• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Macros for manipulating and testing page->flags
4  */
5 
6 #ifndef PAGE_FLAGS_H
7 #define PAGE_FLAGS_H
8 
9 #include <linux/types.h>
10 #include <linux/bug.h>
11 #include <linux/mmdebug.h>
12 #ifndef __GENERATING_BOUNDS_H
13 #include <linux/mm_types.h>
14 #include <generated/bounds.h>
15 #endif /* !__GENERATING_BOUNDS_H */
16 
17 /*
18  * Various page->flags bits:
19  *
20  * PG_reserved is set for special pages. The "struct page" of such a page
21  * should in general not be touched (e.g. set dirty) except by its owner.
22  * Pages marked as PG_reserved include:
23  * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
24  *   initrd, HW tables)
25  * - Pages reserved or allocated early during boot (before the page allocator
26  *   was initialized). This includes (depending on the architecture) the
27  *   initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
28  *   much more. Once (if ever) freed, PG_reserved is cleared and they will
29  *   be given to the page allocator.
30  * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
31  *   to read/write these pages might end badly. Don't touch!
32  * - The zero page(s)
33  * - Pages not added to the page allocator when onlining a section because
34  *   they were excluded via the online_page_callback() or because they are
35  *   PG_hwpoison.
36  * - Pages allocated in the context of kexec/kdump (loaded kernel image,
37  *   control pages, vmcoreinfo)
38  * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
39  *   not marked PG_reserved (as they might be in use by somebody else who does
40  *   not respect the caching strategy).
41  * - Pages part of an offline section (struct pages of offline sections should
42  *   not be trusted as they will be initialized when first onlined).
43  * - MCA pages on ia64
44  * - Pages holding CPU notes for POWER Firmware Assisted Dump
45  * - Device memory (e.g. PMEM, DAX, HMM)
46  * Some PG_reserved pages will be excluded from the hibernation image.
47  * PG_reserved does in general not hinder anybody from dumping or swapping
48  * and is no longer required for remap_pfn_range(). ioremap might require it.
49  * Consequently, PG_reserved for a page mapped into user space can indicate
50  * the zero page, the vDSO, MMIO pages or device memory.
51  *
52  * The PG_private bitflag is set on pagecache pages if they contain filesystem
53  * specific data (which is normally at page->private). It can be used by
54  * private allocations for its own usage.
55  *
56  * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
57  * and cleared when writeback _starts_ or when read _completes_. PG_writeback
58  * is set before writeback starts and cleared when it finishes.
59  *
60  * PG_locked also pins a page in pagecache, and blocks truncation of the file
61  * while it is held.
62  *
63  * page_waitqueue(page) is a wait queue of all tasks waiting for the page
64  * to become unlocked.
65  *
66  * PG_swapbacked is set when a page uses swap as a backing storage.  This are
67  * usually PageAnon or shmem pages but please note that even anonymous pages
68  * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
69  * a result of MADV_FREE).
70  *
71  * PG_uptodate tells whether the page's contents is valid.  When a read
72  * completes, the page becomes uptodate, unless a disk I/O error happened.
73  *
74  * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
75  * file-backed pagecache (see mm/vmscan.c).
76  *
77  * PG_error is set to indicate that an I/O error occurred on this page.
78  *
79  * PG_arch_1 is an architecture specific page state bit.  The generic code
80  * guarantees that this bit is cleared for a page when it first is entered into
81  * the page cache.
82  *
83  * PG_hwpoison indicates that a page got corrupted in hardware and contains
84  * data with incorrect ECC bits that triggered a machine check. Accessing is
85  * not safe since it may cause another machine check. Don't touch!
86  */
87 
88 /*
89  * Don't use the *_dontuse flags.  Use the macros.  Otherwise you'll break
90  * locked- and dirty-page accounting.
91  *
92  * The page flags field is split into two parts, the main flags area
93  * which extends from the low bits upwards, and the fields area which
94  * extends from the high bits downwards.
