_entropy_available(pool);
662     if (entropy_available > 0)
663         return entropy_available;
664 #   endif
665 
666 #   if defined(OPENSSL_RAND_SEED_LIBRANDOM)
667     {
668         /* Not yet implemented. */
669     }
670 #   endif
671 
672 #   if defined(OPENSSL_RAND_SEED_DEVRANDOM)
673     if (wait_random_seeded()) {
674         size_t bytes_needed;
675         unsigned char *buffer;
676         size_t i;
677 
678         bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
679         for (i = 0; bytes_needed > 0 && i < OSSL_NELEM(random_device_paths);
680              i++) {
681             ssize_t bytes = 0;
682             /* Maximum number of consecutive unsuccessful attempts */
683             int attempts = 3;
684             const int fd = get_random_device(i);
685 
686             if (fd == -1)
687                 continue;
688 
689             while (bytes_needed != 0 && attempts-- > 0) {
690                 buffer = rand_pool_add_begin(pool, bytes_needed);
691                 bytes = read(fd, buffer, bytes_needed);
692 
693                 if (bytes > 0) {
694                     rand_pool_add_end(pool, bytes, 8 * bytes);
695                     bytes_needed -= bytes;
696                     attempts = 3; /* reset counter on successful attempt */
697                 } else if (bytes < 0 && errno != EINTR) {
698                     break;
699                 }
700             }
701             if (bytes < 0 || !keep_random_devices_open)
702                 close_random_device(i);
703 
704             bytes_needed = rand_pool_bytes_needed(pool, 1);
705         }
706         entropy_available = rand_pool_entropy_available(pool);
707         if (entropy_available > 0)
708             return entropy_available;
709     }
710 #   endif
711 
712 #   if defined(OPENSSL_RAND_SEED_RDTSC)
713     entropy_available = rand_acquire_entropy_from_tsc(pool);
714     if (entropy_available > 0)
715         return entropy_available;
716 #   endif
717 
718 #   if defined(OPENSSL_RAND_SEED_RDCPU)
719     entropy_available = rand_acquire_entropy_from_cpu(pool);
720     if (entropy_available > 0)
721         return entropy_available;
722 #   endif
723 
724 #   if defined(OPENSSL_RAND_SEED_EGD)
725     {
726         static const char *paths[] = { DEVRANDOM_EGD, NULL };
727         size_t bytes_needed;
728         unsigned char *buffer;
729         int i;
730 
731         bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
732         for (i = 0; bytes_needed > 0 && paths[i] != NULL; i++) {
733             size_t bytes = 0;
734             int num;
735 
736             buffer = rand_pool_add_begin(pool, bytes_needed);
737             num = RAND_query_egd_bytes(paths[i],
738                                        buffer, (int)bytes_needed);
739             if (num == (int)bytes_needed)
740                 bytes = bytes_needed;
741 
742             rand_pool_add_end(pool, bytes, 8 * bytes);
743             bytes_needed = rand_pool_bytes_needed(pool, 1);
744         }
745         entropy_available = rand_pool_entropy_available(pool);
746         if (entropy_available > 0)
747             return entropy_available;
748     }
749 #   endif
750 
751     return rand_pool_entropy_available(pool);
752 #  endif
753 }
754 # endif
755 #endif
756 
757 #if defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__)
rand_pool_add_nonce_data(RAND_POOL * pool)758 int rand_pool_add_nonce_data(RAND_POOL *pool)
759 {
760     struct {
761         pid_t pid;
762         CRYPTO_THREAD_ID tid;
763         uint64_t time;
764     } data = { 0 };
765 
766     /*
767      * Add process id, thread id, and a high resolution timestamp to
768      * ensure that the nonce is unique with high probability for
769      * different process instances.
770      */
771     data.pid = getpid();
772     data.tid = CRYPTO_THREAD_get_current_id();
773     data.time = get_time_stamp();
774 
775     return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
776 }
777 
rand_pool_add_additional_data(RAND_POOL * pool)778 int rand_pool_add_additional_data(RAND_POOL *pool)
779 {
780     struct {
781         int fork_id;
782         CRYPTO_THREAD_ID tid;
783         uint64_t time;
784     } data = { 0 };
785 
786     /*
787      * Add some noise from the thread id and a high resolution timer.
788      * The fork_id adds some extra fork-safety.
789      * The thread id adds a little randomness if the drbg is accessed
790      * concurrently (which is the case for the <master> drbg).
791      */
792     data.fork_id = openssl_get_fork_id();
793     data.tid = CRYPTO_THREAD_get_current_id();
794     data.time = get_timer_bits();
795 
796     return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
797 }
798 
799 
800 /*
801  * Get the current time with the highest possible resolution
802  *
803  * The time stamp is added to the nonce, so it is optimized for not repeating.
804  * The current time is ideal for this purpose, provided the computer's clock
805  * is synchronized.
806  */
get_time_stamp(void)807 static uint64_t get_time_stamp(void)
808 {
809 # if defined(OSSL_POSIX_TIMER_OKAY)
810     {
811         struct timespec ts;
812 
813         if (clock_gettime(CLOCK_REALTIME, &ts) == 0)
814             return TWO32TO64(ts.tv_sec, ts.tv_nsec);
815     }
816 # endif
817 # if defined(__unix__) \
818      || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
819     {
820         struct timeval tv;
821 
822         if (gettimeofday(&tv, NULL) == 0)
823             return TWO32TO64(tv.tv_sec, tv.tv_usec);
824     }
825 # endif
826     return time(NULL);
827 }
828 
829 /*
830  * Get an arbitrary timer value of the highest possible resolution
831  *
832  * The timer value is added as random noise to the additional data,
833  * which is not considered a trusted entropy sourec, so any result
834  * is acceptable.
835  */
get_timer_bits(void)836 static uint64_t get_timer_bits(void)
837 {
838     uint64_t res = OPENSSL_rdtsc();
839 
840     if (res != 0)
841         return res;
842 
843 # if defined(__sun) || defined(__hpux)
844     return gethrtime();
845 # elif defined(_AIX)
846     {
847         timebasestruct_t t;
848 
849         read_wall_time(&t, TIMEBASE_SZ);
850         return TWO32TO64(t.tb_high, t.tb_low);
851     }
852 # elif defined(OSSL_POSIX_TIMER_OKAY)
853     {
854         struct timespec ts;
855 
856 #  ifdef CLOCK_BOOTTIME
857 #   define CLOCK_TYPE CLOCK_BOOTTIME
858 #  elif defined(_POSIX_MONOTONIC_CLOCK)
859 #   define CLOCK_TYPE CLOCK_MONOTONIC
860 #  else
861 #   define CLOCK_TYPE CLOCK_REALTIME
862 #  endif
863 
864         if (clock_gettime(CLOCK_TYPE, &ts) == 0)
865             return TWO32TO64(ts.tv_sec, ts.tv_nsec);
866     }
867 # endif
868 # if defined(__unix__) \
869      || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
870     {
871         struct timeval tv;
872 
873         if (gettimeofday(&tv, NULL) == 0)
874             return TWO32TO64(tv.tv_sec, tv.tv_usec);
875     }
876 # endif
877     return time(NULL);
878 }
879 #endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS))
880           || defined(__DJGPP__) */
881