1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_BLKDEV_H
3 #define _LINUX_BLKDEV_H
4
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7 #include <linux/major.h>
8 #include <linux/genhd.h>
9 #include <linux/list.h>
10 #include <linux/llist.h>
11 #include <linux/minmax.h>
12 #include <linux/timer.h>
13 #include <linux/workqueue.h>
14 #include <linux/pagemap.h>
15 #include <linux/backing-dev-defs.h>
16 #include <linux/wait.h>
17 #include <linux/mempool.h>
18 #include <linux/pfn.h>
19 #include <linux/bio.h>
20 #include <linux/stringify.h>
21 #include <linux/gfp.h>
22 #include <linux/bsg.h>
23 #include <linux/smp.h>
24 #include <linux/rcupdate.h>
25 #include <linux/percpu-refcount.h>
26 #include <linux/scatterlist.h>
27 #include <linux/blkzoned.h>
28 #include <linux/pm.h>
29
30 struct module;
31 struct scsi_ioctl_command;
32
33 struct request_queue;
34 struct elevator_queue;
35 struct blk_trace;
36 struct request;
37 struct sg_io_hdr;
38 struct bsg_job;
39 struct blkcg_gq;
40 struct blk_flush_queue;
41 struct pr_ops;
42 struct rq_qos;
43 struct blk_queue_stats;
44 struct blk_stat_callback;
45 struct blk_keyslot_manager;
46
47 #define BLKDEV_MIN_RQ 4
48 #define BLKDEV_MAX_RQ 128 /* Default maximum */
49
50 /* Must be consistent with blk_mq_poll_stats_bkt() */
51 #define BLK_MQ_POLL_STATS_BKTS 16
52
53 /* Doing classic polling */
54 #define BLK_MQ_POLL_CLASSIC -1
55
56 /*
57 * Maximum number of blkcg policies allowed to be registered concurrently.
58 * Defined here to simplify include dependency.
59 */
60 #define BLKCG_MAX_POLS 5
61
blk_validate_block_size(unsigned int bsize)62 static inline int blk_validate_block_size(unsigned int bsize)
63 {
64 if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
65 return -EINVAL;
66
67 return 0;
68 }
69
70 typedef void (rq_end_io_fn)(struct request *, blk_status_t);
71
72 /*
73 * request flags */
74 typedef __u32 __bitwise req_flags_t;
75
76 /* elevator knows about this request */
77 #define RQF_SORTED ((__force req_flags_t)(1 << 0))
78 /* drive already may have started this one */
79 #define RQF_STARTED ((__force req_flags_t)(1 << 1))
80 /* may not be passed by ioscheduler */
81 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3))
82 /* request for flush sequence */
83 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4))
84 /* merge of different types, fail separately */
85 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5))
86 /* track inflight for MQ */
87 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6))
88 /* don't call prep for this one */
89 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7))
90 /* vaguely specified driver internal error. Ignored by the block layer */
91 #define RQF_FAILED ((__force req_flags_t)(1 << 10))
92 /* don't warn about errors */
93 #define RQF_QUIET ((__force req_flags_t)(1 << 11))
94 /* elevator private data attached */
95 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12))
96 /* account into disk and partition IO statistics */
97 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13))
98 /* request came from our alloc pool */
99 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14))
100 /* runtime pm request */
101 #define RQF_PM ((__force req_flags_t)(1 << 15))
102 /* on IO scheduler merge hash */
103 #define RQF_HASHED ((__force req_flags_t)(1 << 16))
104 /* track IO completion time */
105 #define RQF_STATS ((__force req_flags_t)(1 << 17))
106 /* Look at ->special_vec for the actual data payload instead of the
107 bio chain. */
108 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18))
109 /* The per-zone write lock is held for this request */
110 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19))
111 /* already slept for hybrid poll */
112 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20))
113 /* ->timeout has been called, don't expire again */
114 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21))
115
116 /* flags that prevent us from merging requests: */
117 #define RQF_NOMERGE_FLAGS \
118 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
119
120 /*
121 * Request state for blk-mq.
122 */
123 enum mq_rq_state {
124 MQ_RQ_IDLE = 0,
125 MQ_RQ_IN_FLIGHT = 1,
126 MQ_RQ_COMPLETE = 2,
127 };
128
129 /*
130 * Try to put the fields that are referenced together in the same cacheline.
131 *
132 * If you modify this structure, make sure to update blk_rq_init() and
133 * especially blk_mq_rq_ctx_init() to take care of the added fields.
134 */
135 struct request {
136 struct request_queue *q;
137 struct blk_mq_ctx *mq_ctx;
138 struct blk_mq_hw_ctx *mq_hctx;
139
140 unsigned int cmd_flags; /* op and common flags */
141 req_flags_t rq_flags;
142
143 int tag;
144 int internal_tag;
145
146 /* the following two fields are internal, NEVER access directly */
147 unsigned int __data_len; /* total data len */
148 sector_t __sector; /* sector cursor */
149
150 struct bio *bio;
151 struct bio *biotail;
152
153 struct list_head queuelist;
154
155 /*
156 * The hash is used inside the scheduler, and killed once the
157 * request reaches the dispatch list. The ipi_list is only used
158 * to queue the request for softirq completion, which is long
159 * after the request has been unhashed (and even removed from
160 * the dispatch list).
161 */
162 union {
163 struct hlist_node hash; /* merge hash */
164 struct list_head ipi_list;
165 };
166
167 /*
168 * The rb_node is only used inside the io scheduler, requests
169 * are pruned when moved to the dispatch queue. So let the
170 * completion_data share space with the rb_node.
171 */
172 union {
173 struct rb_node rb_node; /* sort/lookup */
174 struct bio_vec special_vec;
175 void *completion_data;
176 int error_count; /* for legacy drivers, don't use */
177 };
178
179 /*
180 * Three pointers are available for the IO schedulers, if they need
181 * more they have to dynamically allocate it. Flush requests are
182 * never put on the IO scheduler. So let the flush fields share
183 * space with the elevator data.
184 */
185 union {
186 struct {
187 struct io_cq *icq;
188 void *priv[2];
189 } elv;
190
191 struct {
192 unsigned int seq;
193 struct list_head list;
194 rq_end_io_fn *saved_end_io;
195 } flush;
196 };
197
198 struct gendisk *rq_disk;
199 struct hd_struct *part;
200 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
201 /* Time that the first bio started allocating this request. */
202 u64 alloc_time_ns;
203 #endif
204 /* Time that this request was allocated for this IO. */
205 u64 start_time_ns;
206 /* Time that I/O was submitted to the device. */
207 u64 io_start_time_ns;
208
209 #ifdef CONFIG_BLK_WBT
210 unsigned short wbt_flags;
211 #endif
212 /*
213 * rq sectors used for blk stats. It has the same value
214 * with blk_rq_sectors(rq), except that it never be zeroed
215 * by completion.
216 */
217 unsigned short stats_sectors;
218
219 /*
220 * Number of scatter-gather DMA addr+len pairs after
221 * physical address coalescing is performed.
222 */
223 unsigned short nr_phys_segments;
224
225 #if defined(CONFIG_BLK_DEV_INTEGRITY)
226 unsigned short nr_integrity_segments;
227 #endif
228
229 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
230 struct bio_crypt_ctx *crypt_ctx;
231 struct blk_ksm_keyslot *crypt_keyslot;
232 #endif
233
234 unsigned short write_hint;
235 unsigned short ioprio;
236
237 enum mq_rq_state state;
238 refcount_t ref;
239
240 unsigned int timeout;
241 unsigned long deadline;
242
243 union {
244 struct __call_single_data csd;
245 u64 fifo_time;
246 };
247
248 /*
249 * completion callback.
