1 /*
2 Written 1998-2000 by Donald Becker.
3
4 This software may be used and distributed according to the terms of
5 the GNU General Public License (GPL), incorporated herein by reference.
6 Drivers based on or derived from this code fall under the GPL and must
7 retain the authorship, copyright and license notice. This file is not
8 a complete program and may only be used when the entire operating
9 system is licensed under the GPL.
10
11 The author may be reached as becker@scyld.com, or C/O
12 Scyld Computing Corporation
13 410 Severn Ave., Suite 210
14 Annapolis MD 21403
15
16 Support information and updates available at
17 http://www.scyld.com/network/pci-skeleton.html
18
19 Linux kernel updates:
20
21 Version 2.51, Nov 17, 2001 (jgarzik):
22 - Add ethtool support
23 - Replace some MII-related magic numbers with constants
24
25 */
26
27 #define DRV_NAME "fealnx"
28
29 static int debug; /* 1-> print debug message */
30 static int max_interrupt_work = 20;
31
32 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). */
33 static int multicast_filter_limit = 32;
34
35 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. */
36 /* Setting to > 1518 effectively disables this feature. */
37 static int rx_copybreak;
38
39 /* Used to pass the media type, etc. */
40 /* Both 'options[]' and 'full_duplex[]' should exist for driver */
41 /* interoperability. */
42 /* The media type is usually passed in 'options[]'. */
43 #define MAX_UNITS 8 /* More are supported, limit only on options */
44 static int options[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 };
45 static int full_duplex[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 };
46
47 /* Operational parameters that are set at compile time. */
48 /* Keep the ring sizes a power of two for compile efficiency. */
49 /* The compiler will convert <unsigned>'%'<2^N> into a bit mask. */
50 /* Making the Tx ring too large decreases the effectiveness of channel */
51 /* bonding and packet priority. */
52 /* There are no ill effects from too-large receive rings. */
53 // 88-12-9 modify,
54 // #define TX_RING_SIZE 16
55 // #define RX_RING_SIZE 32
56 #define TX_RING_SIZE 6
57 #define RX_RING_SIZE 12
58 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct fealnx_desc)
59 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct fealnx_desc)
60
61 /* Operational parameters that usually are not changed. */
62 /* Time in jiffies before concluding the transmitter is hung. */
63 #define TX_TIMEOUT (2*HZ)
64
65 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer. */
66
67
68 /* Include files, designed to support most kernel versions 2.0.0 and later. */
69 #include <linux/module.h>
70 #include <linux/kernel.h>
71 #include <linux/string.h>
72 #include <linux/timer.h>
73 #include <linux/errno.h>
74 #include <linux/ioport.h>
75 #include <linux/interrupt.h>
76 #include <linux/pci.h>
77 #include <linux/netdevice.h>
78 #include <linux/etherdevice.h>
79 #include <linux/skbuff.h>
80 #include <linux/init.h>
81 #include <linux/mii.h>
82 #include <linux/ethtool.h>
83 #include <linux/crc32.h>
84 #include <linux/delay.h>
85 #include <linux/bitops.h>
86
87 #include <asm/processor.h> /* Processor type for cache alignment. */
88 #include <asm/io.h>
89 #include <linux/uaccess.h>
90 #include <asm/byteorder.h>
91
92 /* This driver was written to use PCI memory space, however some x86 systems
93 work only with I/O space accesses. */
94 #ifndef __alpha__
95 #define USE_IO_OPS
96 #endif
97
98 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package. */
99 /* This is only in the support-all-kernels source code. */
100
101 #define RUN_AT(x) (jiffies + (x))
102
103 MODULE_AUTHOR("Myson or whoever");
104 MODULE_DESCRIPTION("Myson MTD-8xx 100/10M Ethernet PCI Adapter Driver");
105 MODULE_LICENSE("GPL");
106 module_param(max_interrupt_work, int, 0);
107 module_param(debug, int, 0);
108 module_param(rx_copybreak, int, 0);
109 module_param(multicast_filter_limit, int, 0);
110 module_param_array(options, int, NULL, 0);
111 module_param_array(full_duplex, int, NULL, 0);
112 MODULE_PARM_DESC(max_interrupt_work, "fealnx maximum events handled per interrupt");
113 MODULE_PARM_DESC(debug, "fealnx enable debugging (0-1)");
114 MODULE_PARM_DESC(rx_copybreak, "fealnx copy breakpoint for copy-only-tiny-frames");
115 MODULE_PARM_DESC(multicast_filter_limit, "fealnx maximum number of filtered multicast addresses");