95  *
96  *  | FIELD | ... | FLAGS |
97  *  N-1           ^       0
98  *               (NR_PAGEFLAGS)
99  *
100  * The fields area is reserved for fields mapping zone, node (for NUMA) and
101  * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
102  * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
103  */
104 enum pageflags {
105 	PG_locked,		/* Page is locked. Don't touch. */
106 	PG_referenced,
107 	PG_uptodate,
108 	PG_dirty,
109 	PG_lru,
110 	PG_active,
111 	PG_workingset,
112 	PG_waiters,		/* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
113 	PG_error,
114 	PG_slab,
115 	PG_owner_priv_1,	/* Owner use. If pagecache, fs may use*/
116 	PG_arch_1,
117 	PG_reserved,
118 	PG_private,		/* If pagecache, has fs-private data */
119 	PG_private_2,		/* If pagecache, has fs aux data */
120 	PG_writeback,		/* Page is under writeback */
121 	PG_head,		/* A head page */
122 	PG_mappedtodisk,	/* Has blocks allocated on-disk */
123 	PG_reclaim,		/* To be reclaimed asap */
124 	PG_swapbacked,		/* Page is backed by RAM/swap */
125 	PG_unevictable,		/* Page is "unevictable"  */
126 #ifdef CONFIG_MMU
127 	PG_mlocked,		/* Page is vma mlocked */
128 #endif
129 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
130 	PG_uncached,		/* Page has been mapped as uncached */
131 #endif
132 #ifdef CONFIG_MEMORY_FAILURE
133 	PG_hwpoison,		/* hardware poisoned page. Don't touch */
134 #endif
135 #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
136 	PG_young,
137 	PG_idle,
138 #endif
139 #ifdef CONFIG_64BIT
140 	PG_arch_2,
141 #endif
142 #ifdef CONFIG_PAGE_TRACING
143 	PG_skb,
144 	PG_zspage,
145 #endif
146 #ifdef CONFIG_MEM_PURGEABLE
147 	PG_purgeable,
148 #endif
149 	__NR_PAGEFLAGS,
150 
151 	/* Filesystems */
152 	PG_checked = PG_owner_priv_1,
153 
154 	/* SwapBacked */
155 	PG_swapcache = PG_owner_priv_1,	/* Swap page: swp_entry_t in private */
156 
157 	/* Two page bits are conscripted by FS-Cache to maintain local caching
158 	 * state.  These bits are set on pages belonging to the netfs's inodes
159 	 * when those inodes are being locally cached.
160 	 */
161 	PG_fscache = PG_private_2,	/* page backed by cache */
162 
163 	/* XEN */
164 	/* Pinned in Xen as a read-only pagetable page. */
165 	PG_pinned = PG_owner_priv_1,
166 	/* Pinned as part of domain save (see xen_mm_pin_all()). */
167 	PG_savepinned = PG_dirty,
168 	/* Has a grant mapping of another (foreign) domain's page. */
169 	PG_foreign = PG_owner_priv_1,
170 	/* Remapped by swiotlb-xen. */
171 	PG_xen_remapped = PG_owner_priv_1,
172 
173 	/* SLOB */
174 	PG_slob_free = PG_private,
175 
176 	/* Compound pages. Stored in first tail page's flags */
177 	PG_double_map = PG_workingset,
178 
179 	/* non-lru isolated movable page */
180 	PG_isolated = PG_reclaim,
181 
182 	/* Only valid for buddy pages. Used to track pages that are reported */
183 	PG_reported = PG_uptodate,
184 };
185 
186 #ifndef __GENERATING_BOUNDS_H
187 
188 struct page;	/* forward declaration */
189 
compound_head(struct page * page)190 static inline struct page *compound_head(struct page *page)
191 {
192 	unsigned long head = READ_ONCE(page->compound_head);
193 
194 	if (unlikely(head & 1))
195 		return (struct page *) (head - 1);
196 	return page;
197 }
198 
PageTail(struct page * page)199 static __always_inline int PageTail(struct page *page)
200 {
201 	return READ_ONCE(page->compound_head) & 1;
202 }
203 
PageCompound(struct page * page)204 static __always_inline int PageCompound(struct page *page)
205 {
206 	return test_bit(PG_head, &page->flags) || PageTail(page);
207 }
208 
209 #define	PAGE_POISON_PATTERN	-1l
PagePoisoned(const struct page * page)210 static inline int PagePoisoned(const struct page *page)
211 {
212 	return page->flags == PAGE_POISON_PATTERN;
213 }
214 
215 #ifdef CONFIG_DEBUG_VM
216 void page_init_poison(struct page *page, size_t size);
217 #else
page_init_poison(struct page * page,size_t size)218 static inline void page_init_poison(struct page *page, size_t size)
219 {
220 }
221 #endif
222 
223 /*
224  * Page flags policies wrt compound pages
225  *
226  * PF_POISONED_CHECK
227  *     check if this struct page poisoned/uninitialized
228  *
229  * PF_ANY:
230  *     the page flag is relevant for small, head and tail pages.
