1 /*
2 * Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdlib.h>
11 #include <string.h>
12 #include <openssl/crypto.h>
13
14 #include "crypto/poly1305.h"
15 #include "poly1305_local.h"
16
Poly1305_ctx_size(void)17 size_t Poly1305_ctx_size(void)
18 {
19 return sizeof(struct poly1305_context);
20 }
21
22 /* pick 32-bit unsigned integer in little endian order */
U8TOU32(const unsigned char * p)23 static unsigned int U8TOU32(const unsigned char *p)
24 {
25 return (((unsigned int)(p[0] & 0xff)) |
26 ((unsigned int)(p[1] & 0xff) << 8) |
27 ((unsigned int)(p[2] & 0xff) << 16) |
28 ((unsigned int)(p[3] & 0xff) << 24));
29 }
30
31 /*
32 * Implementations can be classified by amount of significant bits in
33 * words making up the multi-precision value, or in other words radix
34 * or base of numerical representation, e.g. base 2^64, base 2^32,
35 * base 2^26. Complementary characteristic is how wide is the result of
36 * multiplication of pair of digits, e.g. it would take 128 bits to
37 * accommodate multiplication result in base 2^64 case. These are used
38 * interchangeably. To describe implementation that is. But interface
39 * is designed to isolate this so that low-level primitives implemented
40 * in assembly can be self-contained/self-coherent.
41 */
42 #ifndef POLY1305_ASM
43 /*
44 * Even though there is __int128 reference implementation targeting
45 * 64-bit platforms provided below, it's not obvious that it's optimal
46 * choice for every one of them. Depending on instruction set overall
47 * amount of instructions can be comparable to one in __int64
48 * implementation. Amount of multiplication instructions would be lower,
49 * but not necessarily overall. And in out-of-order execution context,
50 * it is the latter that can be crucial...
51 *
52 * On related note. Poly1305 author, D. J. Bernstein, discusses and
53 * provides floating-point implementations of the algorithm in question.
54 * It made a lot of sense by the time of introduction, because most
55 * then-modern processors didn't have pipelined integer multiplier.
56 * [Not to mention that some had non-constant timing for integer
57 * multiplications.] Floating-point instructions on the other hand could
58 * be issued every cycle, which allowed to achieve better performance.
59 * Nowadays, with SIMD and/or out-or-order execution, shared or
60 * even emulated FPU, it's more complicated, and floating-point
61 * implementation is not necessarily optimal choice in every situation,
62 * rather contrary...
63 *
64 * <appro@openssl.org>
65 */
66
67 typedef unsigned int u32;
68
69 /*
70 * poly1305_blocks processes a multiple of POLY1305_BLOCK_SIZE blocks
71 * of |inp| no longer than |len|. Behaviour for |len| not divisible by
72 * block size is unspecified in general case, even though in reference
73 * implementation the trailing chunk is simply ignored. Per algorithm
74 * specification, every input block, complete or last partial, is to be
75 * padded with a bit past most significant byte. The latter kind is then
76 * padded with zeros till block size. This last partial block padding
77 * is caller(*)'s responsibility, and because of this the last partial
78 * block is always processed with separate call with |len| set to
79 * POLY1305_BLOCK_SIZE and |padbit| to 0. In all other cases |padbit|
80 * should be set to 1 to perform implicit padding with 128th bit.
81 * poly1305_blocks does not actually check for this constraint though,
82 * it's caller(*)'s responsibility to comply.
83 *
84 * (*) In the context "caller" is not application code, but higher
85 * level Poly1305_* from this very module, so that quirks are
86 * handled locally.