116 MODULE_PARM_DESC(options, "fealnx: Bits 0-3: media type, bit 17: full duplex");
117 MODULE_PARM_DESC(full_duplex, "fealnx full duplex setting(s) (1)");
118
119 enum {
120 MIN_REGION_SIZE = 136,
121 };
122
123 /* A chip capabilities table, matching the entries in pci_tbl[] above. */
124 enum chip_capability_flags {
125 HAS_MII_XCVR,
126 HAS_CHIP_XCVR,
127 };
128
129 /* 89/6/13 add, */
130 /* for different PHY */
131 enum phy_type_flags {
132 MysonPHY = 1,
133 AhdocPHY = 2,
134 SeeqPHY = 3,
135 MarvellPHY = 4,
136 Myson981 = 5,
137 LevelOnePHY = 6,
138 OtherPHY = 10,
139 };
140
141 struct chip_info {
142 char *chip_name;
143 int flags;
144 };
145
146 static const struct chip_info skel_netdrv_tbl[] = {
147 { "100/10M Ethernet PCI Adapter", HAS_MII_XCVR },
148 { "100/10M Ethernet PCI Adapter", HAS_CHIP_XCVR },
149 { "1000/100/10M Ethernet PCI Adapter", HAS_MII_XCVR },
150 };
151
152 /* Offsets to the Command and Status Registers. */
153 enum fealnx_offsets {
154 PAR0 = 0x0, /* physical address 0-3 */
155 PAR1 = 0x04, /* physical address 4-5 */
156 MAR0 = 0x08, /* multicast address 0-3 */
157 MAR1 = 0x0C, /* multicast address 4-7 */
158 FAR0 = 0x10, /* flow-control address 0-3 */
159 FAR1 = 0x14, /* flow-control address 4-5 */
160 TCRRCR = 0x18, /* receive & transmit configuration */
161 BCR = 0x1C, /* bus command */
162 TXPDR = 0x20, /* transmit polling demand */
163 RXPDR = 0x24, /* receive polling demand */
164 RXCWP = 0x28, /* receive current word pointer */
165 TXLBA = 0x2C, /* transmit list base address */
166 RXLBA = 0x30, /* receive list base address */
167 ISR = 0x34, /* interrupt status */
168 IMR = 0x38, /* interrupt mask */
169 FTH = 0x3C, /* flow control high/low threshold */
170 MANAGEMENT = 0x40, /* bootrom/eeprom and mii management */
171 TALLY = 0x44, /* tally counters for crc and mpa */
172 TSR = 0x48, /* tally counter for transmit status */
173 BMCRSR = 0x4c, /* basic mode control and status */
174 PHYIDENTIFIER = 0x50, /* phy identifier */
175 ANARANLPAR = 0x54, /* auto-negotiation advertisement and link
176 partner ability */
177 ANEROCR = 0x58, /* auto-negotiation expansion and pci conf. */
178 BPREMRPSR = 0x5c, /* bypass & receive error mask and phy status */
179 };
180
181 /* Bits in the interrupt status/enable registers. */
182 /* The bits in the Intr Status/Enable registers, mostly interrupt sources. */
183 enum intr_status_bits {
184 RFCON = 0x00020000, /* receive flow control xon packet */
185 RFCOFF = 0x00010000, /* receive flow control xoff packet */
186 LSCStatus = 0x00008000, /* link status change */
187 ANCStatus = 0x00004000, /* autonegotiation completed */
188 FBE = 0x00002000, /* fatal bus error */
189 FBEMask = 0x00001800, /* mask bit12-11 */
190 ParityErr = 0x00000000, /* parity error */
191 TargetErr = 0x00001000, /* target abort */
192 MasterErr = 0x00000800, /* master error */
193 TUNF = 0x00000400, /* transmit underflow */
194 ROVF = 0x00000200, /* receive overflow */
195 ETI = 0x00000100, /* transmit early int */
196 ERI = 0x00000080, /* receive early int */
197 CNTOVF = 0x00000040, /* counter overflow */
198 RBU = 0x00000020, /* receive buffer unavailable */
199 TBU = 0x00000010, /* transmit buffer unavilable */
200 TI = 0x00000008, /* transmit interrupt */
201 RI = 0x00000004, /* receive interrupt */
202 RxErr = 0x00000002, /* receive error */
203 };
204
205 /* Bits in the NetworkConfig register, W for writing, R for reading */
206 /* FIXME: some names are invented by me. Marked with (name?) */
207 /* If you have docs and know bit names, please fix 'em */
208 enum rx_mode_bits {
209 CR_W_ENH = 0x02000000, /* enhanced mode (name?) */
210 CR_W_FD = 0x00100000, /* full duplex */
211 CR_W_PS10 = 0x00080000, /* 10 mbit */
212 CR_W_TXEN = 0x00040000, /* tx enable (name?) */
213 CR_W_PS1000 = 0x00010000, /* 1000 mbit */
214 /* CR_W_RXBURSTMASK= 0x00000e00, Im unsure about this */
215 CR_W_RXMODEMASK = 0x000000e0,
216 CR_W_PROM = 0x00000080, /* promiscuous mode */
217 CR_W_AB = 0x00000040, /* accept broadcast */
218 CR_W_AM = 0x00000020, /* accept mutlicast */
219 CR_W_ARP = 0x00000008, /* receive runt pkt */
220 CR_W_ALP = 0x00000004, /* receive long pkt */
221 CR_W_SEP = 0x00000002, /* receive error pkt */
222 CR_W_RXEN = 0x00000001, /* rx enable (unicast?) (name?) */
223
224 CR_R_TXSTOP = 0x04000000, /* tx stopped (name?) */
