• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the OpenSSL license (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 #include <stdlib.h>
11 #include <string.h>
12 #include <openssl/crypto.h>
13 
14 #include "crypto/poly1305.h"
15 #include "poly1305_local.h"
16 
Poly1305_ctx_size(void)17 size_t Poly1305_ctx_size(void)
18 {
19     return sizeof(struct poly1305_context);
20 }
21 
22 /* pick 32-bit unsigned integer in little endian order */
U8TOU32(const unsigned char * p)23 static unsigned int U8TOU32(const unsigned char *p)
24 {
25     return (((unsigned int)(p[0] & 0xff)) |
26             ((unsigned int)(p[1] & 0xff) << 8) |
27             ((unsigned int)(p[2] & 0xff) << 16) |
28             ((unsigned int)(p[3] & 0xff) << 24));
29 }
30 
31 /*
32  * Implementations can be classified by amount of significant bits in
33  * words making up the multi-precision value, or in other words radix
34  * or base of numerical representation, e.g. base 2^64, base 2^32,
35  * base 2^26. Complementary characteristic is how wide is the result of
36  * multiplication of pair of digits, e.g. it would take 128 bits to
37  * accommodate multiplication result in base 2^64 case. These are used
38  * interchangeably. To describe implementation that is. But interface
39  * is designed to isolate this so that low-level primitives implemented
40  * in assembly can be self-contained/self-coherent.
41  */
42 #ifndef POLY1305_ASM
43 /*
44  * Even though there is __int128 reference implementation targeting
45  * 64-bit platforms provided below, it's not obvious that it's optimal
46  * choice for every one of them. Depending on instruction set overall
47  * amount of instructions can be comparable to one in __int64
48  * implementation. Amount of multiplication instructions would be lower,
49  * but not necessarily overall. And in out-of-order execution context,
50  * it is the latter that can be crucial...
51  *
52  * On related note. Poly1305 author, D. J. Bernstein, discusses and
53  * provides floating-point implementations of the algorithm in question.
54  * It made a lot of sense by the time of introduction, because most
55  * then-modern processors didn't have pipelined integer multiplier.
56  * [Not to mention that some had non-constant timing for integer
57  * multiplications.] Floating-point instructions on the other hand could
58  * be issued every cycle, which allowed to achieve better performance.
59  * Nowadays, with SIMD and/or out-or-order execution, shared or
60  * even emulated FPU, it's more complicated, and floating-point
61  * implementation is not necessarily optimal choice in every situation,
62  * rather contrary...
63  *
64  *                                              <appro@openssl.org>
65  */
66 
67 typedef unsigned int u32;
68 
69 /*
70  * poly1305_blocks processes a multiple of POLY1305_BLOCK_SIZE blocks
71  * of |inp| no longer than |len|. Behaviour for |len| not divisible by
72  * block size is unspecified in general case, even though in reference
73  * implementation the trailing chunk is simply ignored. Per algorithm
74  * specification, every input block, complete or last partial, is to be
75  * padded with a bit past most significant byte. The latter kind is then
76  * padded with zeros till block size. This last partial block padding
77  * is caller(*)'s responsibility, and because of this the last partial
78  * block is always processed with separate call with |len| set to
79  * POLY1305_BLOCK_SIZE and |padbit| to 0. In all other cases |padbit|
80  * should be set to 1 to perform implicit padding with 128th bit.
81  * poly1305_blocks does not actually check for this constraint though,
82  * it's caller(*)'s responsibility to comply.
83  *
84  * (*)  In the context "caller" is not application code, but higher
85  *      level Poly1305_* from this very module, so that quirks are
86  *      handled locally.