87 */
88 static void
89 poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit);
90
91 /*
92 * Type-agnostic "rip-off" from constant_time.h
93 */
94 # define CONSTANT_TIME_CARRY(a,b) ( \
95 (a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1) \
96 )
97
98 # if (defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16) && \
99 (defined(__SIZEOF_LONG__) && __SIZEOF_LONG__==8)
100
101 typedef unsigned long u64;
102 typedef __uint128_t u128;
103
104 typedef struct {
105 u64 h[3];
106 u64 r[2];
107 } poly1305_internal;
108
109 /* pick 32-bit unsigned integer in little endian order */
U8TOU64(const unsigned char * p)110 static u64 U8TOU64(const unsigned char *p)
111 {
112 return (((u64)(p[0] & 0xff)) |
113 ((u64)(p[1] & 0xff) << 8) |
114 ((u64)(p[2] & 0xff) << 16) |
115 ((u64)(p[3] & 0xff) << 24) |
116 ((u64)(p[4] & 0xff) << 32) |
117 ((u64)(p[5] & 0xff) << 40) |
118 ((u64)(p[6] & 0xff) << 48) |
119 ((u64)(p[7] & 0xff) << 56));
120 }
121
122 /* store a 32-bit unsigned integer in little endian */
U64TO8(unsigned char * p,u64 v)123 static void U64TO8(unsigned char *p, u64 v)
124 {
125 p[0] = (unsigned char)((v) & 0xff);
126 p[1] = (unsigned char)((v >> 8) & 0xff);
127 p[2] = (unsigned char)((v >> 16) & 0xff);
128 p[3] = (unsigned char)((v >> 24) & 0xff);
129 p[4] = (unsigned char)((v >> 32) & 0xff);
130 p[5] = (unsigned char)((v >> 40) & 0xff);
131 p[6] = (unsigned char)((v >> 48) & 0xff);
132 p[7] = (unsigned char)((v >> 56) & 0xff);
133 }
134
poly1305_init(void * ctx,const unsigned char key[16])135 static void poly1305_init(void *ctx, const unsigned char key[16])
136 {
137 poly1305_internal *st = (poly1305_internal *) ctx;
138
139 /* h = 0 */
140 st->h[0] = 0;
141 st->h[1] = 0;
142 st->h[2] = 0;
143
144 /* r &= 0xffffffc0ffffffc0ffffffc0fffffff */
145 st->r[0] = U8TOU64(&key[0]) & 0x0ffffffc0fffffff;
146 st->r[1] = U8TOU64(&key[8]) & 0x0ffffffc0ffffffc;
147 }
148
149 static void
poly1305_blocks(void * ctx,const unsigned char * inp,size_t len,u32 padbit)150 poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit)
151 {
152 poly1305_internal *st = (poly1305_internal *)ctx;
153 u64 r0, r1;
154 u64 s1;
155 u64 h0, h1, h2, c;
156 u128 d0, d1;
157
158 r0 = st->r[0];
159 r1 = st->r[1];
160
161 s1 = r1 + (r1 >> 2);
162
163 h0 = st->h[0];
164 h1 = st->h[1];
165 h2 = st->h[2];
166
167 while (len >= POLY1305_BLOCK_SIZE) {
168 /* h += m[i] */
169 h0 = (u64)(d0 = (u128)h0 + U8TOU64(inp + 0));
170 h1 = (u64)(d1 = (u128)h1 + (d0 >> 64) + U8TOU64(inp + 8));
171 /*
172 * padbit can be zero only when original len was
173 * POLY1306_BLOCK_SIZE, but we don't check
174 */
175 h2 += (u64)(d1 >> 64) + padbit;
176
177 /* h *= r "%" p, where "%" stands for "partial remainder" */
178 d0 = ((u128)h0 * r0) +
179 ((u128)h1 * s1);
180 d1 = ((u128)h0 * r1) +
181 ((u128)h1 * r0) +
182 (h2 * s1);
183 h2 = (h2 * r0);
184
185 /* last reduction step: */
186 /* a) h2:h0 = h2<<128 + d1<<64 + d0 */
187 h0 = (u64)d0;
188 h1 = (u64)(d1 += d0 >> 64);
189 h2 += (u64)(d1 >> 64);
190 /* b) (h2:h0 += (h2:h0>>130) * 5) %= 2^130 */
191 c = (h2 >> 2) + (h2 & ~3UL);
192 h2 &= 3;
193 h0 += c;
194 h1 += (c = CONSTANT_TIME_CARRY(h0,c));
195 h2 += CONSTANT_TIME_CARRY(h1,c);
196 /*
197 * Occasional overflows to 3rd bit of h2 are taken care of
198 * "naturally". If after this point we end up at the top of
199 * this loop, then the overflow bit will be accounted for
200 * in next iteration. If we end up in poly1305_emit, then
201 * comparison to modulus below will still count as "carry
202 * into 131st bit", so that properly reduced value will be
203 * picked in conditional move.