231  *
232  * PF_HEAD:
233  *     for compound page all operations related to the page flag applied to
234  *     head page.
235  *
236  * PF_ONLY_HEAD:
237  *     for compound page, callers only ever operate on the head page.
238  *
239  * PF_NO_TAIL:
240  *     modifications of the page flag must be done on small or head pages,
241  *     checks can be done on tail pages too.
242  *
243  * PF_NO_COMPOUND:
244  *     the page flag is not relevant for compound pages.
245  *
246  * PF_SECOND:
247  *     the page flag is stored in the first tail page.
248  */
249 #define PF_POISONED_CHECK(page) ({					\
250 		VM_BUG_ON_PGFLAGS(PagePoisoned(page), page);		\
251 		page; })
252 #define PF_ANY(page, enforce)	PF_POISONED_CHECK(page)
253 #define PF_HEAD(page, enforce)	PF_POISONED_CHECK(compound_head(page))
254 #define PF_ONLY_HEAD(page, enforce) ({					\
255 		VM_BUG_ON_PGFLAGS(PageTail(page), page);		\
256 		PF_POISONED_CHECK(page); })
257 #define PF_NO_TAIL(page, enforce) ({					\
258 		VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page);	\
259 		PF_POISONED_CHECK(compound_head(page)); })
260 #define PF_NO_COMPOUND(page, enforce) ({				\
261 		VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page);	\
262 		PF_POISONED_CHECK(page); })
263 #define PF_SECOND(page, enforce) ({					\
264 		VM_BUG_ON_PGFLAGS(!PageHead(page), page);		\
265 		PF_POISONED_CHECK(&page[1]); })
266 
267 /*
268  * Macros to create function definitions for page flags
269  */
270 #define TESTPAGEFLAG(uname, lname, policy)				\
271 static __always_inline int Page##uname(struct page *page)		\
272 	{ return test_bit(PG_##lname, &policy(page, 0)->flags); }
273 
274 #define SETPAGEFLAG(uname, lname, policy)				\
275 static __always_inline void SetPage##uname(struct page *page)		\
276 	{ set_bit(PG_##lname, &policy(page, 1)->flags); }
277 
278 #define CLEARPAGEFLAG(uname, lname, policy)				\
279 static __always_inline void ClearPage##uname(struct page *page)		\
280 	{ clear_bit(PG_##lname, &policy(page, 1)->flags); }
281 
282 #define __SETPAGEFLAG(uname, lname, policy)				\
283 static __always_inline void __SetPage##uname(struct page *page)		\
284 	{ __set_bit(PG_##lname, &policy(page, 1)->flags); }
285 
286 #define __CLEARPAGEFLAG(uname, lname, policy)				\
287 static __always_inline void __ClearPage##uname(struct page *page)	\
288 	{ __clear_bit(PG_##lname, &policy(page, 1)->flags); }
289 
290 #define TESTSETFLAG(uname, lname, policy)				\
291 static __always_inline int TestSetPage##uname(struct page *page)	\
292 	{ return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
293 
294 #define TESTCLEARFLAG(uname, lname, policy)				\
295 static __always_inline int TestClearPage##uname(struct page *page)	\
296 	{ return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
297 
298 #define PAGEFLAG(uname, lname, policy)					\
299 	TESTPAGEFLAG(uname, lname, policy)				\
300 	SETPAGEFLAG(uname, lname, policy)				\
301 	CLEARPAGEFLAG(uname, lname, policy)
302 
303 #define __PAGEFLAG(uname, lname, policy)				\
304 	TESTPAGEFLAG(uname, lname, policy)				\
305 	__SETPAGEFLAG(uname, lname, policy)				\
306 	__CLEARPAGEFLAG(uname, lname, policy)
307 
308 #define TESTSCFLAG(uname, lname, policy)				\
309 	TESTSETFLAG(uname, lname, policy)				\
310 	TESTCLEARFLAG(uname, lname, policy)
311 
312 #define TESTPAGEFLAG_FALSE(uname)					\
313 static inline int Page##uname(const struct page *page) { return 0; }
314 
315 #define SETPAGEFLAG_NOOP(uname)						\
316 static inline void SetPage##uname(struct page *page) {  }
317 
318 #define CLEARPAGEFLAG_NOOP(uname)					\
319 static inline void ClearPage##uname(struct page *page) {  }
320 
321 #define __CLEARPAGEFLAG_NOOP(uname)					\
322 static inline void __ClearPage##uname(struct page *page) {  }
323 
324 #define TESTSETFLAG_FALSE(uname)					\
325 static inline int TestSetPage##uname(struct page *page) { return 0; }
326 
327 #define TESTCLEARFLAG_FALSE(uname)					\
328 static inline int TestClearPage##uname(struct page *page) { return 0; }
329 
330 #define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname)			\
331 	SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
332 
333 #define TESTSCFLAG_FALSE(uname)						\
334 	TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
335 
336 __PAGEFLAG(Locked, locked, PF_NO_TAIL)
337 PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
338 PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL)
339 PAGEFLAG(Referenced, referenced, PF_HEAD)
340 	TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
341 	__SETPAGEFLAG(Referenced, referenced, PF_HEAD)
342 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
343 	__CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