250 */
251 rq_end_io_fn *end_io;
252 void *end_io_data;
253 };
254
blk_op_is_scsi(unsigned int op)255 static inline bool blk_op_is_scsi(unsigned int op)
256 {
257 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT;
258 }
259
blk_op_is_private(unsigned int op)260 static inline bool blk_op_is_private(unsigned int op)
261 {
262 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
263 }
264
blk_rq_is_scsi(struct request * rq)265 static inline bool blk_rq_is_scsi(struct request *rq)
266 {
267 return blk_op_is_scsi(req_op(rq));
268 }
269
blk_rq_is_private(struct request * rq)270 static inline bool blk_rq_is_private(struct request *rq)
271 {
272 return blk_op_is_private(req_op(rq));
273 }
274
blk_rq_is_passthrough(struct request * rq)275 static inline bool blk_rq_is_passthrough(struct request *rq)
276 {
277 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
278 }
279
bio_is_passthrough(struct bio * bio)280 static inline bool bio_is_passthrough(struct bio *bio)
281 {
282 unsigned op = bio_op(bio);
283
284 return blk_op_is_scsi(op) || blk_op_is_private(op);
285 }
286
req_get_ioprio(struct request * req)287 static inline unsigned short req_get_ioprio(struct request *req)
288 {
289 return req->ioprio;
290 }
291
292 #include <linux/elevator.h>
293
294 struct blk_queue_ctx;
295
296 struct bio_vec;
297
298 enum blk_eh_timer_return {
299 BLK_EH_DONE, /* drivers has completed the command */
300 BLK_EH_RESET_TIMER, /* reset timer and try again */
301 };
302
303 enum blk_queue_state {
304 Queue_down,
305 Queue_up,
306 };
307
308 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
309 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
310
311 #define BLK_SCSI_MAX_CMDS (256)
312 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
313
314 /*
315 * Zoned block device models (zoned limit).
316 *
317 * Note: This needs to be ordered from the least to the most severe
318 * restrictions for the inheritance in blk_stack_limits() to work.
319 */
320 enum blk_zoned_model {
321 BLK_ZONED_NONE = 0, /* Regular block device */
322 BLK_ZONED_HA, /* Host-aware zoned block device */
323 BLK_ZONED_HM, /* Host-managed zoned block device */
324 };
325
326 struct queue_limits {
327 unsigned long bounce_pfn;
328 unsigned long seg_boundary_mask;
329 unsigned long virt_boundary_mask;
330
331 unsigned int max_hw_sectors;
332 unsigned int max_dev_sectors;
333 unsigned int chunk_sectors;
334 unsigned int max_sectors;
335 unsigned int max_segment_size;
336 unsigned int physical_block_size;
337 unsigned int logical_block_size;
338 unsigned int alignment_offset;
339 unsigned int io_min;
340 unsigned int io_opt;
341 unsigned int max_discard_sectors;
342 unsigned int max_hw_discard_sectors;
343 unsigned int max_write_same_sectors;
344 unsigned int max_write_zeroes_sectors;
345 unsigned int max_zone_append_sectors;
346 unsigned int discard_granularity;
347 unsigned int discard_alignment;
348
349 unsigned short max_segments;
350 unsigned short max_integrity_segments;
351 unsigned short max_discard_segments;
352
353 unsigned char misaligned;
354 unsigned char discard_misaligned;
355 unsigned char raid_partial_stripes_expensive;
356 enum blk_zoned_model zoned;
357 };
358
359 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
360 void *data);
361
362 void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model);
363
364 #ifdef CONFIG_BLK_DEV_ZONED
365
366 #define BLK_ALL_ZONES ((unsigned int)-1)
367 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
368 unsigned int nr_zones, report_zones_cb cb, void *data);
369 unsigned int blkdev_nr_zones(struct gendisk *disk);
370 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op,
371 sector_t sectors, sector_t nr_sectors,
372 gfp_t gfp_mask);
373 int blk_revalidate_disk_zones(struct gendisk *disk,
374 void (*update_driver_data)(struct gendisk *disk));
375
376 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
377 unsigned int cmd, unsigned long arg);
378 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode,
379 unsigned int cmd, unsigned long arg);
380
381 #else /* CONFIG_BLK_DEV_ZONED */
382
blkdev_nr_zones(struct gendisk * disk)383 static inline unsigned int blkdev_nr_zones(struct gendisk *disk)
384 {
385 return 0;
386 }
387
blkdev_report_zones_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)388 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
389 fmode_t mode, unsigned int cmd,
390 unsigned long arg)
391 {
392 return -ENOTTY;
393 }
394
blkdev_zone_mgmt_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)395 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
396 fmode_t mode, unsigned int cmd,
397 unsigned long arg)
398 {
399 return -ENOTTY;
400 }
401
402 #endif /* CONFIG_BLK_DEV_ZONED */
403
404 struct request_queue {
405 struct request *last_merge;
406 struct elevator_queue *elevator;
407
408 struct percpu_ref q_usage_counter;
409
410 struct blk_queue_stats *stats;
411 struct rq_qos *rq_qos;
412
413 const struct blk_mq_ops *mq_ops;
414
415 /* sw queues */
416 struct blk_mq_ctx __percpu *queue_ctx;
417
418 unsigned int queue_depth;
419
420 /* hw dispatch queues */
421 struct blk_mq_hw_ctx **queue_hw_ctx;
422 unsigned int nr_hw_queues;
423
424 struct backing_dev_info *backing_dev_info;
425
426 /*
427 * The queue owner gets to use this for whatever they like.
428 * ll_rw_blk doesn't touch it.
429 */
430 void *queuedata;
431
432 /*
433 * various queue flags, see QUEUE_* below
434 */
435 unsigned long queue_flags;
436 /*
437 * Number of contexts that have called blk_set_pm_only(). If this
438 * counter is above zero then only RQF_PM requests are processed.
439 */
440 atomic_t pm_only;
441
442 /*
443 * ida allocated id for this queue. Used to index queues from
444 * ioctx.
445 */
446 int id;
447
448 /*
449 * queue needs bounce pages for pages above this limit
450 */
451 gfp_t bounce_gfp;
452
453 spinlock_t queue_lock;
454
455 /*
456 * queue kobject
457 */
458 struct kobject kobj;
459
460 /*
461 * mq queue kobject
462 */
463 struct kobject *mq_kobj;
464
465 #ifdef CONFIG_BLK_DEV_INTEGRITY
466 struct blk_integrity integrity;
467 #endif /* CONFIG_BLK_DEV_INTEGRITY */
468
469 #ifdef CONFIG_PM
470 struct device *dev;
471 enum rpm_status rpm_status;
472 unsigned int nr_pending;
473 #endif
474
475 /*
476 * queue settings
477 */
478 unsigned long nr_requests; /* Max # of requests */
479
480 unsigned int dma_pad_mask;
481 unsigned int dma_alignment;
482
483 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
484 /* Inline crypto capabilities */
485 struct blk_keyslot_manager *ksm;
486 #endif
487
488 unsigned int rq_timeout;
489 int poll_nsec;
490
491 struct blk_stat_callback *poll_cb;
492 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS];
493
494 struct timer_list timeout;
495 struct work_struct timeout_work;
496
497 atomic_t nr_active_requests_shared_sbitmap;
498
499 struct list_head icq_list;
500 #ifdef CONFIG_BLK_CGROUP
501 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS);
502 struct blkcg_gq *root_blkg;
503 struct list_head blkg_list;
504 #endif
505
506 struct queue_limits limits;
507
508 unsigned int required_elevator_features;
509
510 #ifdef CONFIG_BLK_DEV_ZONED
511 /*
512 * Zoned block device information for request dispatch control.
513 * nr_zones is the total number of zones of the device. This is always
514 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones
515 * bits which indicates if a zone is conventional (bit set) or
516 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones
517 * bits which indicates if a zone is write locked, that is, if a write
518 * request targeting the zone was dispatched. All three fields are
519 * initialized by the low level device driver (e.g. scsi/sd.c).
520 * Stacking drivers (device mappers) may or may not initialize
521 * these fields.
522 *
523 * Reads of this information must be protected with blk_queue_enter() /
524 * blk_queue_exit(). Modifying this information is only allowed while
525 * no requests are being processed. See also blk_mq_freeze_queue() and
526 * blk_mq_unfreeze_queue().
527 */
528 unsigned int nr_zones;
529 unsigned long *conv_zones_bitmap;
530 unsigned long *seq_zones_wlock;
531 unsigned int max_open_zones;
532 unsigned int max_active_zones;
533 #endif /* CONFIG_BLK_DEV_ZONED */
534
535 /*
536 * sg stuff
537 */
538 unsigned int sg_timeout;
539 unsigned int sg_reserved_size;
540 int node;
541 struct mutex debugfs_mutex;
542 #ifdef CONFIG_BLK_DEV_IO_TRACE
543 struct blk_trace __rcu *blk_trace;
544 #endif
545 /*
546 * for flush operations
547 */
548 struct blk_flush_queue *fq;
549
550 struct list_head requeue_list;
551 spinlock_t requeue_lock;
552 struct delayed_work requeue_work;
553
554 struct mutex sysfs_lock;
555 struct mutex sysfs_dir_lock;
556
557 /*
558 * for reusing dead hctx instance in case of updating
559 * nr_hw_queues
560 */
561 struct list_head unused_hctx_list;
562 spinlock_t unused_hctx_lock;
563
564 int mq_freeze_depth;
565
566 #if defined(CONFIG_BLK_DEV_BSG)
567 struct bsg_class_device bsg_dev;
568 #endif
569
570 #ifdef CONFIG_BLK_DEV_THROTTLING
571 /* Throttle data */
572 struct throtl_data *td;
573 #endif
574 struct rcu_head rcu_head;
575 wait_queue_head_t mq_freeze_wq;
576 /*
577 * Protect concurrent access to q_usage_counter by
578 * percpu_ref_kill() and percpu_ref_reinit().