204 */
205
206 inp += POLY1305_BLOCK_SIZE;
207 len -= POLY1305_BLOCK_SIZE;
208 }
209
210 st->h[0] = h0;
211 st->h[1] = h1;
212 st->h[2] = h2;
213 }
214
poly1305_emit(void * ctx,unsigned char mac[16],const u32 nonce[4])215 static void poly1305_emit(void *ctx, unsigned char mac[16],
216 const u32 nonce[4])
217 {
218 poly1305_internal *st = (poly1305_internal *) ctx;
219 u64 h0, h1, h2;
220 u64 g0, g1, g2;
221 u128 t;
222 u64 mask;
223
224 h0 = st->h[0];
225 h1 = st->h[1];
226 h2 = st->h[2];
227
228 /* compare to modulus by computing h + -p */
229 g0 = (u64)(t = (u128)h0 + 5);
230 g1 = (u64)(t = (u128)h1 + (t >> 64));
231 g2 = h2 + (u64)(t >> 64);
232
233 /* if there was carry into 131st bit, h1:h0 = g1:g0 */
234 mask = 0 - (g2 >> 2);
235 g0 &= mask;
236 g1 &= mask;
237 mask = ~mask;
238 h0 = (h0 & mask) | g0;
239 h1 = (h1 & mask) | g1;
240
241 /* mac = (h + nonce) % (2^128) */
242 h0 = (u64)(t = (u128)h0 + nonce[0] + ((u64)nonce[1]<<32));
243 h1 = (u64)(t = (u128)h1 + nonce[2] + ((u64)nonce[3]<<32) + (t >> 64));
244
245 U64TO8(mac + 0, h0);
246 U64TO8(mac + 8, h1);
247 }
248
249 # else
250
251 # if defined(_WIN32) && !defined(__MINGW32__)
252 typedef unsigned __int64 u64;
253 # elif defined(__arch64__)
254 typedef unsigned long u64;
255 # else
256 typedef unsigned long long u64;
257 # endif
258
259 typedef struct {
260 u32 h[5];
261 u32 r[4];
262 } poly1305_internal;
263
264 /* store a 32-bit unsigned integer in little endian */
U32TO8(unsigned char * p,unsigned int v)265 static void U32TO8(unsigned char *p, unsigned int v)
266 {
267 p[0] = (unsigned char)((v) & 0xff);
268 p[1] = (unsigned char)((v >> 8) & 0xff);
269 p[2] = (unsigned char)((v >> 16) & 0xff);
270 p[3] = (unsigned char)((v >> 24) & 0xff);
271 }
272
poly1305_init(void * ctx,const unsigned char key[16])273 static void poly1305_init(void *ctx, const unsigned char key[16])
274 {
275 poly1305_internal *st = (poly1305_internal *) ctx;
276
277 /* h = 0 */
278 st->h[0] = 0;
279 st->h[1] = 0;
280 st->h[2] = 0;
281 st->h[3] = 0;
282 st->h[4] = 0;
283
284 /* r &= 0xffffffc0ffffffc0ffffffc0fffffff */
285 st->r[0] = U8TOU32(&key[0]) & 0x0fffffff;
286 st->r[1] = U8TOU32(&key[4]) & 0x0ffffffc;
287 st->r[2] = U8TOU32(&key[8]) & 0x0ffffffc;
288 st->r[3] = U8TOU32(&key[12]) & 0x0ffffffc;
289 }
290
291 static void
poly1305_blocks(void * ctx,const unsigned char * inp,size_t len,u32 padbit)292 poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit)
293 {
294 poly1305_internal *st = (poly1305_internal *)ctx;
295 u32 r0, r1, r2, r3;
296 u32 s1, s2, s3;
297 u32 h0, h1, h2, h3, h4, c;
298 u64 d0, d1, d2, d3;
299
300 r0 = st->r[0];
301 r1 = st->r[1];
302 r2 = st->r[2];
303 r3 = st->r[3];
304
305 s1 = r1 + (r1 >> 2);
306 s2 = r2 + (r2 >> 2);
307 s3 = r3 + (r3 >> 2);
308
309 h0 = st->h[0];
310 h1 = st->h[1];
311 h2 = st->h[2];
312 h3 = st->h[3];
313 h4 = st->h[4];
314
315 while (len >= POLY1305_BLOCK_SIZE) {
316 /* h += m[i] */
317 h0 = (u32)(d0 = (u64)h0 + U8TOU32(inp + 0));
318 h1 = (u32)(d1 = (u64)h1 + (d0 >> 32) + U8TOU32(inp + 4));
319 h2 = (u32)(d2 = (u64)h2 + (d1 >> 32) + U8TOU32(inp + 8));