225 CR_R_FD = 0x00100000, /* full duplex detected */
226 CR_R_PS10 = 0x00080000, /* 10 mbit detected */
227 CR_R_RXSTOP = 0x00008000, /* rx stopped (name?) */
228 };
229
230 /* The Tulip Rx and Tx buffer descriptors. */
231 struct fealnx_desc {
232 s32 status;
233 s32 control;
234 u32 buffer;
235 u32 next_desc;
236 struct fealnx_desc *next_desc_logical;
237 struct sk_buff *skbuff;
238 u32 reserved1;
239 u32 reserved2;
240 };
241
242 /* Bits in network_desc.status */
243 enum rx_desc_status_bits {
244 RXOWN = 0x80000000, /* own bit */
245 FLNGMASK = 0x0fff0000, /* frame length */
246 FLNGShift = 16,
247 MARSTATUS = 0x00004000, /* multicast address received */
248 BARSTATUS = 0x00002000, /* broadcast address received */
249 PHYSTATUS = 0x00001000, /* physical address received */
250 RXFSD = 0x00000800, /* first descriptor */
251 RXLSD = 0x00000400, /* last descriptor */
252 ErrorSummary = 0x80, /* error summary */
253 RUNTPKT = 0x40, /* runt packet received */
254 LONGPKT = 0x20, /* long packet received */
255 FAE = 0x10, /* frame align error */
256 CRC = 0x08, /* crc error */
257 RXER = 0x04, /* receive error */
258 };
259
260 enum rx_desc_control_bits {
261 RXIC = 0x00800000, /* interrupt control */
262 RBSShift = 0,
263 };
264
265 enum tx_desc_status_bits {
266 TXOWN = 0x80000000, /* own bit */
267 JABTO = 0x00004000, /* jabber timeout */
268 CSL = 0x00002000, /* carrier sense lost */
269 LC = 0x00001000, /* late collision */
270 EC = 0x00000800, /* excessive collision */
271 UDF = 0x00000400, /* fifo underflow */
272 DFR = 0x00000200, /* deferred */
273 HF = 0x00000100, /* heartbeat fail */
274 NCRMask = 0x000000ff, /* collision retry count */
275 NCRShift = 0,
276 };
277
278 enum tx_desc_control_bits {
279 TXIC = 0x80000000, /* interrupt control */
280 ETIControl = 0x40000000, /* early transmit interrupt */
281 TXLD = 0x20000000, /* last descriptor */
282 TXFD = 0x10000000, /* first descriptor */
283 CRCEnable = 0x08000000, /* crc control */
284 PADEnable = 0x04000000, /* padding control */
285 RetryTxLC = 0x02000000, /* retry late collision */
286 PKTSMask = 0x3ff800, /* packet size bit21-11 */
287 PKTSShift = 11,
288 TBSMask = 0x000007ff, /* transmit buffer bit 10-0 */
289 TBSShift = 0,
290 };
291
292 /* BootROM/EEPROM/MII Management Register */
293 #define MASK_MIIR_MII_READ 0x00000000
294 #define MASK_MIIR_MII_WRITE 0x00000008
295 #define MASK_MIIR_MII_MDO 0x00000004
296 #define MASK_MIIR_MII_MDI 0x00000002
297 #define MASK_MIIR_MII_MDC 0x00000001
298
299 /* ST+OP+PHYAD+REGAD+TA */
300 #define OP_READ 0x6000 /* ST:01+OP:10+PHYAD+REGAD+TA:Z0 */
301 #define OP_WRITE 0x5002 /* ST:01+OP:01+PHYAD+REGAD+TA:10 */
302
303 /* ------------------------------------------------------------------------- */
304 /* Constants for Myson PHY */
305 /* ------------------------------------------------------------------------- */
306 #define MysonPHYID 0xd0000302
307 /* 89-7-27 add, (begin) */
308 #define MysonPHYID0 0x0302
309 #define StatusRegister 18
310 #define SPEED100 0x0400 // bit10
311 #define FULLMODE 0x0800 // bit11
312 /* 89-7-27 add, (end) */
313
314 /* ------------------------------------------------------------------------- */
315 /* Constants for Seeq 80225 PHY */
316 /* ------------------------------------------------------------------------- */
317 #define SeeqPHYID0 0x0016
318
319 #define MIIRegister18 18
320 #define SPD_DET_100 0x80
321 #define DPLX_DET_FULL 0x40
322
323 /* ------------------------------------------------------------------------- */
324 /* Constants for Ahdoc 101 PHY */
325 /* ------------------------------------------------------------------------- */
326 #define AhdocPHYID0 0x0022
327
328 #define DiagnosticReg 18
329 #define DPLX_FULL 0x0800
330 #define Speed_100 0x0400
331
332 /* 89/6/13 add, */
333 /* -------------------------------------------------------------------------- */
334 /* Constants */
335 /* -------------------------------------------------------------------------- */
336 #define MarvellPHYID0 0x0141
337 #define LevelOnePHYID0 0x0013
338
339 #define MII1000BaseTControlReg 9
340 #define MII1000BaseTStatusReg 10
341 #define SpecificReg 17
342
343 /* for 1000BaseT Control Register */
344 #define PHYAbletoPerform1000FullDuplex 0x0200
345 #define PHYAbletoPerform1000HalfDuplex 0x0100
346 #define PHY1000AbilityMask 0x300
347
348 // for phy specific status register, marvell phy.