87  */
88 static void
89 poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit);
90 
91 /*
92  * Type-agnostic "rip-off" from constant_time.h
93  */
94 # define CONSTANT_TIME_CARRY(a,b) ( \
95          (a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1) \
96          )
97 
98 # if (defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16) && \
99      (defined(__SIZEOF_LONG__) && __SIZEOF_LONG__==8)
100 
101 typedef unsigned long u64;
102 typedef __uint128_t u128;
103 
104 typedef struct {
105     u64 h[3];
106     u64 r[2];
107 } poly1305_internal;
108 
109 /* pick 32-bit unsigned integer in little endian order */
U8TOU64(const unsigned char * p)110 static u64 U8TOU64(const unsigned char *p)
111 {
112     return (((u64)(p[0] & 0xff)) |
113             ((u64)(p[1] & 0xff) << 8) |
114             ((u64)(p[2] & 0xff) << 16) |
115             ((u64)(p[3] & 0xff) << 24) |
116             ((u64)(p[4] & 0xff) << 32) |
117             ((u64)(p[5] & 0xff) << 40) |
118             ((u64)(p[6] & 0xff) << 48) |
119             ((u64)(p[7] & 0xff) << 56));
120 }
121 
122 /* store a 32-bit unsigned integer in little endian */
U64TO8(unsigned char * p,u64 v)123 static void U64TO8(unsigned char *p, u64 v)
124 {
125     p[0] = (unsigned char)((v) & 0xff);
126     p[1] = (unsigned char)((v >> 8) & 0xff);
127     p[2] = (unsigned char)((v >> 16) & 0xff);
128     p[3] = (unsigned char)((v >> 24) & 0xff);
129     p[4] = (unsigned char)((v >> 32) & 0xff);
130     p[5] = (unsigned char)((v >> 40) & 0xff);
131     p[6] = (unsigned char)((v >> 48) & 0xff);
132     p[7] = (unsigned char)((v >> 56) & 0xff);
133 }
134 
poly1305_init(void * ctx,const unsigned char key[16])135 static void poly1305_init(void *ctx, const unsigned char key[16])
136 {
137     poly1305_internal *st = (poly1305_internal *) ctx;
138 
139     /* h = 0 */
140     st->h[0] = 0;
141     st->h[1] = 0;
142     st->h[2] = 0;
143 
144     /* r &= 0xffffffc0ffffffc0ffffffc0fffffff */
145     st->r[0] = U8TOU64(&key[0]) & 0x0ffffffc0fffffff;
146     st->r[1] = U8TOU64(&key[8]) & 0x0ffffffc0ffffffc;
147 }
148 
149 static void
poly1305_blocks(void * ctx,const unsigned char * inp,size_t len,u32 padbit)150 poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit)
151 {
152     poly1305_internal *st = (poly1305_internal *)ctx;
153     u64 r0, r1;
154     u64 s1;
155     u64 h0, h1, h2, c;
156     u128 d0, d1;
157 
158     r0 = st->r[0];
159     r1 = st->r[1];
160 
161     s1 = r1 + (r1 >> 2);
162 
163     h0 = st->h[0];
164     h1 = st->h[1];
165     h2 = st->h[2];
166 
167     while (len >= POLY1305_BLOCK_SIZE) {
168         /* h += m[i] */
169         h0 = (u64)(d0 = (u128)h0 + U8TOU64(inp + 0));
170         h1 = (u64)(d1 = (u128)h1 + (d0 >> 64) + U8TOU64(inp + 8));
171         /*
172          * padbit can be zero only when original len was
173          * POLY1306_BLOCK_SIZE, but we don't check
174          */
175         h2 += (u64)(d1 >> 64) + padbit;
176 
177         /* h *= r "%" p, where "%" stands for "partial remainder" */
178         d0 = ((u128)h0 * r0) +
179              ((u128)h1 * s1);
180         d1 = ((u128)h0 * r1) +
181              ((u128)h1 * r0) +
182              (h2 * s1);
183         h2 = (h2 * r0);
184 
185         /* last reduction step: */
186         /* a) h2:h0 = h2<<128 + d1<<64 + d0 */
187         h0 = (u64)d0;
188         h1 = (u64)(d1 += d0 >> 64);
189         h2 += (u64)(d1 >> 64);
190         /* b) (h2:h0 += (h2:h0>>130) * 5) %= 2^130 */
191         c = (h2 >> 2) + (h2 & ~3UL);
192         h2 &= 3;
193         h0 += c;
194         h1 += (c = CONSTANT_TIME_CARRY(h0,c));
195         h2 += CONSTANT_TIME_CARRY(h1,c);
196         /*
197          * Occasional overflows to 3rd bit of h2 are taken care of
198          * "naturally". If after this point we end up at the top of
199          * this loop, then the overflow bit will be accounted for
200          * in next iteration. If we end up in poly1305_emit, then
201          * comparison to modulus below will still count as "carry
202          * into 131st bit", so that properly reduced value will be
203          * picked in conditional move.