579 */
580 struct mutex mq_freeze_lock;
581
582 int quiesce_depth;
583
584 struct blk_mq_tag_set *tag_set;
585 struct list_head tag_set_list;
586 struct bio_set bio_split;
587
588 struct dentry *debugfs_dir;
589
590 #ifdef CONFIG_BLK_DEBUG_FS
591 struct dentry *sched_debugfs_dir;
592 struct dentry *rqos_debugfs_dir;
593 #endif
594
595 bool mq_sysfs_init_done;
596
597 size_t cmd_size;
598
599 #define BLK_MAX_WRITE_HINTS 5
600 u64 write_hints[BLK_MAX_WRITE_HINTS];
601 };
602
603 /* Keep blk_queue_flag_name[] in sync with the definitions below */
604 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */
605 #define QUEUE_FLAG_DYING 1 /* queue being torn down */
606 #define QUEUE_FLAG_THROTL_INIT_DONE 2 /* io throttle can be online */
607 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */
608 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */
609 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */
610 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */
611 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */
612 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */
613 #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */
614 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */
615 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */
616 #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */
617 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */
618 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */
619 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */
620 #define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */
621 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */
622 #define QUEUE_FLAG_WC 17 /* Write back caching */
623 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */
624 #define QUEUE_FLAG_DAX 19 /* device supports DAX */
625 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */
626 #define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */
627 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */
628 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */
629 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */
630 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */
631 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */
632 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */
633 #define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */
634 #define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */
635
636 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \
637 (1 << QUEUE_FLAG_SAME_COMP) | \
638 (1 << QUEUE_FLAG_NOWAIT))
639
640 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
641 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
642 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
643
644 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
645 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
646 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
647 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
648 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
649 #define blk_queue_noxmerges(q) \
650 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
651 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
652 #define blk_queue_stable_writes(q) \
653 test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags)
654 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
655 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
656 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
657 #define blk_queue_zone_resetall(q) \
658 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags)
659 #define blk_queue_secure_erase(q) \
660 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
661 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
662 #define blk_queue_scsi_passthrough(q) \
663 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
664 #define blk_queue_pci_p2pdma(q) \
665 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
666 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
667 #define blk_queue_rq_alloc_time(q) \
668 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
669 #else
670 #define blk_queue_rq_alloc_time(q) false
671 #endif
672
673 #define blk_noretry_request(rq) \
674 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
675 REQ_FAILFAST_DRIVER))
676 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
677 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only)
678 #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags)
679 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
680 #define blk_queue_nowait(q) test_bit(QUEUE_FLAG_NOWAIT, &(q)->queue_flags)
681
682 extern void blk_set_pm_only(struct request_queue *q);
683 extern void blk_clear_pm_only(struct request_queue *q);
684
blk_account_rq(struct request * rq)685 static inline bool blk_account_rq(struct request *rq)
686 {
687 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
688 }
689
690 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist)
691
692 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ)
693
694 #define rq_dma_dir(rq) \
695 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
696
697 #define dma_map_bvec(dev, bv, dir, attrs) \
698 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
699 (dir), (attrs))
700
queue_is_mq(struct request_queue * q)701 static inline bool queue_is_mq(struct request_queue *q)
702 {
703 return q->mq_ops;
704 }
705
706 #ifdef CONFIG_PM
queue_rpm_status(struct request_queue * q)707 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
708 {
709 return q->rpm_status;
710 }
711 #else
queue_rpm_status(struct request_queue * q)712 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
713 {
714 return RPM_ACTIVE;
715 }
716 #endif
717
718 static inline enum blk_zoned_model
blk_queue_zoned_model(struct request_queue * q)719 blk_queue_zoned_model(struct request_queue *q)
720 {
721 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
722 return q->limits.zoned;
723 return BLK_ZONED_NONE;
724 }
725
blk_queue_is_zoned(struct request_queue * q)726 static inline bool blk_queue_is_zoned(struct request_queue *q)
727 {
728 switch (blk_queue_zoned_model(q)) {
729 case BLK_ZONED_HA:
730 case BLK_ZONED_HM:
731 return true;
732 default:
733 return false;
734 }
735 }
736
blk_queue_zone_sectors(struct request_queue * q)737 static inline sector_t blk_queue_zone_sectors(struct request_queue *q)
738 {
739 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
740 }
741
742 #ifdef CONFIG_BLK_DEV_ZONED
blk_queue_nr_zones(struct request_queue * q)743 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
744 {
745 return blk_queue_is_zoned(q) ? q->nr_zones : 0;
746 }
747
blk_queue_zone_no(struct request_queue * q,sector_t sector)748 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
749 sector_t sector)
750 {
751 if (!blk_queue_is_zoned(q))
752 return 0;
753 return sector >> ilog2(q->limits.chunk_sectors);
754 }
755
blk_queue_zone_is_seq(struct request_queue * q,sector_t sector)756 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
757 sector_t sector)
758 {
759 if (!blk_queue_is_zoned(q))
760 return false;
761 if (!q->conv_zones_bitmap)
762 return true;
763 return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap);
764 }
765
blk_queue_max_open_zones(struct request_queue * q,unsigned int max_open_zones)766 static inline void blk_queue_max_open_zones(struct request_queue *q,
767 unsigned int max_open_zones)
768 {
769 q->max_open_zones = max_open_zones;
770 }
771
queue_max_open_zones(const struct request_queue * q)772 static inline unsigned int queue_max_open_zones(const struct request_queue *q)
773 {
774 return q->max_open_zones;
775 }
776
blk_queue_max_active_zones(struct request_queue * q,unsigned int max_active_zones)777 static inline void blk_queue_max_active_zones(struct request_queue *q,
778 unsigned int max_active_zones)
779 {
780 q->max_active_zones = max_active_zones;
781 }
782
queue_max_active_zones(const struct request_queue * q)783 static inline unsigned int queue_max_active_zones(const struct request_queue *q)
784 {
785 return q->max_active_zones;
786 }
787 #else /* CONFIG_BLK_DEV_ZONED */
blk_queue_nr_zones(struct request_queue * q)788 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
789 {
790 return 0;
791 }
blk_queue_zone_is_seq(struct request_queue * q,sector_t sector)792 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
793 sector_t sector)
794 {
795 return false;
796 }
blk_queue_zone_no(struct request_queue * q,sector_t sector)797 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
798 sector_t sector)
799 {
800 return 0;
801 }
queue_max_open_zones(const struct request_queue * q)802 static inline unsigned int queue_max_open_zones(const struct request_queue *q)
803 {
804 return 0;
805 }
queue_max_active_zones(const struct request_queue * q)806 static inline unsigned int queue_max_active_zones(const struct request_queue *q)
807 {
808 return 0;
809 }
810 #endif /* CONFIG_BLK_DEV_ZONED */
811
rq_is_sync(struct request * rq)812 static inline bool rq_is_sync(struct request *rq)
813 {
814 return op_is_sync(rq->cmd_flags);
815 }
816
rq_mergeable(struct request * rq)817 static inline bool rq_mergeable(struct request *rq)
818 {
819 if (blk_rq_is_passthrough(rq))
820 return false;
821
822 if (req_op(rq) == REQ_OP_FLUSH)
823 return false;
824
825 if (req_op(rq) == REQ_OP_WRITE_ZEROES)
826 return false;
827