349 #define SpeedMask 0x0c000
350 #define Speed_1000M 0x08000
351 #define Speed_100M 0x4000
352 #define Speed_10M 0
353 #define Full_Duplex 0x2000
354
355 // 89/12/29 add, for phy specific status register, levelone phy, (begin)
356 #define LXT1000_100M 0x08000
357 #define LXT1000_1000M 0x0c000
358 #define LXT1000_Full 0x200
359 // 89/12/29 add, for phy specific status register, levelone phy, (end)
360
361 /* for 3-in-1 case, BMCRSR register */
362 #define LinkIsUp2 0x00040000
363
364 /* for PHY */
365 #define LinkIsUp 0x0004
366
367
368 struct netdev_private {
369 /* Descriptor rings first for alignment. */
370 struct fealnx_desc *rx_ring;
371 struct fealnx_desc *tx_ring;
372
373 dma_addr_t rx_ring_dma;
374 dma_addr_t tx_ring_dma;
375
376 spinlock_t lock;
377
378 /* Media monitoring timer. */
379 struct timer_list timer;
380
381 /* Reset timer */
382 struct timer_list reset_timer;
383 int reset_timer_armed;
384 unsigned long crvalue_sv;
385 unsigned long imrvalue_sv;
386
387 /* Frequently used values: keep some adjacent for cache effect. */
388 int flags;
389 struct pci_dev *pci_dev;
390 unsigned long crvalue;
391 unsigned long bcrvalue;
392 unsigned long imrvalue;
393 struct fealnx_desc *cur_rx;
394 struct fealnx_desc *lack_rxbuf;
395 int really_rx_count;
396 struct fealnx_desc *cur_tx;
397 struct fealnx_desc *cur_tx_copy;
398 int really_tx_count;
399 int free_tx_count;
400 unsigned int rx_buf_sz; /* Based on MTU+slack. */
401
402 /* These values are keep track of the transceiver/media in use. */
403 unsigned int linkok;
404 unsigned int line_speed;
405 unsigned int duplexmode;
406 unsigned int default_port:4; /* Last dev->if_port value. */
407 unsigned int PHYType;
408
409 /* MII transceiver section. */
410 int mii_cnt; /* MII device addresses. */
411 unsigned char phys[2]; /* MII device addresses. */
412 struct mii_if_info mii;
413 void __iomem *mem;
414 };
415
416
417 static int mdio_read(struct net_device *dev, int phy_id, int location);
418 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
419 static int netdev_open(struct net_device *dev);
420 static void getlinktype(struct net_device *dev);
421 static void getlinkstatus(struct net_device *dev);
422 static void netdev_timer(struct timer_list *t);
423 static void reset_timer(struct timer_list *t);
424 static void fealnx_tx_timeout(struct net_device *dev, unsigned int txqueue);
425 static void init_ring(struct net_device *dev);
426 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
427 static irqreturn_t intr_handler(int irq, void *dev_instance);
428 static int netdev_rx(struct net_device *dev);
429 static void set_rx_mode(struct net_device *dev);
430 static void __set_rx_mode(struct net_device *dev);
431 static struct net_device_stats *get_stats(struct net_device *dev);
432 static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
433 static const struct ethtool_ops netdev_ethtool_ops;
434 static int netdev_close(struct net_device *dev);
435 static void reset_rx_descriptors(struct net_device *dev);
436 static void reset_tx_descriptors(struct net_device *dev);
437
stop_nic_rx(void __iomem * ioaddr,long crvalue)438 static void stop_nic_rx(void __iomem *ioaddr, long crvalue)
439 {
440 int delay = 0x1000;
441 iowrite32(crvalue & ~(CR_W_RXEN), ioaddr + TCRRCR);
442 while (--delay) {
443 if ( (ioread32(ioaddr + TCRRCR) & CR_R_RXSTOP) == CR_R_RXSTOP)
444 break;
445 }
446 }
447
448
stop_nic_rxtx(void __iomem * ioaddr,long crvalue)449 static void stop_nic_rxtx(void __iomem *ioaddr, long crvalue)
450 {
451 int delay = 0x1000;
452 iowrite32(crvalue & ~(CR_W_RXEN+CR_W_TXEN), ioaddr + TCRRCR);
453 while (--delay) {
454 if ( (ioread32(ioaddr + TCRRCR) & (CR_R_RXSTOP+CR_R_TXSTOP))
455 == (CR_R_RXSTOP+CR_R_TXSTOP) )
456 break;
457 }
458 }
459
460 static const struct net_device_ops netdev_ops = {
461 .ndo_open = netdev_open,
462 .ndo_stop = netdev_close,
463 .ndo_start_xmit = start_tx,
464 .ndo_get_stats = get_stats,
465 .ndo_set_rx_mode = set_rx_mode,
466 .ndo_do_ioctl = mii_ioctl,
467 .ndo_tx_timeout = fealnx_tx_timeout,
468 .ndo_set_mac_address = eth_mac_addr,
469 .ndo_validate_addr = eth_validate_addr,
470 };
471
fealnx_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)472 static int fealnx_init_one(struct pci_dev *pdev,
473 const struct pci_device_id *ent)
474 {
475 struct netdev_private *np;
476 int i, option, err, irq;
477 static int card_idx = -1;
478 char boardname[12];
479 void __iomem *ioaddr;
480 unsigned long len;
481 unsigned int chip_id = ent->driver_data;
482 struct net_device *dev;
483 void *ring_space;