344 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
345 PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
346 	TESTCLEARFLAG(Active, active, PF_HEAD)
347 PAGEFLAG(Workingset, workingset, PF_HEAD)
348 	TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
349 __PAGEFLAG(Slab, slab, PF_NO_TAIL)
350 __PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
351 PAGEFLAG(Checked, checked, PF_NO_COMPOUND)	   /* Used by some filesystems */
352 
353 /* Xen */
354 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
355 	TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
356 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
357 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
PAGEFLAG(XenRemapped,xen_remapped,PF_NO_COMPOUND)358 PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
359 	TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
360 
361 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
362 	__CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
363 	__SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
364 PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
365 	__CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
366 	__SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
367 
368 /*
369  * Private page markings that may be used by the filesystem that owns the page
370  * for its own purposes.
371  * - PG_private and PG_private_2 cause releasepage() and co to be invoked
372  */
373 PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY)
374 	__CLEARPAGEFLAG(Private, private, PF_ANY)
375 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
376 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
377 	TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
378 
379 /*
380  * Only test-and-set exist for PG_writeback.  The unconditional operators are
381  * risky: they bypass page accounting.
382  */
383 TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
384 	TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
385 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
386 
387 /* PG_readahead is only used for reads; PG_reclaim is only for writes */
388 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
389 	TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
390 PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND)
391 	TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND)
392 
393 #ifdef CONFIG_HIGHMEM
394 /*
395  * Must use a macro here due to header dependency issues. page_zone() is not
396  * available at this point.
397  */
398 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
399 #else
400 PAGEFLAG_FALSE(HighMem)
401 #endif
402 
403 #ifdef CONFIG_SWAP
404 static __always_inline int PageSwapCache(struct page *page)
405 {
406 #ifdef CONFIG_THP_SWAP
407 	page = compound_head(page);
408 #endif
409 	return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags);
410 
411 }
412 SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
413 CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
414 #else
415 PAGEFLAG_FALSE(SwapCache)
416 #endif
417 
418 PAGEFLAG(Unevictable, unevictable, PF_HEAD)
419 	__CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
420 	TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
421 
422 #ifdef CONFIG_MMU
423 PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
424 	__CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
425 	TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
426 #else
427 PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked)
428 	TESTSCFLAG_FALSE(Mlocked)
429 #endif
430 
431 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
432 PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
433 #else
434 PAGEFLAG_FALSE(Uncached)
435 #endif
436 
437 #ifdef CONFIG_MEMORY_FAILURE
438 PAGEFLAG(HWPoison, hwpoison, PF_ANY)
439 TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
440 #define __PG_HWPOISON (1UL << PG_hwpoison)
441 extern bool take_page_off_buddy(struct page *page);
442 #else
443 PAGEFLAG_FALSE(HWPoison)
444 #define __PG_HWPOISON 0
445 #endif
446 
447 #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
TESTPAGEFLAG(Young,young,PF_ANY)448 TESTPAGEFLAG(Young, young, PF_ANY)
449 SETPAGEFLAG(Young, young, PF_ANY)
450 TESTCLEARFLAG(Young, young, PF_ANY)
451 PAGEFLAG(Idle, idle, PF_ANY)
452 #endif
453 
454 #ifdef CONFIG_PAGE_TRACING
455 	PAGEFLAG(SKB, skb, PF_ANY)
456 	PAGEFLAG(Zspage, zspage, PF_ANY)
457 #endif
458 
459 /*
460  * PageReported() is used to track reported free pages within the Buddy
461  * allocator. We can use the non-atomic version of the test and set
462  * operations as both should be shielded with the zone lock to prevent
463  * any possible races on the setting or clearing of the bit.