204          */
205 
206         inp += POLY1305_BLOCK_SIZE;
207         len -= POLY1305_BLOCK_SIZE;
208     }
209 
210     st->h[0] = h0;
211     st->h[1] = h1;
212     st->h[2] = h2;
213 }
214 
poly1305_emit(void * ctx,unsigned char mac[16],const u32 nonce[4])215 static void poly1305_emit(void *ctx, unsigned char mac[16],
216                           const u32 nonce[4])
217 {
218     poly1305_internal *st = (poly1305_internal *) ctx;
219     u64 h0, h1, h2;
220     u64 g0, g1, g2;
221     u128 t;
222     u64 mask;
223 
224     h0 = st->h[0];
225     h1 = st->h[1];
226     h2 = st->h[2];
227 
228     /* compare to modulus by computing h + -p */
229     g0 = (u64)(t = (u128)h0 + 5);
230     g1 = (u64)(t = (u128)h1 + (t >> 64));
231     g2 = h2 + (u64)(t >> 64);
232 
233     /* if there was carry into 131st bit, h1:h0 = g1:g0 */
234     mask = 0 - (g2 >> 2);
235     g0 &= mask;
236     g1 &= mask;
237     mask = ~mask;
238     h0 = (h0 & mask) | g0;
239     h1 = (h1 & mask) | g1;
240 
241     /* mac = (h + nonce) % (2^128) */
242     h0 = (u64)(t = (u128)h0 + nonce[0] + ((u64)nonce[1]<<32));
243     h1 = (u64)(t = (u128)h1 + nonce[2] + ((u64)nonce[3]<<32) + (t >> 64));
244 
245     U64TO8(mac + 0, h0);
246     U64TO8(mac + 8, h1);
247 }
248 
249 # else
250 
251 #  if defined(_WIN32) && !defined(__MINGW32__)
252 typedef unsigned __int64 u64;
253 #  elif defined(__arch64__)
254 typedef unsigned long u64;
255 #  else
256 typedef unsigned long long u64;
257 #  endif
258 
259 typedef struct {
260     u32 h[5];
261     u32 r[4];
262 } poly1305_internal;
263 
264 /* store a 32-bit unsigned integer in little endian */
U32TO8(unsigned char * p,unsigned int v)265 static void U32TO8(unsigned char *p, unsigned int v)
266 {
267     p[0] = (unsigned char)((v) & 0xff);
268     p[1] = (unsigned char)((v >> 8) & 0xff);
269     p[2] = (unsigned char)((v >> 16) & 0xff);
270     p[3] = (unsigned char)((v >> 24) & 0xff);
271 }
272 
poly1305_init(void * ctx,const unsigned char key[16])273 static void poly1305_init(void *ctx, const unsigned char key[16])
274 {
275     poly1305_internal *st = (poly1305_internal *) ctx;
276 
277     /* h = 0 */
278     st->h[0] = 0;
279     st->h[1] = 0;
280     st->h[2] = 0;
281     st->h[3] = 0;
282     st->h[4] = 0;
283 
284     /* r &= 0xffffffc0ffffffc0ffffffc0fffffff */
285     st->r[0] = U8TOU32(&key[0]) & 0x0fffffff;
286     st->r[1] = U8TOU32(&key[4]) & 0x0ffffffc;
287     st->r[2] = U8TOU32(&key[8]) & 0x0ffffffc;
288     st->r[3] = U8TOU32(&key[12]) & 0x0ffffffc;
289 }
290 
291 static void
poly1305_blocks(void * ctx,const unsigned char * inp,size_t len,u32 padbit)292 poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit)
293 {
294     poly1305_internal *st = (poly1305_internal *)ctx;
295     u32 r0, r1, r2, r3;
296     u32 s1, s2, s3;
297     u32 h0, h1, h2, h3, h4, c;
298     u64 d0, d1, d2, d3;
299 
300     r0 = st->r[0];
301     r1 = st->r[1];
302     r2 = st->r[2];
303     r3 = st->r[3];
304 
305     s1 = r1 + (r1 >> 2);
306     s2 = r2 + (r2 >> 2);
307     s3 = r3 + (r3 >> 2);
308 
309     h0 = st->h[0];
310     h1 = st->h[1];
311     h2 = st->h[2];
312     h3 = st->h[3];
313     h4 = st->h[4];
314 
315     while (len >= POLY1305_BLOCK_SIZE) {
316         /* h += m[i] */
317         h0 = (u32)(d0 = (u64)h0 + U8TOU32(inp + 0));
318         h1 = (u32)(d1 = (u64)h1 + (d0 >> 32) + U8TOU32(inp + 4));
319         h2 = (u32)(d2 = (u64)h2 + (d1 >> 32) + U8TOU32(inp + 8));
320         h3 = (u32)(d3 = (u64)h3 + (d2 >> 32) + U8TOU32(inp + 12));
321         h4 += (u32)(d3 >> 32) + padbit;