484 dma_addr_t ring_dma;
485 #ifdef USE_IO_OPS
486 int bar = 0;
487 #else
488 int bar = 1;
489 #endif
490
491 card_idx++;
492 sprintf(boardname, "fealnx%d", card_idx);
493
494 option = card_idx < MAX_UNITS ? options[card_idx] : 0;
495
496 i = pci_enable_device(pdev);
497 if (i) return i;
498 pci_set_master(pdev);
499
500 len = pci_resource_len(pdev, bar);
501 if (len < MIN_REGION_SIZE) {
502 dev_err(&pdev->dev,
503 "region size %ld too small, aborting\n", len);
504 return -ENODEV;
505 }
506
507 i = pci_request_regions(pdev, boardname);
508 if (i)
509 return i;
510
511 irq = pdev->irq;
512
513 ioaddr = pci_iomap(pdev, bar, len);
514 if (!ioaddr) {
515 err = -ENOMEM;
516 goto err_out_res;
517 }
518
519 dev = alloc_etherdev(sizeof(struct netdev_private));
520 if (!dev) {
521 err = -ENOMEM;
522 goto err_out_unmap;
523 }
524 SET_NETDEV_DEV(dev, &pdev->dev);
525
526 /* read ethernet id */
527 for (i = 0; i < 6; ++i)
528 dev->dev_addr[i] = ioread8(ioaddr + PAR0 + i);
529
530 /* Reset the chip to erase previous misconfiguration. */
531 iowrite32(0x00000001, ioaddr + BCR);
532
533 /* Make certain the descriptor lists are aligned. */
534 np = netdev_priv(dev);
535 np->mem = ioaddr;
536 spin_lock_init(&np->lock);
537 np->pci_dev = pdev;
538 np->flags = skel_netdrv_tbl[chip_id].flags;
539 pci_set_drvdata(pdev, dev);
540 np->mii.dev = dev;
541 np->mii.mdio_read = mdio_read;
542 np->mii.mdio_write = mdio_write;
543 np->mii.phy_id_mask = 0x1f;
544 np->mii.reg_num_mask = 0x1f;
545
546 ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
547 GFP_KERNEL);
548 if (!ring_space) {
549 err = -ENOMEM;
550 goto err_out_free_dev;
551 }
552 np->rx_ring = ring_space;
553 np->rx_ring_dma = ring_dma;
554
555 ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
556 GFP_KERNEL);
557 if (!ring_space) {
558 err = -ENOMEM;
559 goto err_out_free_rx;
560 }
561 np->tx_ring = ring_space;
562 np->tx_ring_dma = ring_dma;
563
564 /* find the connected MII xcvrs */
565 if (np->flags == HAS_MII_XCVR) {
566 int phy, phy_idx = 0;
567
568 for (phy = 1; phy < 32 && phy_idx < ARRAY_SIZE(np->phys);
569 phy++) {
570 int mii_status = mdio_read(dev, phy, 1);
571
572 if (mii_status != 0xffff && mii_status != 0x0000) {
573 np->phys[phy_idx++] = phy;
574 dev_info(&pdev->dev,
575 "MII PHY found at address %d, status "
576 "0x%4.4x.\n", phy, mii_status);
577 /* get phy type */
578 {
579 unsigned int data;
580
581 data = mdio_read(dev, np->phys[0], 2);
582 if (data == SeeqPHYID0)
583 np->PHYType = SeeqPHY;
584 else if (data == AhdocPHYID0)
585 np->PHYType = AhdocPHY;
586 else if (data == MarvellPHYID0)
587 np->PHYType = MarvellPHY;
588 else if (data == MysonPHYID0)
589 np->PHYType = Myson981;
590 else if (data == LevelOnePHYID0)
591 np->PHYType = LevelOnePHY;
592 else
593 np->PHYType = OtherPHY;
594 }
595 }
596 }
597
598 np->mii_cnt = phy_idx;
599 if (phy_idx == 0)
600 dev_warn(&pdev->dev,
601 "MII PHY not found -- this device may "
602 "not operate correctly.\n");
603 } else {
604 np->phys[0] = 32;
605 /* 89/6/23 add, (begin) */
606 /* get phy type */
607 if (ioread32(ioaddr + PHYIDENTIFIER) == MysonPHYID)
608 np->PHYType = MysonPHY;
609 else
610 np->PHYType = OtherPHY;
611 }
612 np->mii.phy_id = np->phys[0];
613
614 if (dev->mem_start)
615 option = dev->mem_start;
616
617 /* The lower four bits are the media type. */
618 if (option > 0) {
619 if (option & 0x200)
620 np->mii.full_duplex = 1;
621 np->default_port = option & 15;
622 }
623
624 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
625 np->mii.full_duplex = full_duplex[card_idx];
626
627 if (np->mii.full_duplex) {
628 dev_info(&pdev->dev, "Media type forced to Full Duplex.\n");
629 /* 89/6/13 add, (begin) */
630 // if (np->PHYType==MarvellPHY)
631 if ((np->PHYType == MarvellPHY) || (np->PHYType == LevelOnePHY)) {
632 unsigned int data;
633
634 data = mdio_read(dev, np->phys[0], 9);
635 data = (data & 0xfcff) | 0x0200;
636 mdio_write(dev, np->phys[0], 9, data);
637 }
638 /* 89/6/13 add, (end) */
639 if (np->flags == HAS_MII_XCVR)
640 mdio_write(dev, np->phys[0], MII_ADVERTISE, ADVERTISE_FULL);
641 else
642 iowrite32(ADVERTISE_FULL, ioaddr + ANARANLPAR);
643 np->mii.force_media = 1;
644 }
645
646 dev->netdev_ops = &netdev_ops;
647 dev->ethtool_ops = &netdev_ethtool_ops;
648 dev->watchdog_timeo = TX_TIMEOUT;
649
650 err = register_netdev(dev);
651 if (err)
652 goto err_out_free_tx;
653
654 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
655 dev->name, skel_netdrv_tbl[chip_id].chip_name, ioaddr,
656 dev->dev_addr, irq);
657
658 return 0;
659
660 err_out_free_tx:
661 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
662 np->tx_ring_dma);
663 err_out_free_rx:
664 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
665 np->rx_ring_dma);
666 err_out_free_dev:
667 free_netdev(dev);
668 err_out_unmap:
669 pci_iounmap(pdev, ioaddr);
670 err_out_res:
671 pci_release_regions(pdev);
672 return err;
673 }
674
675
fealnx_remove_one(struct pci_dev * pdev)676 static void fealnx_remove_one(struct pci_dev *pdev)
677 {
678 struct net_device *dev = pci_get_drvdata(pdev);
679
680 if (dev) {
681 struct netdev_private *np = netdev_priv(dev);
682
683 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
684 np->tx_ring_dma);
685 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
686 np->rx_ring_dma);
687 unregister_netdev(dev);
688 pci_iounmap(pdev, np->mem);
689 free_netdev(dev);
690 pci_release_regions(pdev);
691 } else
692 printk(KERN_ERR "fealnx: remove for unknown device\n");
693 }
694
695
m80x_send_cmd_to_phy(void __iomem * miiport,int opcode,int phyad,int regad)696 static ulong m80x_send_cmd_to_phy(void __iomem *miiport, int opcode, int phyad, int regad)
697 {
698 ulong miir;
699 int i;
700 unsigned int mask, data;
701
702 /* enable MII output */
703 miir = (ulong) ioread32(miiport);
704 miir &= 0xfffffff0;
705
706 miir |= MASK_MIIR_MII_WRITE + MASK_MIIR_MII_MDO;
707
708 /* send 32 1's preamble */
709 for (i = 0; i < 32; i++) {
710 /* low MDC; MDO is already high (miir) */
711 miir &= ~MASK_MIIR_MII_MDC;
712 iowrite32(miir, miiport);
713
714 /* high MDC */
715 miir |= MASK_MIIR_MII_MDC;
716 iowrite32(miir, miiport);
717 }
718
719 /* calculate ST+OP+PHYAD+REGAD+TA */
720 data = opcode | (phyad << 7) | (regad << 2);
721
722 /* sent out */
723 mask = 0x8000;
724 while (mask) {
725 /* low MDC, prepare MDO */
726 miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO);
727 if (mask & data)
728 miir |= MASK_MIIR_MII_MDO;
729
730 iowrite32(miir, miiport);
731 /* high MDC */
732 miir |= MASK_MIIR_MII_MDC;
733 iowrite32(miir, miiport);
734 udelay(30);
735
736 /* next */
737 mask >>= 1;
738 if (mask == 0x2 && opcode == OP_READ)
739 miir &= ~MASK_MIIR_MII_WRITE;
740 }
741 return miir;
742 }
743
744
mdio_read(struct net_device * dev,int phyad,int regad)745 static int mdio_read(struct net_device *dev, int phyad, int regad)
746 {
747 struct netdev_private *np = netdev_priv(dev);
748 void __iomem *miiport = np->mem + MANAGEMENT;
749 ulong miir;
750 unsigned int mask, data;
751
752 miir = m80x_send_cmd_to_phy(miiport, OP_READ, phyad, regad);
753
754 /* read data */
755 mask = 0x8000;
756 data = 0;
757 while (mask) {
758 /* low MDC */
759 miir &= ~MASK_MIIR_MII_MDC;
760 iowrite32(miir, miiport);
761
762 /* read MDI */
763 miir = ioread32(miiport);
764 if (miir & MASK_MIIR_MII_MDI)
765 data |= mask;
766
767 /* high MDC, and wait */
768 miir |= MASK_MIIR_MII_MDC;
769 iowrite32(miir, miiport);
770 udelay(30);
771
772 /* next */
773 mask >>= 1;
774 }
775
776 /* low MDC */
777 miir &= ~MASK_MIIR_MII_MDC;
778 iowrite32(miir, miiport);
779
780 return data & 0xffff;
781 }
782
783
mdio_write(struct net_device * dev,int phyad,int regad,int data)784 static void mdio_write(struct net_device *dev, int phyad, int regad, int data)
785 {
786 struct netdev_private *np = netdev_priv(dev);
787 void __iomem *miiport = np->mem + MANAGEMENT;
788 ulong miir;
789 unsigned int mask;
790
791 miir = m80x_send_cmd_to_phy(miiport, OP_WRITE, phyad, regad);
792
793 /* write data */
794 mask = 0x8000;
795 while (mask) {
796 /* low MDC, prepare MDO */
797 miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO);
798 if (mask & data)
799 miir |= MASK_MIIR_MII_MDO;
800 iowrite32(miir, miiport);
801
802 /* high MDC */
803 miir |= MASK_MIIR_MII_MDC;
804 iowrite32(miir, miiport);
805
806 /* next */
807 mask >>= 1;
808 }
809
810 /* low MDC */
811 miir &= ~MASK_MIIR_MII_MDC;
812 iowrite32(miir, miiport);
813 }
814
815
netdev_open(struct net_device * dev)816 static int netdev_open(struct net_device *dev)
817 {
818 struct netdev_private *np = netdev_priv(dev);
819 void __iomem *ioaddr = np->mem;
820 const int irq = np->pci_dev->irq;
821 int rc, i;
822
823 iowrite32(0x00000001, ioaddr + BCR); /* Reset */
824
825 rc = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
826 if (rc)
827 return -EAGAIN;
828
829 for (i = 0; i < 3; i++)
830 iowrite16(((unsigned short*)dev->dev_addr)[i],
831 ioaddr + PAR0 + i*2);
832
833 init_ring(dev);
834
835 iowrite32(np->rx_ring_dma, ioaddr + RXLBA);
836 iowrite32(np->tx_ring_dma, ioaddr + TXLBA);
837
838 /* Initialize other registers. */
839 /* Configure the PCI bus bursts and FIFO thresholds.