464  */
465 __PAGEFLAG(Reported, reported, PF_NO_COMPOUND)
466 
467 #ifdef CONFIG_MEM_PURGEABLE
468 PAGEFLAG(Purgeable, purgeable, PF_ANY)
469 #else
470 PAGEFLAG_FALSE(Purgeable)
471 #endif
472 /*
473  * On an anonymous page mapped into a user virtual memory area,
474  * page->mapping points to its anon_vma, not to a struct address_space;
475  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
476  *
477  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
478  * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
479  * bit; and then page->mapping points, not to an anon_vma, but to a private
480  * structure which KSM associates with that merged page.  See ksm.h.
481  *
482  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
483  * page and then page->mapping points a struct address_space.
484  *
485  * Please note that, confusingly, "page_mapping" refers to the inode
486  * address_space which maps the page from disk; whereas "page_mapped"
487  * refers to user virtual address space into which the page is mapped.
488  */
489 #define PAGE_MAPPING_ANON	0x1
490 #define PAGE_MAPPING_MOVABLE	0x2
491 #define PAGE_MAPPING_KSM	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
492 #define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
493 
494 static __always_inline int PageMappingFlags(struct page *page)
495 {
496 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
497 }
498 
PageAnon(struct page * page)499 static __always_inline int PageAnon(struct page *page)
500 {
501 	page = compound_head(page);
502 	return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
503 }
504 
__PageMovable(struct page * page)505 static __always_inline int __PageMovable(struct page *page)
506 {
507 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
508 				PAGE_MAPPING_MOVABLE;
509 }
510 
511 #ifdef CONFIG_KSM
512 /*
513  * A KSM page is one of those write-protected "shared pages" or "merged pages"
514  * which KSM maps into multiple mms, wherever identical anonymous page content
515  * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
516  * anon_vma, but to that page's node of the stable tree.
517  */
PageKsm(struct page * page)518 static __always_inline int PageKsm(struct page *page)
519 {
520 	page = compound_head(page);
521 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
522 				PAGE_MAPPING_KSM;
523 }
524 #else
525 TESTPAGEFLAG_FALSE(Ksm)
526 #endif
527 
528 u64 stable_page_flags(struct page *page);
529 
PageUptodate(struct page * page)530 static inline int PageUptodate(struct page *page)
531 {
532 	int ret;
533 	page = compound_head(page);
534 	ret = test_bit(PG_uptodate, &(page)->flags);
535 	/*
536 	 * Must ensure that the data we read out of the page is loaded
537 	 * _after_ we've loaded page->flags to check for PageUptodate.
538 	 * We can skip the barrier if the page is not uptodate, because
539 	 * we wouldn't be reading anything from it.
540 	 *
541 	 * See SetPageUptodate() for the other side of the story.
542 	 */
543 	if (ret)
544 		smp_rmb();
545 
546 	return ret;
547 }
548 
__SetPageUptodate(struct page * page)549 static __always_inline void __SetPageUptodate(struct page *page)
550 {
551 	VM_BUG_ON_PAGE(PageTail(page), page);
552 	smp_wmb();
553 	__set_bit(PG_uptodate, &page->flags);
554 }
555 
SetPageUptodate(struct page * page)556 static __always_inline void SetPageUptodate(struct page *page)
557 {
558 	VM_BUG_ON_PAGE(PageTail(page), page);
559 	/*
560 	 * Memory barrier must be issued before setting the PG_uptodate bit,
561 	 * so that all previous stores issued in order to bring the page
562 	 * uptodate are actually visible before PageUptodate becomes true.