320 h3 = (u32)(d3 = (u64)h3 + (d2 >> 32) + U8TOU32(inp + 12));
321 h4 += (u32)(d3 >> 32) + padbit;
322
323 /* h *= r "%" p, where "%" stands for "partial remainder" */
324 d0 = ((u64)h0 * r0) +
325 ((u64)h1 * s3) +
326 ((u64)h2 * s2) +
327 ((u64)h3 * s1);
328 d1 = ((u64)h0 * r1) +
329 ((u64)h1 * r0) +
330 ((u64)h2 * s3) +
331 ((u64)h3 * s2) +
332 (h4 * s1);
333 d2 = ((u64)h0 * r2) +
334 ((u64)h1 * r1) +
335 ((u64)h2 * r0) +
336 ((u64)h3 * s3) +
337 (h4 * s2);
338 d3 = ((u64)h0 * r3) +
339 ((u64)h1 * r2) +
340 ((u64)h2 * r1) +
341 ((u64)h3 * r0) +
342 (h4 * s3);
343 h4 = (h4 * r0);
344
345 /* last reduction step: */
346 /* a) h4:h0 = h4<<128 + d3<<96 + d2<<64 + d1<<32 + d0 */
347 h0 = (u32)d0;
348 h1 = (u32)(d1 += d0 >> 32);
349 h2 = (u32)(d2 += d1 >> 32);
350 h3 = (u32)(d3 += d2 >> 32);
351 h4 += (u32)(d3 >> 32);
352 /* b) (h4:h0 += (h4:h0>>130) * 5) %= 2^130 */
353 c = (h4 >> 2) + (h4 & ~3U);
354 h4 &= 3;
355 h0 += c;
356 h1 += (c = CONSTANT_TIME_CARRY(h0,c));
357 h2 += (c = CONSTANT_TIME_CARRY(h1,c));
358 h3 += (c = CONSTANT_TIME_CARRY(h2,c));
359 h4 += CONSTANT_TIME_CARRY(h3,c);
360 /*
361 * Occasional overflows to 3rd bit of h4 are taken care of
362 * "naturally". If after this point we end up at the top of
363 * this loop, then the overflow bit will be accounted for
364 * in next iteration. If we end up in poly1305_emit, then
365 * comparison to modulus below will still count as "carry
366 * into 131st bit", so that properly reduced value will be
367 * picked in conditional move.
368 */
369
370 inp += POLY1305_BLOCK_SIZE;
371 len -= POLY1305_BLOCK_SIZE;
372 }
373
374 st->h[0] = h0;
375 st->h[1] = h1;
376 st->h[2] = h2;
377 st->h[3] = h3;
378 st->h[4] = h4;
379 }
380
poly1305_emit(void * ctx,unsigned char mac[16],const u32 nonce[4])381 static void poly1305_emit(void *ctx, unsigned char mac[16],
382 const u32 nonce[4])
383 {
384 poly1305_internal *st = (poly1305_internal *) ctx;
385 u32 h0, h1, h2, h3, h4;
386 u32 g0, g1, g2, g3, g4;
387 u64 t;
388 u32 mask;
389
390 h0 = st->h[0];
391 h1 = st->h[1];
392 h2 = st->h[2];
393 h3 = st->h[3];
394 h4 = st->h[4];
395
396 /* compare to modulus by computing h + -p */
397 g0 = (u32)(t = (u64)h0 + 5);
398 g1 = (u32)(t = (u64)h1 + (t >> 32));
399 g2 = (u32)(t = (u64)h2 + (t >> 32));
400 g3 = (u32)(t = (u64)h3 + (t >> 32));
401 g4 = h4 + (u32)(t >> 32);
402
403 /* if there was carry into 131st bit, h3:h0 = g3:g0 */
404 mask = 0 - (g4 >> 2);
405 g0 &= mask;
406 g1 &= mask;
407 g2 &= mask;
408 g3 &= mask;
409 mask = ~mask;
410 h0 = (h0 & mask) | g0;
411 h1 = (h1 & mask) | g1;
412 h2 = (h2 & mask) | g2;
413 h3 = (h3 & mask) | g3;
414
415 /* mac = (h + nonce) % (2^128) */
416 h0 = (u32)(t = (u64)h0 + nonce[0]);
417 h1 = (u32)(t = (u64)h1 + (t >> 32) + nonce[1]);
418 h2 = (u32)(t = (u64)h2 + (t >> 32) + nonce[2]);
419 h3 = (u32)(t = (u64)h3 + (t >> 32) + nonce[3]);
420
421 U32TO8(mac + 0, h0);
422 U32TO8(mac + 4, h1);
423 U32TO8(mac + 8, h2);
424 U32TO8(mac + 12, h3);
425 }
426 # endif
427 #else
428 int poly1305_init(void *ctx, const unsigned char key[16], void *func);