840 486: Set 8 longword burst.
841 586: no burst limit.
842 Burst length 5:3
843 0 0 0 1
844 0 0 1 4
845 0 1 0 8
846 0 1 1 16
847 1 0 0 32
848 1 0 1 64
849 1 1 0 128
850 1 1 1 256
851 Wait the specified 50 PCI cycles after a reset by initializing
852 Tx and Rx queues and the address filter list.
853 FIXME (Ueimor): optimistic for alpha + posted writes ? */
854
855 np->bcrvalue = 0x10; /* little-endian, 8 burst length */
856 #ifdef __BIG_ENDIAN
857 np->bcrvalue |= 0x04; /* big-endian */
858 #endif
859
860 #if defined(__i386__) && !defined(MODULE)
861 if (boot_cpu_data.x86 <= 4)
862 np->crvalue = 0xa00;
863 else
864 #endif
865 np->crvalue = 0xe00; /* rx 128 burst length */
866
867
868 // 89/12/29 add,
869 // 90/1/16 modify,
870 // np->imrvalue=FBE|TUNF|CNTOVF|RBU|TI|RI;
871 np->imrvalue = TUNF | CNTOVF | RBU | TI | RI;
872 if (np->pci_dev->device == 0x891) {
873 np->bcrvalue |= 0x200; /* set PROG bit */
874 np->crvalue |= CR_W_ENH; /* set enhanced bit */
875 np->imrvalue |= ETI;
876 }
877 iowrite32(np->bcrvalue, ioaddr + BCR);
878
879 if (dev->if_port == 0)
880 dev->if_port = np->default_port;
881
882 iowrite32(0, ioaddr + RXPDR);
883 // 89/9/1 modify,
884 // np->crvalue = 0x00e40001; /* tx store and forward, tx/rx enable */
885 np->crvalue |= 0x00e40001; /* tx store and forward, tx/rx enable */
886 np->mii.full_duplex = np->mii.force_media;
887 getlinkstatus(dev);
888 if (np->linkok)
889 getlinktype(dev);
890 __set_rx_mode(dev);
891
892 netif_start_queue(dev);
893
894 /* Clear and Enable interrupts by setting the interrupt mask. */
895 iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR);
896 iowrite32(np->imrvalue, ioaddr + IMR);
897
898 if (debug)
899 printk(KERN_DEBUG "%s: Done netdev_open().\n", dev->name);
900
901 /* Set the timer to check for link beat. */
902 timer_setup(&np->timer, netdev_timer, 0);
903 np->timer.expires = RUN_AT(3 * HZ);
904
905 /* timer handler */
906 add_timer(&np->timer);
907
908 timer_setup(&np->reset_timer, reset_timer, 0);
909 np->reset_timer_armed = 0;
910 return rc;
911 }
912
913
getlinkstatus(struct net_device * dev)914 static void getlinkstatus(struct net_device *dev)
915 /* function: Routine will read MII Status Register to get link status. */
916 /* input : dev... pointer to the adapter block. */
917 /* output : none. */
918 {
919 struct netdev_private *np = netdev_priv(dev);
920 unsigned int i, DelayTime = 0x1000;
921
922 np->linkok = 0;
923
924 if (np->PHYType == MysonPHY) {
925 for (i = 0; i < DelayTime; ++i) {
926 if (ioread32(np->mem + BMCRSR) & LinkIsUp2) {
927 np->linkok = 1;
928 return;
929 }
930 udelay(100);
931 }
932 } else {
933 for (i = 0; i < DelayTime; ++i) {
934 if (mdio_read(dev, np->phys[0], MII_BMSR) & BMSR_LSTATUS) {
935 np->linkok = 1;
936 return;
937 }
938 udelay(100);
939 }
940 }
941 }
942
943
getlinktype(struct net_device * dev)944 static void getlinktype(struct net_device *dev)
945 {
946 struct netdev_private *np = netdev_priv(dev);
947
948 if (np->PHYType == MysonPHY) { /* 3-in-1 case */
949 if (ioread32(np->mem + TCRRCR) & CR_R_FD)
950 np->duplexmode = 2; /* full duplex */
951 else
952 np->duplexmode = 1; /* half duplex */
953 if (ioread32(np->mem + TCRRCR) & CR_R_PS10)
954 np->line_speed = 1; /* 10M */
955 else
956 np->line_speed = 2; /* 100M */
957 } else {
958 if (np->PHYType == SeeqPHY) { /* this PHY is SEEQ 80225 */
959 unsigned int data;
960
961 data = mdio_read(dev, np->phys[0], MIIRegister18);
962 if (data & SPD_DET_100)
963 np->line_speed = 2; /* 100M */
964 else
965 np->line_speed = 1; /* 10M */
966 if (data & DPLX_DET_FULL)
967 np->duplexmode = 2; /* full duplex mode */
968 else
969 np->duplexmode = 1; /* half duplex mode */
970 } else if (np->PHYType == AhdocPHY) {
971 unsigned int data;
972
973 data = mdio_read(dev, np->phys[0], DiagnosticReg);
974 if (data & Speed_100)
975 np->line_speed = 2; /* 100M */
976 else
977 np->line_speed = 1; /* 10M */
978 if (data & DPLX_FULL)
979 np->duplexmode = 2; /* full duplex mode */
980 else
981 np->duplexmode = 1; /* half duplex mode */
982 }
983 /* 89/6/13 add, (begin) */