828 if (req_op(rq) == REQ_OP_ZONE_APPEND)
829 return false;
830
831 if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
832 return false;
833 if (rq->rq_flags & RQF_NOMERGE_FLAGS)
834 return false;
835
836 return true;
837 }
838
blk_write_same_mergeable(struct bio * a,struct bio * b)839 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
840 {
841 if (bio_page(a) == bio_page(b) &&
842 bio_offset(a) == bio_offset(b))
843 return true;
844
845 return false;
846 }
847
blk_queue_depth(struct request_queue * q)848 static inline unsigned int blk_queue_depth(struct request_queue *q)
849 {
850 if (q->queue_depth)
851 return q->queue_depth;
852
853 return q->nr_requests;
854 }
855
856 extern unsigned long blk_max_low_pfn, blk_max_pfn;
857
858 /*
859 * standard bounce addresses:
860 *
861 * BLK_BOUNCE_HIGH : bounce all highmem pages
862 * BLK_BOUNCE_ANY : don't bounce anything
863 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary
864 */
865
866 #if BITS_PER_LONG == 32
867 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT)
868 #else
869 #define BLK_BOUNCE_HIGH -1ULL
870 #endif
871 #define BLK_BOUNCE_ANY (-1ULL)
872 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24))
873
874 /*
875 * default timeout for SG_IO if none specified
876 */
877 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ)
878 #define BLK_MIN_SG_TIMEOUT (7 * HZ)
879
880 struct rq_map_data {
881 struct page **pages;
882 int page_order;
883 int nr_entries;
884 unsigned long offset;
885 int null_mapped;
886 int from_user;
887 };
888
889 struct req_iterator {
890 struct bvec_iter iter;
891 struct bio *bio;
892 };
893
894 /* This should not be used directly - use rq_for_each_segment */
895 #define for_each_bio(_bio) \
896 for (; _bio; _bio = _bio->bi_next)
897 #define __rq_for_each_bio(_bio, rq) \
898 if ((rq->bio)) \
899 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
900
901 #define rq_for_each_segment(bvl, _rq, _iter) \
902 __rq_for_each_bio(_iter.bio, _rq) \
903 bio_for_each_segment(bvl, _iter.bio, _iter.iter)
904
905 #define rq_for_each_bvec(bvl, _rq, _iter) \
906 __rq_for_each_bio(_iter.bio, _rq) \
907 bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
908
909 #define rq_iter_last(bvec, _iter) \
910 (_iter.bio->bi_next == NULL && \
911 bio_iter_last(bvec, _iter.iter))
912
913 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
914 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
915 #endif
916 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
917 extern void rq_flush_dcache_pages(struct request *rq);
918 #else
rq_flush_dcache_pages(struct request * rq)919 static inline void rq_flush_dcache_pages(struct request *rq)
920 {
921 }
922 #endif
923
924 extern int blk_register_queue(struct gendisk *disk);
925 extern void blk_unregister_queue(struct gendisk *disk);
926 blk_qc_t submit_bio_noacct(struct bio *bio);
927 extern void blk_rq_init(struct request_queue *q, struct request *rq);
928 extern void blk_put_request(struct request *);
929 extern struct request *blk_get_request(struct request_queue *, unsigned int op,
930 blk_mq_req_flags_t flags);
931 extern int blk_lld_busy(struct request_queue *q);
932 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
933 struct bio_set *bs, gfp_t gfp_mask,
934 int (*bio_ctr)(struct bio *, struct bio *, void *),
935 void *data);
936 extern void blk_rq_unprep_clone(struct request *rq);
937 extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
938 struct request *rq);
939 extern int blk_rq_append_bio(struct request *rq, struct bio **bio);
940 extern void blk_queue_split(struct bio **);
941 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
942 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
943 unsigned int, void __user *);
944 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
945 unsigned int, void __user *);
946 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
947 struct scsi_ioctl_command __user *);
948 extern int get_sg_io_hdr(struct sg_io_hdr *hdr, const void __user *argp);
949 extern int put_sg_io_hdr(const struct sg_io_hdr *hdr, void __user *argp);
950
951 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
952 extern void blk_queue_exit(struct request_queue *q);
953 extern void blk_sync_queue(struct request_queue *q);
954 extern int blk_rq_map_user(struct request_queue *, struct request *,
955 struct rq_map_data *, void __user *, unsigned long,
956 gfp_t);
957 extern int blk_rq_unmap_user(struct bio *);
958 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
959 extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
960 struct rq_map_data *, const struct iov_iter *,
961 gfp_t);
962 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
963 struct request *, int, rq_end_io_fn *);
964 blk_status_t blk_execute_rq(struct request_queue *, struct gendisk *,
965 struct request *, int);
966
967 /* Helper to convert REQ_OP_XXX to its string format XXX */
968 extern const char *blk_op_str(unsigned int op);
969
970 int blk_status_to_errno(blk_status_t status);
971 blk_status_t errno_to_blk_status(int errno);
972
973 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin);
974
bdev_get_queue(struct block_device * bdev)975 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
976 {
977 return bdev->bd_disk->queue; /* this is never NULL */
978 }
979
980 /*
981 * The basic unit of block I/O is a sector. It is used in a number of contexts
982 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9
983 * bytes. Variables of type sector_t represent an offset or size that is a
984 * multiple of 512 bytes. Hence these two constants.
985 */
986 #ifndef SECTOR_SHIFT
987 #define SECTOR_SHIFT 9
988 #endif
989 #ifndef SECTOR_SIZE
990 #define SECTOR_SIZE (1 << SECTOR_SHIFT)
991 #endif
992
993 /*
994 * blk_rq_pos() : the current sector
995 * blk_rq_bytes() : bytes left in the entire request
996 * blk_rq_cur_bytes() : bytes left in the current segment
997 * blk_rq_err_bytes() : bytes left till the next error boundary
998 * blk_rq_sectors() : sectors left in the entire request
999 * blk_rq_cur_sectors() : sectors left in the current segment
1000 * blk_rq_stats_sectors() : sectors of the entire request used for stats
1001 */
blk_rq_pos(const struct request * rq)1002 static inline sector_t blk_rq_pos(const struct request *rq)
1003 {
1004 return rq->__sector;
1005 }
1006
blk_rq_bytes(const struct request * rq)1007 static inline unsigned int blk_rq_bytes(const struct request *rq)
1008 {
1009 return rq->__data_len;
1010 }
1011
blk_rq_cur_bytes(const struct request * rq)1012 static inline int blk_rq_cur_bytes(const struct request *rq)
1013 {
1014 return rq->bio ? bio_cur_bytes(rq->bio) : 0;
1015 }
1016
1017 extern unsigned int blk_rq_err_bytes(const struct request *rq);
1018
blk_rq_sectors(const struct request * rq)1019 static inline unsigned int blk_rq_sectors(const struct request *rq)
1020 {
1021 return blk_rq_bytes(rq) >> SECTOR_SHIFT;
1022 }
1023
blk_rq_cur_sectors(const struct request * rq)1024 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1025 {
1026 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
1027 }
1028
blk_rq_stats_sectors(const struct request * rq)1029 static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
1030 {
1031 return rq->stats_sectors;
1032 }
1033
1034 #ifdef CONFIG_BLK_DEV_ZONED
1035
1036 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
1037 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
1038
blk_rq_zone_no(struct request * rq)1039 static inline unsigned int blk_rq_zone_no(struct request *rq)
1040 {
1041 return blk_queue_zone_no(rq->q, blk_rq_pos(rq));
1042 }
1043
blk_rq_zone_is_seq(struct request * rq)1044 static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
1045 {
1046 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq));
1047 }
1048 #endif /* CONFIG_BLK_DEV_ZONED */
1049
1050 /*
1051 * Some commands like WRITE SAME have a payload or data transfer size which
1052 * is different from the size of the request. Any driver that supports such
1053 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1054 * calculate the data transfer size.
1055 */
blk_rq_payload_bytes(struct request * rq)1056 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1057 {
1058 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1059 return rq->special_vec.bv_len;
1060 return blk_rq_bytes(rq);
1061 }
1062
1063 /*
1064 * Return the first full biovec in the request. The caller needs to check that
1065 * there are any bvecs before calling this helper.
1066 */
req_bvec(struct request * rq)1067 static inline struct bio_vec req_bvec(struct request *rq)
1068 {
1069 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1070 return rq->special_vec;
1071 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
1072 }
1073
blk_queue_get_max_sectors(struct request_queue * q,int op)1074 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
1075 int op)
1076 {
1077 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
1078 return min(q->limits.max_discard_sectors,
1079 UINT_MAX >> SECTOR_SHIFT);
1080
1081 if (unlikely(op == REQ_OP_WRITE_SAME))
1082 return q->limits.max_write_same_sectors;
1083
1084 if (unlikely(op == REQ_OP_WRITE_ZEROES))
1085 return q->limits.max_write_zeroes_sectors;
1086
1087 return q->limits.max_sectors;
1088 }
1089
1090 /*
1091 * Return maximum size of a request at given offset. Only valid for
1092 * file system requests.