322 
323         /* h *= r "%" p, where "%" stands for "partial remainder" */
324         d0 = ((u64)h0 * r0) +
325              ((u64)h1 * s3) +
326              ((u64)h2 * s2) +
327              ((u64)h3 * s1);
328         d1 = ((u64)h0 * r1) +
329              ((u64)h1 * r0) +
330              ((u64)h2 * s3) +
331              ((u64)h3 * s2) +
332              (h4 * s1);
333         d2 = ((u64)h0 * r2) +
334              ((u64)h1 * r1) +
335              ((u64)h2 * r0) +
336              ((u64)h3 * s3) +
337              (h4 * s2);
338         d3 = ((u64)h0 * r3) +
339              ((u64)h1 * r2) +
340              ((u64)h2 * r1) +
341              ((u64)h3 * r0) +
342              (h4 * s3);
343         h4 = (h4 * r0);
344 
345         /* last reduction step: */
346         /* a) h4:h0 = h4<<128 + d3<<96 + d2<<64 + d1<<32 + d0 */
347         h0 = (u32)d0;
348         h1 = (u32)(d1 += d0 >> 32);
349         h2 = (u32)(d2 += d1 >> 32);
350         h3 = (u32)(d3 += d2 >> 32);
351         h4 += (u32)(d3 >> 32);
352         /* b) (h4:h0 += (h4:h0>>130) * 5) %= 2^130 */
353         c = (h4 >> 2) + (h4 & ~3U);
354         h4 &= 3;
355         h0 += c;
356         h1 += (c = CONSTANT_TIME_CARRY(h0,c));
357         h2 += (c = CONSTANT_TIME_CARRY(h1,c));
358         h3 += (c = CONSTANT_TIME_CARRY(h2,c));
359         h4 += CONSTANT_TIME_CARRY(h3,c);
360         /*
361          * Occasional overflows to 3rd bit of h4 are taken care of
362          * "naturally". If after this point we end up at the top of
363          * this loop, then the overflow bit will be accounted for
364          * in next iteration. If we end up in poly1305_emit, then
365          * comparison to modulus below will still count as "carry
366          * into 131st bit", so that properly reduced value will be
367          * picked in conditional move.
368          */
369 
370         inp += POLY1305_BLOCK_SIZE;
371         len -= POLY1305_BLOCK_SIZE;
372     }
373 
374     st->h[0] = h0;
375     st->h[1] = h1;
376     st->h[2] = h2;
377     st->h[3] = h3;
378     st->h[4] = h4;
379 }
380 
poly1305_emit(void * ctx,unsigned char mac[16],const u32 nonce[4])381 static void poly1305_emit(void *ctx, unsigned char mac[16],
382                           const u32 nonce[4])
383 {
384     poly1305_internal *st = (poly1305_internal *) ctx;
385     u32 h0, h1, h2, h3, h4;
386     u32 g0, g1, g2, g3, g4;
387     u64 t;
388     u32 mask;
389 
390     h0 = st->h[0];
391     h1 = st->h[1];
392     h2 = st->h[2];
393     h3 = st->h[3];
394     h4 = st->h[4];
395 
396     /* compare to modulus by computing h + -p */
397     g0 = (u32)(t = (u64)h0 + 5);
398     g1 = (u32)(t = (u64)h1 + (t >> 32));
399     g2 = (u32)(t = (u64)h2 + (t >> 32));
400     g3 = (u32)(t = (u64)h3 + (t >> 32));
401     g4 = h4 + (u32)(t >> 32);
402 
403     /* if there was carry into 131st bit, h3:h0 = g3:g0 */
404     mask = 0 - (g4 >> 2);
405     g0 &= mask;
406     g1 &= mask;
407     g2 &= mask;
408     g3 &= mask;
409     mask = ~mask;
410     h0 = (h0 & mask) | g0;
411     h1 = (h1 & mask) | g1;
412     h2 = (h2 & mask) | g2;
413     h3 = (h3 & mask) | g3;
414 
415     /* mac = (h + nonce) % (2^128) */
416     h0 = (u32)(t = (u64)h0 + nonce[0]);
417     h1 = (u32)(t = (u64)h1 + (t >> 32) + nonce[1]);
418     h2 = (u32)(t = (u64)h2 + (t >> 32) + nonce[2]);
419     h3 = (u32)(t = (u64)h3 + (t >> 32) + nonce[3]);
420 
421     U32TO8(mac + 0, h0);
422     U32TO8(mac + 4, h1);
423     U32TO8(mac + 8, h2);
424     U32TO8(mac + 12, h3);
425 }
426 # endif
427 #else