429 void poly1305_blocks(void *ctx, const unsigned char *inp, size_t len,
430 unsigned int padbit);
431 void poly1305_emit(void *ctx, unsigned char mac[16],
432 const unsigned int nonce[4]);
433 #endif
434
Poly1305_Init(POLY1305 * ctx,const unsigned char key[32])435 void Poly1305_Init(POLY1305 *ctx, const unsigned char key[32])
436 {
437 ctx->nonce[0] = U8TOU32(&key[16]);
438 ctx->nonce[1] = U8TOU32(&key[20]);
439 ctx->nonce[2] = U8TOU32(&key[24]);
440 ctx->nonce[3] = U8TOU32(&key[28]);
441
442 #ifndef POLY1305_ASM
443 poly1305_init(ctx->opaque, key);
444 #else
445 /*
446 * Unlike reference poly1305_init assembly counterpart is expected
447 * to return a value: non-zero if it initializes ctx->func, and zero
448 * otherwise. Latter is to simplify assembly in cases when there no
449 * multiple code paths to switch between.
450 */
451 if (!poly1305_init(ctx->opaque, key, &ctx->func)) {
452 ctx->func.blocks = poly1305_blocks;
453 ctx->func.emit = poly1305_emit;
454 }
455 #endif
456
457 ctx->num = 0;
458
459 }
460
461 #ifdef POLY1305_ASM
462 /*
463 * This "eclipses" poly1305_blocks and poly1305_emit, but it's
464 * conscious choice imposed by -Wshadow compiler warnings.
465 */
466 # define poly1305_blocks (*poly1305_blocks_p)
467 # define poly1305_emit (*poly1305_emit_p)
468 #endif
469
Poly1305_Update(POLY1305 * ctx,const unsigned char * inp,size_t len)470 void Poly1305_Update(POLY1305 *ctx, const unsigned char *inp, size_t len)
471 {
472 #ifdef POLY1305_ASM
473 /*
474 * As documented, poly1305_blocks is never called with input
475 * longer than single block and padbit argument set to 0. This
476 * property is fluently used in assembly modules to optimize
477 * padbit handling on loop boundary.
478 */
479 poly1305_blocks_f poly1305_blocks_p = ctx->func.blocks;
480 #endif
481 size_t rem, num;
482
483 if ((num = ctx->num)) {
484 rem = POLY1305_BLOCK_SIZE - num;
485 if (len >= rem) {
486 memcpy(ctx->data + num, inp, rem);
487 poly1305_blocks(ctx->opaque, ctx->data, POLY1305_BLOCK_SIZE, 1);
488 inp += rem;
489 len -= rem;
490 } else {
491 /* Still not enough data to process a block. */
492 memcpy(ctx->data + num, inp, len);
493 ctx->num = num + len;
494 return;
495 }
496 }
497
498 rem = len % POLY1305_BLOCK_SIZE;
499 len -= rem;
500
501 if (len >= POLY1305_BLOCK_SIZE) {
502 poly1305_blocks(ctx->opaque, inp, len, 1);
503 inp += len;
504 }
505
506 if (rem)
507 memcpy(ctx->data, inp, rem);
508
509 ctx->num = rem;
510 }
511
Poly1305_Final(POLY1305 * ctx,unsigned char mac[16])512 void Poly1305_Final(POLY1305 *ctx, unsigned char mac[16])
513 {
514 #ifdef POLY1305_ASM
515 poly1305_blocks_f poly1305_blocks_p = ctx->func.blocks;
516 poly1305_emit_f poly1305_emit_p = ctx->func.emit;
517 #endif
518 size_t num;
519
520 if ((num = ctx->num)) {
521 ctx->data[num++] = 1; /* pad bit */
522 while (num < POLY1305_BLOCK_SIZE)
523 ctx->data[num++] = 0;
524 poly1305_blocks(ctx->opaque, ctx->data, POLY1305_BLOCK_SIZE, 0);
525 }
526
527 poly1305_emit(ctx->opaque, mac, ctx->nonce);
528
529 /* zero out the state */
530 OPENSSL_cleanse(ctx, sizeof(*ctx));
531 }
532