1093 */
blk_max_size_offset(struct request_queue * q,sector_t offset,unsigned int chunk_sectors)1094 static inline unsigned int blk_max_size_offset(struct request_queue *q,
1095 sector_t offset,
1096 unsigned int chunk_sectors)
1097 {
1098 if (!chunk_sectors) {
1099 if (q->limits.chunk_sectors)
1100 chunk_sectors = q->limits.chunk_sectors;
1101 else
1102 return q->limits.max_sectors;
1103 }
1104
1105 if (likely(is_power_of_2(chunk_sectors)))
1106 chunk_sectors -= offset & (chunk_sectors - 1);
1107 else
1108 chunk_sectors -= sector_div(offset, chunk_sectors);
1109
1110 return min(q->limits.max_sectors, chunk_sectors);
1111 }
1112
blk_rq_get_max_sectors(struct request * rq,sector_t offset)1113 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
1114 sector_t offset)
1115 {
1116 struct request_queue *q = rq->q;
1117
1118 if (blk_rq_is_passthrough(rq))
1119 return q->limits.max_hw_sectors;
1120
1121 if (!q->limits.chunk_sectors ||
1122 req_op(rq) == REQ_OP_DISCARD ||
1123 req_op(rq) == REQ_OP_SECURE_ERASE)
1124 return blk_queue_get_max_sectors(q, req_op(rq));
1125
1126 return min(blk_max_size_offset(q, offset, 0),
1127 blk_queue_get_max_sectors(q, req_op(rq)));
1128 }
1129
blk_rq_count_bios(struct request * rq)1130 static inline unsigned int blk_rq_count_bios(struct request *rq)
1131 {
1132 unsigned int nr_bios = 0;
1133 struct bio *bio;
1134
1135 __rq_for_each_bio(bio, rq)
1136 nr_bios++;
1137
1138 return nr_bios;
1139 }
1140
1141 void blk_steal_bios(struct bio_list *list, struct request *rq);
1142
1143 /*
1144 * Request completion related functions.
1145 *
1146 * blk_update_request() completes given number of bytes and updates
1147 * the request without completing it.
1148 */
1149 extern bool blk_update_request(struct request *rq, blk_status_t error,
1150 unsigned int nr_bytes);
1151
1152 extern void blk_abort_request(struct request *);
1153
1154 /*
1155 * Access functions for manipulating queue properties
1156 */
1157 extern void blk_cleanup_queue(struct request_queue *);
1158 extern void blk_queue_bounce_limit(struct request_queue *, u64);
1159 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1160 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1161 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1162 extern void blk_queue_max_discard_segments(struct request_queue *,
1163 unsigned short);
1164 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1165 extern void blk_queue_max_discard_sectors(struct request_queue *q,
1166 unsigned int max_discard_sectors);
1167 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1168 unsigned int max_write_same_sectors);
1169 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1170 unsigned int max_write_same_sectors);
1171 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int);
1172 extern void blk_queue_max_zone_append_sectors(struct request_queue *q,
1173 unsigned int max_zone_append_sectors);
1174 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1175 extern void blk_queue_alignment_offset(struct request_queue *q,
1176 unsigned int alignment);
1177 void blk_queue_update_readahead(struct request_queue *q);
1178 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1179 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1180 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1181 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1182 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1183 extern void blk_set_default_limits(struct queue_limits *lim);
1184 extern void blk_set_stacking_limits(struct queue_limits *lim);
1185 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1186 sector_t offset);
1187 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1188 sector_t offset);
1189 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1190 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1191 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1192 extern void blk_queue_dma_alignment(struct request_queue *, int);
1193 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1194 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1195 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1196 extern void blk_queue_required_elevator_features(struct request_queue *q,
1197 unsigned int features);
1198 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
1199 struct device *dev);
1200
1201 /*
1202 * Number of physical segments as sent to the device.
1203 *
1204 * Normally this is the number of discontiguous data segments sent by the
1205 * submitter. But for data-less command like discard we might have no
1206 * actual data segments submitted, but the driver might have to add it's
1207 * own special payload. In that case we still return 1 here so that this
1208 * special payload will be mapped.
1209 */
blk_rq_nr_phys_segments(struct request * rq)1210 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1211 {
1212 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1213 return 1;
1214 return rq->nr_phys_segments;
1215 }
1216
1217 /*
1218 * Number of discard segments (or ranges) the driver needs to fill in.
1219 * Each discard bio merged into a request is counted as one segment.
1220 */
blk_rq_nr_discard_segments(struct request * rq)1221 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1222 {
1223 return max_t(unsigned short, rq->nr_phys_segments, 1);
1224 }
1225
1226 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
1227 struct scatterlist *sglist, struct scatterlist **last_sg);
blk_rq_map_sg(struct request_queue * q,struct request * rq,struct scatterlist * sglist)1228 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1229 struct scatterlist *sglist)
1230 {
1231 struct scatterlist *last_sg = NULL;
1232
1233 return __blk_rq_map_sg(q, rq, sglist, &last_sg);
1234 }
1235 extern void blk_dump_rq_flags(struct request *, char *);
1236
1237 bool __must_check blk_get_queue(struct request_queue *);
1238 struct request_queue *blk_alloc_queue(int node_id);
1239 extern void blk_put_queue(struct request_queue *);
1240 extern void blk_set_queue_dying(struct request_queue *);
1241
1242 #ifdef CONFIG_BLOCK
1243 /*
1244 * blk_plug permits building a queue of related requests by holding the I/O
1245 * fragments for a short period. This allows merging of sequential requests
1246 * into single larger request. As the requests are moved from a per-task list to
1247 * the device's request_queue in a batch, this results in improved scalability
1248 * as the lock contention for request_queue lock is reduced.
1249 *
1250 * It is ok not to disable preemption when adding the request to the plug list
1251 * or when attempting a merge, because blk_schedule_flush_list() will only flush
1252 * the plug list when the task sleeps by itself. For details, please see
1253 * schedule() where blk_schedule_flush_plug() is called.