428 int poly1305_init(void *ctx, const unsigned char key[16], void *func);
429 void poly1305_blocks(void *ctx, const unsigned char *inp, size_t len,
430                      unsigned int padbit);
431 void poly1305_emit(void *ctx, unsigned char mac[16],
432                    const unsigned int nonce[4]);
433 #endif
434 
Poly1305_Init(POLY1305 * ctx,const unsigned char key[32])435 void Poly1305_Init(POLY1305 *ctx, const unsigned char key[32])
436 {
437     ctx->nonce[0] = U8TOU32(&key[16]);
438     ctx->nonce[1] = U8TOU32(&key[20]);
439     ctx->nonce[2] = U8TOU32(&key[24]);
440     ctx->nonce[3] = U8TOU32(&key[28]);
441 
442 #ifndef POLY1305_ASM
443     poly1305_init(ctx->opaque, key);
444 #else
445     /*
446      * Unlike reference poly1305_init assembly counterpart is expected
447      * to return a value: non-zero if it initializes ctx->func, and zero
448      * otherwise. Latter is to simplify assembly in cases when there no
449      * multiple code paths to switch between.
450      */
451     if (!poly1305_init(ctx->opaque, key, &ctx->func)) {
452         ctx->func.blocks = poly1305_blocks;
453         ctx->func.emit = poly1305_emit;
454     }
455 #endif
456 
457     ctx->num = 0;
458 
459 }
460 
461 #ifdef POLY1305_ASM
462 /*
463  * This "eclipses" poly1305_blocks and poly1305_emit, but it's
464  * conscious choice imposed by -Wshadow compiler warnings.
465  */
466 # define poly1305_blocks (*poly1305_blocks_p)
467 # define poly1305_emit   (*poly1305_emit_p)
468 #endif
469 
Poly1305_Update(POLY1305 * ctx,const unsigned char * inp,size_t len)470 void Poly1305_Update(POLY1305 *ctx, const unsigned char *inp, size_t len)
471 {
472 #ifdef POLY1305_ASM
473     /*
474      * As documented, poly1305_blocks is never called with input
475      * longer than single block and padbit argument set to 0. This
476      * property is fluently used in assembly modules to optimize
477      * padbit handling on loop boundary.
478      */
479     poly1305_blocks_f poly1305_blocks_p = ctx->func.blocks;
480 #endif
481     size_t rem, num;
482 
483     if ((num = ctx->num)) {
484         rem = POLY1305_BLOCK_SIZE - num;
485         if (len >= rem) {
486             memcpy(ctx->data + num, inp, rem);
487             poly1305_blocks(ctx->opaque, ctx->data, POLY1305_BLOCK_SIZE, 1);
488             inp += rem;
489             len -= rem;
490         } else {
491             /* Still not enough data to process a block. */
492             memcpy(ctx->data + num, inp, len);
493             ctx->num = num + len;
494             return;
495         }
496     }
497 
498     rem = len % POLY1305_BLOCK_SIZE;
499     len -= rem;
500 
501     if (len >= POLY1305_BLOCK_SIZE) {
502         poly1305_blocks(ctx->opaque, inp, len, 1);
503         inp += len;
504     }
505 
506     if (rem)
507         memcpy(ctx->data, inp, rem);
508 
509     ctx->num = rem;
510 }
511 
Poly1305_Final(POLY1305 * ctx,unsigned char mac[16])512 void Poly1305_Final(POLY1305 *ctx, unsigned char mac[16])
513 {
514 #ifdef POLY1305_ASM
515     poly1305_blocks_f poly1305_blocks_p = ctx->func.blocks;
516     poly1305_emit_f poly1305_emit_p = ctx->func.emit;
517 #endif
518     size_t num;
519 
520     if ((num = ctx->num)) {
521         ctx->data[num++] = 1;   /* pad bit */
522         while (num < POLY1305_BLOCK_SIZE)
523             ctx->data[num++] = 0;
524         poly1305_blocks(ctx->opaque, ctx->data, POLY1305_BLOCK_SIZE, 0);
525     }
526 
527     poly1305_emit(ctx->opaque, mac, ctx->nonce);
528 
529     /* zero out the state */
530     OPENSSL_cleanse(ctx, sizeof(*ctx));
531 }
532