563 	 */
564 	smp_wmb();
565 	set_bit(PG_uptodate, &page->flags);
566 }
567 
568 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
569 
570 int test_clear_page_writeback(struct page *page);
571 int __test_set_page_writeback(struct page *page, bool keep_write);
572 
573 #define test_set_page_writeback(page)			\
574 	__test_set_page_writeback(page, false)
575 #define test_set_page_writeback_keepwrite(page)	\
576 	__test_set_page_writeback(page, true)
577 
set_page_writeback(struct page * page)578 static inline void set_page_writeback(struct page *page)
579 {
580 	test_set_page_writeback(page);
581 }
582 
set_page_writeback_keepwrite(struct page * page)583 static inline void set_page_writeback_keepwrite(struct page *page)
584 {
585 	test_set_page_writeback_keepwrite(page);
586 }
587 
__PAGEFLAG(Head,head,PF_ANY)588 __PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
589 
590 static __always_inline void set_compound_head(struct page *page, struct page *head)
591 {
592 	WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
593 }
594 
clear_compound_head(struct page * page)595 static __always_inline void clear_compound_head(struct page *page)
596 {
597 	WRITE_ONCE(page->compound_head, 0);
598 }
599 
600 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
ClearPageCompound(struct page * page)601 static inline void ClearPageCompound(struct page *page)
602 {
603 	BUG_ON(!PageHead(page));
604 	ClearPageHead(page);
605 }
606 #endif
607 
608 #define PG_head_mask ((1UL << PG_head))
609 
610 #ifdef CONFIG_HUGETLB_PAGE
611 int PageHuge(struct page *page);
612 int PageHeadHuge(struct page *page);
613 bool page_huge_active(struct page *page);
614 #else
615 TESTPAGEFLAG_FALSE(Huge)
TESTPAGEFLAG_FALSE(HeadHuge)616 TESTPAGEFLAG_FALSE(HeadHuge)
617 
618 static inline bool page_huge_active(struct page *page)
619 {
620 	return 0;
621 }
622 #endif
623 
624 
625 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
626 /*
627  * PageHuge() only returns true for hugetlbfs pages, but not for
628  * normal or transparent huge pages.
629  *
630  * PageTransHuge() returns true for both transparent huge and
631  * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
632  * called only in the core VM paths where hugetlbfs pages can't exist.
633  */
PageTransHuge(struct page * page)634 static inline int PageTransHuge(struct page *page)
635 {
636 	VM_BUG_ON_PAGE(PageTail(page), page);
637 	return PageHead(page);
638 }
639 
640 /*
641  * PageTransCompound returns true for both transparent huge pages
642  * and hugetlbfs pages, so it should only be called when it's known
643  * that hugetlbfs pages aren't involved.
644  */
PageTransCompound(struct page * page)645 static inline int PageTransCompound(struct page *page)
646 {
647 	return PageCompound(page);
648 }
649 
650 /*
651  * PageTransCompoundMap is the same as PageTransCompound, but it also
652  * guarantees the primary MMU has the entire compound page mapped
653  * through pmd_trans_huge, which in turn guarantees the secondary MMUs
654  * can also map the entire compound page. This allows the secondary
655  * MMUs to call get_user_pages() only once for each compound page and
656  * to immediately map the entire compound page with a single secondary
657  * MMU fault. If there will be a pmd split later, the secondary MMUs
658  * will get an update through the MMU notifier invalidation through
659  * split_huge_pmd().
660  *
661  * Unlike PageTransCompound, this is safe to be called only while
662  * split_huge_pmd() cannot run from under us, like if protected by the
663  * MMU notifier, otherwise it may result in page->_mapcount check false
664  * positives.
665  *
666  * We have to treat page cache THP differently since every subpage of it
667  * would get _mapcount inc'ed once it is PMD mapped.  But, it may be PTE
668  * mapped in the current process so comparing subpage's _mapcount to
669  * compound_mapcount to filter out PTE mapped case.