1254 */
1255 struct blk_plug {
1256 struct list_head mq_list; /* blk-mq requests */
1257 struct list_head cb_list; /* md requires an unplug callback */
1258 unsigned short rq_count;
1259 bool multiple_queues;
1260 bool nowait;
1261 };
1262
1263 struct blk_plug_cb;
1264 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1265 struct blk_plug_cb {
1266 struct list_head list;
1267 blk_plug_cb_fn callback;
1268 void *data;
1269 };
1270 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1271 void *data, int size);
1272 extern void blk_start_plug(struct blk_plug *);
1273 extern void blk_finish_plug(struct blk_plug *);
1274 extern void blk_flush_plug_list(struct blk_plug *, bool);
1275
blk_flush_plug(struct task_struct * tsk)1276 static inline void blk_flush_plug(struct task_struct *tsk)
1277 {
1278 struct blk_plug *plug = tsk->plug;
1279
1280 if (plug)
1281 blk_flush_plug_list(plug, false);
1282 }
1283
blk_schedule_flush_plug(struct task_struct * tsk)1284 static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1285 {
1286 struct blk_plug *plug = tsk->plug;
1287
1288 if (plug)
1289 blk_flush_plug_list(plug, true);
1290 }
1291
blk_needs_flush_plug(struct task_struct * tsk)1292 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1293 {
1294 struct blk_plug *plug = tsk->plug;
1295
1296 return plug &&
1297 (!list_empty(&plug->mq_list) ||
1298 !list_empty(&plug->cb_list));
1299 }
1300
1301 int blkdev_issue_flush(struct block_device *, gfp_t);
1302 long nr_blockdev_pages(void);
1303 #else /* CONFIG_BLOCK */
1304 struct blk_plug {
1305 };
1306
blk_start_plug(struct blk_plug * plug)1307 static inline void blk_start_plug(struct blk_plug *plug)
1308 {
1309 }
1310
blk_finish_plug(struct blk_plug * plug)1311 static inline void blk_finish_plug(struct blk_plug *plug)
1312 {
1313 }
1314
blk_flush_plug(struct task_struct * task)1315 static inline void blk_flush_plug(struct task_struct *task)
1316 {
1317 }
1318
blk_schedule_flush_plug(struct task_struct * task)1319 static inline void blk_schedule_flush_plug(struct task_struct *task)
1320 {
1321 }
1322
1323
blk_needs_flush_plug(struct task_struct * tsk)1324 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1325 {
1326 return false;
1327 }
1328
blkdev_issue_flush(struct block_device * bdev,gfp_t gfp_mask)1329 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask)
1330 {
1331 return 0;
1332 }
1333
nr_blockdev_pages(void)1334 static inline long nr_blockdev_pages(void)
1335 {
1336 return 0;
1337 }
1338 #endif /* CONFIG_BLOCK */
1339
1340 extern void blk_io_schedule(void);
1341
1342 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1343 sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1344
1345 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */
1346
1347 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1348 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1349 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1350 sector_t nr_sects, gfp_t gfp_mask, int flags,
1351 struct bio **biop);
1352
1353 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */
1354 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */
1355
1356 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1357 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1358 unsigned flags);
1359 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1360 sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1361
sb_issue_discard(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask,unsigned long flags)1362 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1363 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1364 {
1365 return blkdev_issue_discard(sb->s_bdev,
1366 block << (sb->s_blocksize_bits -
1367 SECTOR_SHIFT),
1368 nr_blocks << (sb->s_blocksize_bits -
1369 SECTOR_SHIFT),
1370 gfp_mask, flags);
1371 }
sb_issue_zeroout(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask)1372 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1373 sector_t nr_blocks, gfp_t gfp_mask)
1374 {
1375 return blkdev_issue_zeroout(sb->s_bdev,
1376 block << (sb->s_blocksize_bits -
1377 SECTOR_SHIFT),
1378 nr_blocks << (sb->s_blocksize_bits -
1379 SECTOR_SHIFT),
1380 gfp_mask, 0);
1381 }
1382
1383 extern int blk_verify_command(unsigned char *cmd, fmode_t mode);
1384
bdev_is_partition(struct block_device * bdev)1385 static inline bool bdev_is_partition(struct block_device *bdev)
1386 {
1387 return bdev->bd_partno;
1388 }
1389
1390 enum blk_default_limits {
1391 BLK_MAX_SEGMENTS = 128,
1392 BLK_SAFE_MAX_SECTORS = 255,
1393 BLK_DEF_MAX_SECTORS = 2560,
1394 BLK_MAX_SEGMENT_SIZE = 65536,
1395 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL,
1396 };
1397
queue_segment_boundary(const struct request_queue * q)1398 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1399 {
1400 return q->limits.seg_boundary_mask;
1401 }
1402
queue_virt_boundary(const struct request_queue * q)1403 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1404 {
1405 return q->limits.virt_boundary_mask;
1406 }
1407
queue_max_sectors(const struct request_queue * q)1408 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1409 {
1410 return q->limits.max_sectors;
1411 }
1412
queue_max_hw_sectors(const struct request_queue * q)1413 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1414 {
1415 return q->limits.max_hw_sectors;
1416 }
1417
queue_max_segments(const struct request_queue * q)1418 static inline unsigned short queue_max_segments(const struct request_queue *q)
1419 {
1420 return q->limits.max_segments;
1421 }
1422
queue_max_discard_segments(const struct request_queue * q)1423 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1424 {
1425 return q->limits.max_discard_segments;
1426 }
1427
queue_max_segment_size(const struct request_queue * q)1428 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1429 {
1430 return q->limits.max_segment_size;
1431 }
1432
queue_max_zone_append_sectors(const struct request_queue * q)1433 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q)
1434 {
1435
1436 const struct queue_limits *l = &q->limits;
1437
1438 return min(l->max_zone_append_sectors, l->max_sectors);
1439 }
1440
queue_logical_block_size(const struct request_queue * q)1441 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1442 {
1443 int retval = 512;
1444
1445 if (q && q->limits.logical_block_size)
1446 retval = q->limits.logical_block_size;
1447
1448 return retval;
1449 }
1450
bdev_logical_block_size(struct block_device * bdev)1451 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1452 {
1453 return queue_logical_block_size(bdev_get_queue(bdev));
1454 }
1455
queue_physical_block_size(const struct request_queue * q)1456 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1457 {
1458 return q->limits.physical_block_size;
1459 }
1460
bdev_physical_block_size(struct block_device * bdev)1461 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1462 {
1463 return queue_physical_block_size(bdev_get_queue(bdev));
1464 }
1465
queue_io_min(const struct request_queue * q)1466 static inline unsigned int queue_io_min(const struct request_queue *q)
1467 {
1468 return q->limits.io_min;
1469 }
1470
bdev_io_min(struct block_device * bdev)1471 static inline int bdev_io_min(struct block_device *bdev)
1472 {
1473 return queue_io_min(bdev_get_queue(bdev));
1474 }
1475
queue_io_opt(const struct request_queue * q)1476 static inline unsigned int queue_io_opt(const struct request_queue *q)
1477 {
1478 return q->limits.io_opt;
1479 }
1480
bdev_io_opt(struct block_device * bdev)1481 static inline int bdev_io_opt(struct block_device *bdev)
1482 {
1483 return queue_io_opt(bdev_get_queue(bdev));
1484 }
1485
queue_alignment_offset(const struct request_queue * q)1486 static inline int queue_alignment_offset(const struct request_queue *q)
1487 {
1488 if (q->limits.misaligned)
1489 return -1;
1490
1491 return q->limits.alignment_offset;
1492 }
1493
queue_limit_alignment_offset(struct queue_limits * lim,sector_t sector)1494 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1495 {
1496 unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1497 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
1498 << SECTOR_SHIFT;
1499
1500 return (granularity + lim->alignment_offset - alignment) % granularity;
1501 }
1502
bdev_alignment_offset(struct block_device * bdev)1503 static inline int bdev_alignment_offset(struct block_device *bdev)
1504 {
1505 struct request_queue *q = bdev_get_queue(bdev);
1506
1507 if (q->limits.misaligned)
1508 return -1;
1509 if (bdev_is_partition(bdev))
1510 return queue_limit_alignment_offset(&q->limits,
1511 bdev->bd_part->start_sect);
1512 return q->limits.alignment_offset;
1513 }
1514
queue_discard_alignment(const struct request_queue * q)1515 static inline int queue_discard_alignment(const struct request_queue *q)
1516 {
1517 if (q->limits.discard_misaligned)
1518 return -1;
1519
1520 return q->limits.discard_alignment;
1521 }
1522
queue_limit_discard_alignment(struct queue_limits * lim,sector_t sector)1523 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1524 {
1525 unsigned int alignment, granularity, offset;
1526
1527 if (!lim->max_discard_sectors)
1528 return 0;
1529
1530 /* Why are these in bytes, not sectors? */
1531 alignment = lim->discard_alignment >> SECTOR_SHIFT;
1532 granularity = lim->discard_granularity >> SECTOR_SHIFT;
1533 if (!granularity)
1534 return 0;
1535
1536 /* Offset of the partition start in 'granularity' sectors */
1537 offset = sector_div(sector, granularity);
1538
1539 /* And why do we do this modulus *again* in blkdev_issue_discard()? */
1540 offset = (granularity + alignment - offset) % granularity;
1541
1542 /* Turn it back into bytes, gaah */
1543 return offset << SECTOR_SHIFT;
1544 }
1545
1546 /*
1547 * Two cases of handling DISCARD merge:
1548 * If max_discard_segments > 1, the driver takes every bio
1549 * as a range and send them to controller together. The ranges
1550 * needn't to be contiguous.
1551 * Otherwise, the bios/requests will be handled as same as
1552 * others which should be contiguous.
1553 */
blk_discard_mergable(struct request * req)1554 static inline bool blk_discard_mergable(struct request *req)
1555 {
1556 if (req_op(req) == REQ_OP_DISCARD &&
1557 queue_max_discard_segments(req->q) > 1)
1558 return true;
1559 return false;
1560 }
1561
bdev_discard_alignment(struct block_device * bdev)1562 static inline int bdev_discard_alignment(struct block_device *bdev)
1563 {
1564 struct request_queue *q = bdev_get_queue(bdev);
1565
1566 if (bdev_is_partition(bdev))
1567 return queue_limit_discard_alignment(&q->limits,
1568 bdev->bd_part->start_sect);
1569 return q->limits.discard_alignment;
1570 }
1571
bdev_write_same(struct block_device * bdev)1572 static inline unsigned int bdev_write_same(struct block_device *bdev)
1573 {
1574 struct request_queue *q = bdev_get_queue(bdev);
1575
1576 if (q)
1577 return q->limits.max_write_same_sectors;
1578
1579 return 0;
1580 }
1581
bdev_write_zeroes_sectors(struct block_device * bdev)1582 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1583 {
1584 struct request_queue *q = bdev_get_queue(bdev);
1585
1586 if (q)
1587 return q->limits.max_write_zeroes_sectors;
1588
1589 return 0;
1590 }
1591
bdev_zoned_model(struct block_device * bdev)1592 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1593 {
1594 struct request_queue *q = bdev_get_queue(bdev);
1595
1596 if (q)
1597 return blk_queue_zoned_model(q);
1598
1599 return BLK_ZONED_NONE;
1600 }
1601
bdev_is_zoned(struct block_device * bdev)1602 static inline bool bdev_is_zoned(struct block_device *bdev)
1603 {
1604 struct request_queue *q = bdev_get_queue(bdev);
1605
1606 if (q)
1607 return blk_queue_is_zoned(q);
1608
1609 return false;
1610 }
1611
bdev_zone_sectors(struct block_device * bdev)1612 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1613 {
1614 struct request_queue *q = bdev_get_queue(bdev);
1615
1616 if (q)
1617 return blk_queue_zone_sectors(q);
1618 return 0;
1619 }
1620
bdev_max_open_zones(struct block_device * bdev)1621 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
1622 {
1623 struct request_queue *q = bdev_get_queue(bdev);
1624
1625 if (q)
1626 return queue_max_open_zones(q);
1627 return 0;
1628 }
1629
bdev_max_active_zones(struct block_device * bdev)1630 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
1631 {
1632 struct request_queue *q = bdev_get_queue(bdev);
1633
1634 if (q)
1635 return queue_max_active_zones(q);
1636 return 0;
1637 }
1638
queue_dma_alignment(const struct request_queue * q)1639 static inline int queue_dma_alignment(const struct request_queue *q)
1640 {
1641 return q ? q->dma_alignment : 511;
1642 }
1643
blk_rq_aligned(struct request_queue * q,unsigned long addr,unsigned int len)1644 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1645 unsigned int len)
1646 {
1647 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1648 return !(addr & alignment) && !(len & alignment);
1649 }
1650
1651 /* assumes size > 256 */
blksize_bits(unsigned int size)1652 static inline unsigned int blksize_bits(unsigned int size)
1653 {
1654 unsigned int bits = 8;
1655 do {
1656 bits++;
1657 size >>= 1;
1658 } while (size > 256);
1659 return bits;
1660 }
1661
block_size(struct block_device * bdev)1662 static inline unsigned int block_size(struct block_device *bdev)
1663 {
1664 return 1 << bdev->bd_inode->i_blkbits;
1665 }
1666
1667 int kblockd_schedule_work(struct work_struct *work);
1668 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1669
1670 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1671 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1672 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1673 MODULE_ALIAS("block-major-" __stringify(major) "-*")
1674
1675 #if defined(CONFIG_BLK_DEV_INTEGRITY)
1676
1677 enum blk_integrity_flags {
1678 BLK_INTEGRITY_VERIFY = 1 << 0,
1679 BLK_INTEGRITY_GENERATE = 1 << 1,
1680 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2,
1681 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3,
1682 };
1683
1684 struct blk_integrity_iter {
1685 void *prot_buf;
1686 void *data_buf;
1687 sector_t seed;
1688 unsigned int data_size;
1689 unsigned short interval;
1690 const char *disk_name;
1691 };
1692
1693 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
1694 typedef void (integrity_prepare_fn) (struct request *);
1695 typedef void (integrity_complete_fn) (struct request *, unsigned int);
1696
1697 struct blk_integrity_profile {
1698 integrity_processing_fn *generate_fn;
1699 integrity_processing_fn *verify_fn;
1700 integrity_prepare_fn *prepare_fn;
1701 integrity_complete_fn *complete_fn;
1702 const char *name;
1703 };
1704
1705 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1706 extern void blk_integrity_unregister(struct gendisk *);
1707 extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1708 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1709 struct scatterlist *);
1710 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1711
blk_get_integrity(struct gendisk * disk)1712 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1713 {
1714 struct blk_integrity *bi = &disk->queue->integrity;
1715
1716 if (!bi->profile)
1717 return NULL;
1718
1719 return bi;
1720 }
1721
1722 static inline
bdev_get_integrity(struct block_device * bdev)1723 struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1724 {
1725 return blk_get_integrity(bdev->bd_disk);
1726 }
1727
1728 static inline bool
blk_integrity_queue_supports_integrity(struct request_queue * q)1729 blk_integrity_queue_supports_integrity(struct request_queue *q)
1730 {
1731 return q->integrity.profile;
1732 }
1733
blk_integrity_rq(struct request * rq)1734 static inline bool blk_integrity_rq(struct request *rq)
1735 {
1736 return rq->cmd_flags & REQ_INTEGRITY;
1737 }
1738
blk_queue_max_integrity_segments(struct request_queue * q,unsigned int segs)1739 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1740 unsigned int segs)
1741 {
1742 q->limits.max_integrity_segments = segs;
1743 }
1744
1745 static inline unsigned short
queue_max_integrity_segments(const struct request_queue * q)1746 queue_max_integrity_segments(const struct request_queue *q)
1747 {
1748 return q->limits.max_integrity_segments;
1749 }
1750
1751 /**
1752 * bio_integrity_intervals - Return number of integrity intervals for a bio
1753 * @bi: blk_integrity profile for device
1754 * @sectors: Size of the bio in 512-byte sectors
1755 *
1756 * Description: The block layer calculates everything in 512 byte
1757 * sectors but integrity metadata is done in terms of the data integrity
1758 * interval size of the storage device. Convert the block layer sectors
1759 * to the appropriate number of integrity intervals.
1760 */
bio_integrity_intervals(struct blk_integrity * bi,unsigned int sectors)1761 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1762 unsigned int sectors)
1763 {
1764 return sectors >> (bi->interval_exp - 9);
1765 }
1766
bio_integrity_bytes(struct blk_integrity * bi,unsigned int sectors)1767 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1768 unsigned int sectors)
1769 {
1770 return bio_integrity_intervals(bi, sectors) * bi->tuple_size;
1771 }
1772
1773 /*
1774 * Return the first bvec that contains integrity data. Only drivers that are
1775 * limited to a single integrity segment should use this helper.