670  */
PageTransCompoundMap(struct page * page)671 static inline int PageTransCompoundMap(struct page *page)
672 {
673 	struct page *head;
674 
675 	if (!PageTransCompound(page))
676 		return 0;
677 
678 	if (PageAnon(page))
679 		return atomic_read(&page->_mapcount) < 0;
680 
681 	head = compound_head(page);
682 	/* File THP is PMD mapped and not PTE mapped */
683 	return atomic_read(&page->_mapcount) ==
684 	       atomic_read(compound_mapcount_ptr(head));
685 }
686 
687 /*
688  * PageTransTail returns true for both transparent huge pages
689  * and hugetlbfs pages, so it should only be called when it's known
690  * that hugetlbfs pages aren't involved.
691  */
PageTransTail(struct page * page)692 static inline int PageTransTail(struct page *page)
693 {
694 	return PageTail(page);
695 }
696 
697 /*
698  * PageDoubleMap indicates that the compound page is mapped with PTEs as well
699  * as PMDs.
700  *
701  * This is required for optimization of rmap operations for THP: we can postpone
702  * per small page mapcount accounting (and its overhead from atomic operations)
703  * until the first PMD split.
704  *
705  * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
706  * by one. This reference will go away with last compound_mapcount.
707  *
708  * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
709  */
PAGEFLAG(DoubleMap,double_map,PF_SECOND)710 PAGEFLAG(DoubleMap, double_map, PF_SECOND)
711 	TESTSCFLAG(DoubleMap, double_map, PF_SECOND)
712 #else
713 TESTPAGEFLAG_FALSE(TransHuge)
714 TESTPAGEFLAG_FALSE(TransCompound)
715 TESTPAGEFLAG_FALSE(TransCompoundMap)
716 TESTPAGEFLAG_FALSE(TransTail)
717 PAGEFLAG_FALSE(DoubleMap)
718 	TESTSCFLAG_FALSE(DoubleMap)
719 #endif
720 
721 /*
722  * For pages that are never mapped to userspace (and aren't PageSlab),
723  * page_type may be used.  Because it is initialised to -1, we invert the
724  * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and
725  * __ClearPageFoo *sets* the bit used for PageFoo.  We reserve a few high and
726  * low bits so that an underflow or overflow of page_mapcount() won't be
727  * mistaken for a page type value.
728  */
729 
730 #define PAGE_TYPE_BASE	0xf0000000
731 /* Reserve		0x0000007f to catch underflows of page_mapcount */
732 #define PAGE_MAPCOUNT_RESERVE	-128
733 #define PG_buddy	0x00000080
734 #define PG_offline	0x00000100
735 #define PG_kmemcg	0x00000200
736 #define PG_table	0x00000400
737 #define PG_guard	0x00000800
738 
739 #define PageType(page, flag)						\
740 	((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
741 
742 static inline int page_has_type(struct page *page)
743 {
744 	return (int)page->page_type < PAGE_MAPCOUNT_RESERVE;
745 }
746 
747 #define PAGE_TYPE_OPS(uname, lname)					\
748 static __always_inline int Page##uname(struct page *page)		\
749 {									\
750 	return PageType(page, PG_##lname);				\
751 }									\
752 static __always_inline void __SetPage##uname(struct page *page)		\
753 {									\
754 	VM_BUG_ON_PAGE(!PageType(page, 0), page);			\
755 	page->page_type &= ~PG_##lname;					\
756 }									\
757 static __always_inline void __ClearPage##uname(struct page *page)	\
758 {									\
759 	VM_BUG_ON_PAGE(!Page##uname(page), page);			\
760 	page->page_type |= PG_##lname;					\
761 }
762 
763 /*
764  * PageBuddy() indicates that the page is free and in the buddy system
765  * (see mm/page_alloc.c).
766  */
767 PAGE_TYPE_OPS(Buddy, buddy)
768 
769 /*
770  * PageOffline() indicates that the page is logically offline although the
771  * containing section is online. (e.g. inflated in a balloon driver or
772  * not onlined when onlining the section).
773  * The content of these pages is effectively stale. Such pages should not
774  * be touched (read/write/dump/save) except by their owner.