1776 */
rq_integrity_vec(struct request * rq)1777 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1778 {
1779 if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1))
1780 return NULL;
1781 return rq->bio->bi_integrity->bip_vec;
1782 }
1783
1784 #else /* CONFIG_BLK_DEV_INTEGRITY */
1785
1786 struct bio;
1787 struct block_device;
1788 struct gendisk;
1789 struct blk_integrity;
1790
blk_integrity_rq(struct request * rq)1791 static inline int blk_integrity_rq(struct request *rq)
1792 {
1793 return 0;
1794 }
blk_rq_count_integrity_sg(struct request_queue * q,struct bio * b)1795 static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1796 struct bio *b)
1797 {
1798 return 0;
1799 }
blk_rq_map_integrity_sg(struct request_queue * q,struct bio * b,struct scatterlist * s)1800 static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1801 struct bio *b,
1802 struct scatterlist *s)
1803 {
1804 return 0;
1805 }
bdev_get_integrity(struct block_device * b)1806 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1807 {
1808 return NULL;
1809 }
blk_get_integrity(struct gendisk * disk)1810 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1811 {
1812 return NULL;
1813 }
1814 static inline bool
blk_integrity_queue_supports_integrity(struct request_queue * q)1815 blk_integrity_queue_supports_integrity(struct request_queue *q)
1816 {
1817 return false;
1818 }
blk_integrity_compare(struct gendisk * a,struct gendisk * b)1819 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1820 {
1821 return 0;
1822 }
blk_integrity_register(struct gendisk * d,struct blk_integrity * b)1823 static inline void blk_integrity_register(struct gendisk *d,
1824 struct blk_integrity *b)
1825 {
1826 }
blk_integrity_unregister(struct gendisk * d)1827 static inline void blk_integrity_unregister(struct gendisk *d)
1828 {
1829 }
blk_queue_max_integrity_segments(struct request_queue * q,unsigned int segs)1830 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1831 unsigned int segs)
1832 {
1833 }
queue_max_integrity_segments(const struct request_queue * q)1834 static inline unsigned short queue_max_integrity_segments(const struct request_queue *q)
1835 {
1836 return 0;
1837 }
1838
bio_integrity_intervals(struct blk_integrity * bi,unsigned int sectors)1839 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1840 unsigned int sectors)
1841 {
1842 return 0;
1843 }
1844
bio_integrity_bytes(struct blk_integrity * bi,unsigned int sectors)1845 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1846 unsigned int sectors)
1847 {
1848 return 0;
1849 }
1850
rq_integrity_vec(struct request * rq)1851 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1852 {
1853 return NULL;
1854 }
1855
1856 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1857
1858 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1859
1860 bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q);
1861
1862 void blk_ksm_unregister(struct request_queue *q);
1863
1864 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1865
blk_ksm_register(struct blk_keyslot_manager * ksm,struct request_queue * q)1866 static inline bool blk_ksm_register(struct blk_keyslot_manager *ksm,
1867 struct request_queue *q)
1868 {
1869 return true;
1870 }
1871
blk_ksm_unregister(struct request_queue * q)1872 static inline void blk_ksm_unregister(struct request_queue *q) { }
1873
1874 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1875
1876
1877 struct block_device_operations {
1878 blk_qc_t (*submit_bio) (struct bio *bio);
1879 int (*open) (struct block_device *, fmode_t);
1880 void (*release) (struct gendisk *, fmode_t);
1881 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int);
1882 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1883 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1884 unsigned int (*check_events) (struct gendisk *disk,
1885 unsigned int clearing);
1886 void (*unlock_native_capacity) (struct gendisk *);
1887 int (*revalidate_disk) (struct gendisk *);
1888 int (*getgeo)(struct block_device *, struct hd_geometry *);
1889 /* this callback is with swap_lock and sometimes page table lock held */
1890 void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1891 int (*report_zones)(struct gendisk *, sector_t sector,
1892 unsigned int nr_zones, report_zones_cb cb, void *data);
1893 char *(*devnode)(struct gendisk *disk, umode_t *mode);
1894 struct module *owner;
1895 const struct pr_ops *pr_ops;
1896 };
1897
1898 #ifdef CONFIG_COMPAT
1899 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t,
1900 unsigned int, unsigned long);
1901 #else
1902 #define blkdev_compat_ptr_ioctl NULL
1903 #endif
1904
1905 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
1906 unsigned long);
1907 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1908 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1909 struct writeback_control *);
1910
1911 #ifdef CONFIG_BLK_DEV_ZONED
1912 bool blk_req_needs_zone_write_lock(struct request *rq);
1913 bool blk_req_zone_write_trylock(struct request *rq);
1914 void __blk_req_zone_write_lock(struct request *rq);
1915 void __blk_req_zone_write_unlock(struct request *rq);
1916
blk_req_zone_write_lock(struct request * rq)1917 static inline void blk_req_zone_write_lock(struct request *rq)
1918 {
1919 if (blk_req_needs_zone_write_lock(rq))
1920 __blk_req_zone_write_lock(rq);
1921 }
1922
blk_req_zone_write_unlock(struct request * rq)1923 static inline void blk_req_zone_write_unlock(struct request *rq)
1924 {
1925 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1926 __blk_req_zone_write_unlock(rq);
1927 }
1928
blk_req_zone_is_write_locked(struct request * rq)1929 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1930 {
1931 return rq->q->seq_zones_wlock &&
1932 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock);
1933 }
1934
blk_req_can_dispatch_to_zone(struct request * rq)1935 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1936 {
1937 if (!blk_req_needs_zone_write_lock(rq))
1938 return true;
1939 return !blk_req_zone_is_write_locked(rq);
1940 }
1941 #else
blk_req_needs_zone_write_lock(struct request * rq)1942 static inline bool blk_req_needs_zone_write_lock(struct request *rq)
1943 {
1944 return false;
1945 }
1946
blk_req_zone_write_lock(struct request * rq)1947 static inline void blk_req_zone_write_lock(struct request *rq)
1948 {
1949 }
1950
blk_req_zone_write_unlock(struct request * rq)1951 static inline void blk_req_zone_write_unlock(struct request *rq)
1952 {
1953 }
blk_req_zone_is_write_locked(struct request * rq)1954 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1955 {
1956 return false;
1957 }
1958
blk_req_can_dispatch_to_zone(struct request * rq)1959 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1960 {
1961 return true;
1962 }
1963 #endif /* CONFIG_BLK_DEV_ZONED */
1964
blk_wake_io_task(struct task_struct * waiter)1965 static inline void blk_wake_io_task(struct task_struct *waiter)
1966 {
1967 /*
1968 * If we're polling, the task itself is doing the completions. For
1969 * that case, we don't need to signal a wakeup, it's enough to just
1970 * mark us as RUNNING.
1971 */
1972 if (waiter == current)
1973 __set_current_state(TASK_RUNNING);
1974 else
1975 wake_up_process(waiter);
1976 }
1977
1978 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1979 unsigned int op);
1980 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1981 unsigned long start_time);
1982
1983 unsigned long part_start_io_acct(struct gendisk *disk, struct hd_struct **part,
1984 struct bio *bio);
1985 void part_end_io_acct(struct hd_struct *part, struct bio *bio,
1986 unsigned long start_time);
1987
1988 /**
1989 * bio_start_io_acct - start I/O accounting for bio based drivers
1990 * @bio: bio to start account for
1991 *
1992 * Returns the start time that should be passed back to bio_end_io_acct().
1993 */
bio_start_io_acct(struct bio * bio)1994 static inline unsigned long bio_start_io_acct(struct bio *bio)
1995 {
1996 return disk_start_io_acct(bio->bi_disk, bio_sectors(bio), bio_op(bio));
1997 }
1998
1999 /**
2000 * bio_end_io_acct - end I/O accounting for bio based drivers
2001 * @bio: bio to end account for
2002 * @start: start time returned by bio_start_io_acct()
2003 */
bio_end_io_acct(struct bio * bio,unsigned long start_time)2004 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
2005 {
2006 return disk_end_io_acct(bio->bi_disk, bio_op(bio), start_time);
2007 }
2008
2009 int bdev_read_only(struct block_device *bdev);
2010 int set_blocksize(struct block_device *bdev, int size);
2011
2012 const char *bdevname(struct block_device *bdev, char *buffer);
2013 struct block_device *lookup_bdev(const char *);
2014
2015 void blkdev_show(struct seq_file *seqf, off_t offset);
2016
2017 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */
2018 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */
2019 #ifdef CONFIG_BLOCK
2020 #define BLKDEV_MAJOR_MAX 512
2021 #else
2022 #define BLKDEV_MAJOR_MAX 0
2023 #endif
2024
2025 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
2026 void *holder);
2027 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder);
2028 int bd_prepare_to_claim(struct block_device *bdev, struct block_device *whole,
2029 void *holder);
2030 void bd_abort_claiming(struct block_device *bdev, struct block_device *whole,
2031 void *holder);
2032 void blkdev_put(struct block_device *bdev, fmode_t mode);
2033
2034 struct block_device *I_BDEV(struct inode *inode);
2035 struct block_device *bdget_part(struct hd_struct *part);
2036 struct block_device *bdgrab(struct block_device *bdev);
2037 void bdput(struct block_device *);
2038
2039 #ifdef CONFIG_BLOCK
2040 void invalidate_bdev(struct block_device *bdev);
2041 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart,
2042 loff_t lend);
2043 int sync_blockdev(struct block_device *bdev);
2044 #else
invalidate_bdev(struct block_device * bdev)2045 static inline void invalidate_bdev(struct block_device *bdev)
2046 {
2047 }
truncate_bdev_range(struct block_device * bdev,fmode_t mode,loff_t lstart,loff_t lend)2048 static inline int truncate_bdev_range(struct block_device *bdev, fmode_t mode,
2049 loff_t lstart, loff_t lend)
2050 {
2051 return 0;
2052 }
sync_blockdev(struct block_device * bdev)2053 static inline int sync_blockdev(struct block_device *bdev)
2054 {
2055 return 0;
2056 }
2057 #endif
2058 int fsync_bdev(struct block_device *bdev);
2059
2060 struct super_block *freeze_bdev(struct block_device *bdev);
2061 int thaw_bdev(struct block_device *bdev, struct super_block *sb);
2062
2063 #endif /* _LINUX_BLKDEV_H */
2064