775  *
776  * If a driver wants to allow to offline unmovable PageOffline() pages without
777  * putting them back to the buddy, it can do so via the memory notifier by
778  * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
779  * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
780  * pages (now with a reference count of zero) are treated like free pages,
781  * allowing the containing memory block to get offlined. A driver that
782  * relies on this feature is aware that re-onlining the memory block will
783  * require to re-set the pages PageOffline() and not giving them to the
784  * buddy via online_page_callback_t.
785  */
786 PAGE_TYPE_OPS(Offline, offline)
787 
788 /*
789  * If kmemcg is enabled, the buddy allocator will set PageKmemcg() on
790  * pages allocated with __GFP_ACCOUNT. It gets cleared on page free.
791  */
792 PAGE_TYPE_OPS(Kmemcg, kmemcg)
793 
794 /*
795  * Marks pages in use as page tables.
796  */
797 PAGE_TYPE_OPS(Table, table)
798 
799 /*
800  * Marks guardpages used with debug_pagealloc.
801  */
802 PAGE_TYPE_OPS(Guard, guard)
803 
804 extern bool is_free_buddy_page(struct page *page);
805 
806 __PAGEFLAG(Isolated, isolated, PF_ANY);
807 
808 /*
809  * If network-based swap is enabled, sl*b must keep track of whether pages
810  * were allocated from pfmemalloc reserves.
811  */
PageSlabPfmemalloc(struct page * page)812 static inline int PageSlabPfmemalloc(struct page *page)
813 {
814 	VM_BUG_ON_PAGE(!PageSlab(page), page);
815 	return PageActive(page);
816 }
817 
SetPageSlabPfmemalloc(struct page * page)818 static inline void SetPageSlabPfmemalloc(struct page *page)
819 {
820 	VM_BUG_ON_PAGE(!PageSlab(page), page);
821 	SetPageActive(page);
822 }
823 
__ClearPageSlabPfmemalloc(struct page * page)824 static inline void __ClearPageSlabPfmemalloc(struct page *page)
825 {
826 	VM_BUG_ON_PAGE(!PageSlab(page), page);
827 	__ClearPageActive(page);
828 }
829 
ClearPageSlabPfmemalloc(struct page * page)830 static inline void ClearPageSlabPfmemalloc(struct page *page)
831 {
832 	VM_BUG_ON_PAGE(!PageSlab(page), page);
833 	ClearPageActive(page);
834 }
835 
836 #ifdef CONFIG_MMU
837 #define __PG_MLOCKED		(1UL << PG_mlocked)
838 #else
839 #define __PG_MLOCKED		0
840 #endif
841 
842 /*
843  * Flags checked when a page is freed.  Pages being freed should not have
844  * these flags set.  It they are, there is a problem.
845  */
846 #define PAGE_FLAGS_CHECK_AT_FREE				\
847 	(1UL << PG_lru		| 1UL << PG_locked	|	\
848 	 1UL << PG_private	| 1UL << PG_private_2	|	\
849 	 1UL << PG_writeback	| 1UL << PG_reserved	|	\
850 	 1UL << PG_slab		| 1UL << PG_active 	|	\
851 	 1UL << PG_unevictable	| __PG_MLOCKED)
852 
853 /*
854  * Flags checked when a page is prepped for return by the page allocator.
855  * Pages being prepped should not have these flags set.  It they are set,
856  * there has been a kernel bug or struct page corruption.
857  *
858  * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
859  * alloc-free cycle to prevent from reusing the page.
860  */
861 #define PAGE_FLAGS_CHECK_AT_PREP	\
862 	(((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON)
863 
864 #define PAGE_FLAGS_PRIVATE				\
865 	(1UL << PG_private | 1UL << PG_private_2)
866 /**
867  * page_has_private - Determine if page has private stuff
868  * @page: The page to be checked
869  *
870  * Determine if a page has private stuff, indicating that release routines
871  * should be invoked upon it.
872  */
page_has_private(struct page * page)873 static inline int page_has_private(struct page *page)
874 {
875 	return !!(page->flags & PAGE_FLAGS_PRIVATE);
876 }
877 
878 #undef PF_ANY
879 #undef PF_HEAD
880 #undef PF_ONLY_HEAD
881 #undef PF_NO_TAIL
882 #undef PF_NO_COMPOUND
883 #undef PF_SECOND
884 #endif /* !__GENERATING_BOUNDS_H */
885 
886 #endif	/* PAGE_FLAGS_H */
887