984 else if (np->PHYType == MarvellPHY) {
985 unsigned int data;
986
987 data = mdio_read(dev, np->phys[0], SpecificReg);
988 if (data & Full_Duplex)
989 np->duplexmode = 2; /* full duplex mode */
990 else
991 np->duplexmode = 1; /* half duplex mode */
992 data &= SpeedMask;
993 if (data == Speed_1000M)
994 np->line_speed = 3; /* 1000M */
995 else if (data == Speed_100M)
996 np->line_speed = 2; /* 100M */
997 else
998 np->line_speed = 1; /* 10M */
999 }
1000 /* 89/6/13 add, (end) */
1001 /* 89/7/27 add, (begin) */
1002 else if (np->PHYType == Myson981) {
1003 unsigned int data;
1004
1005 data = mdio_read(dev, np->phys[0], StatusRegister);
1006
1007 if (data & SPEED100)
1008 np->line_speed = 2;
1009 else
1010 np->line_speed = 1;
1011
1012 if (data & FULLMODE)
1013 np->duplexmode = 2;
1014 else
1015 np->duplexmode = 1;
1016 }
1017 /* 89/7/27 add, (end) */
1018 /* 89/12/29 add */
1019 else if (np->PHYType == LevelOnePHY) {
1020 unsigned int data;
1021
1022 data = mdio_read(dev, np->phys[0], SpecificReg);
1023 if (data & LXT1000_Full)
1024 np->duplexmode = 2; /* full duplex mode */
1025 else
1026 np->duplexmode = 1; /* half duplex mode */
1027 data &= SpeedMask;
1028 if (data == LXT1000_1000M)
1029 np->line_speed = 3; /* 1000M */
1030 else if (data == LXT1000_100M)
1031 np->line_speed = 2; /* 100M */
1032 else
1033 np->line_speed = 1; /* 10M */
1034 }
1035 np->crvalue &= (~CR_W_PS10) & (~CR_W_FD) & (~CR_W_PS1000);
1036 if (np->line_speed == 1)
1037 np->crvalue |= CR_W_PS10;
1038 else if (np->line_speed == 3)
1039 np->crvalue |= CR_W_PS1000;
1040 if (np->duplexmode == 2)
1041 np->crvalue |= CR_W_FD;
1042 }
1043 }
1044
1045
1046 /* Take lock before calling this */
allocate_rx_buffers(struct net_device * dev)1047 static void allocate_rx_buffers(struct net_device *dev)
1048 {
1049 struct netdev_private *np = netdev_priv(dev);
1050
1051 /* allocate skb for rx buffers */
1052 while (np->really_rx_count != RX_RING_SIZE) {
1053 struct sk_buff *skb;
1054
1055 skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1056 if (skb == NULL)
1057 break; /* Better luck next round. */
1058
1059 while (np->lack_rxbuf->skbuff)
1060 np->lack_rxbuf = np->lack_rxbuf->next_desc_logical;
1061
1062 np->lack_rxbuf->skbuff = skb;
1063 np->lack_rxbuf->buffer = dma_map_single(&np->pci_dev->dev,
1064 skb->data,
1065 np->rx_buf_sz,
1066 DMA_FROM_DEVICE);
1067 np->lack_rxbuf->status = RXOWN;
1068 ++np->really_rx_count;
1069 }
1070 }
1071
1072
netdev_timer(struct timer_list * t)1073 static void netdev_timer(struct timer_list *t)
1074 {
1075 struct netdev_private *np = from_timer(np, t, timer);
1076 struct net_device *dev = np->mii.dev;
1077 void __iomem *ioaddr = np->mem;
1078 int old_crvalue = np->crvalue;
1079 unsigned int old_linkok = np->linkok;
1080 unsigned long flags;
1081
1082 if (debug)
1083 printk(KERN_DEBUG "%s: Media selection timer tick, status %8.8x "
1084 "config %8.8x.\n", dev->name, ioread32(ioaddr + ISR),
1085 ioread32(ioaddr + TCRRCR));
1086
1087 spin_lock_irqsave(&np->lock, flags);
1088
1089 if (np->flags == HAS_MII_XCVR) {
1090 getlinkstatus(dev);
1091 if ((old_linkok == 0) && (np->linkok == 1)) { /* we need to detect the media type again */
1092 getlinktype(dev);
1093 if (np->crvalue != old_crvalue) {
1094 stop_nic_rxtx(ioaddr, np->crvalue);
1095 iowrite32(np->crvalue, ioaddr + TCRRCR);
1096 }
1097 }
1098 }
1099
1100 allocate_rx_buffers(dev);
1101
1102 spin_unlock_irqrestore(&np->lock, flags);
1103
1104 np->timer.expires = RUN_AT(10 * HZ);
1105 add_timer(&np->timer);
1106 }
1107
1108
1109 /* Take lock before calling */
1110 /* Reset chip and disable rx, tx and interrupts */
reset_and_disable_rxtx(struct net_device * dev)1111 static void reset_and_disable_rxtx(struct net_device *dev)
1112 {
1113 struct netdev_private *np = netdev_priv(dev);
1114 void __iomem *ioaddr = np->mem;
1115 int delay=51;
1116
1117 /* Reset the chip's Tx and Rx processes. */
1118 stop_nic_rxtx(ioaddr, 0);
1119
1120 /* Disable interrupts by clearing the interrupt mask. */
1121 iowrite32(0, ioaddr + IMR);
1122
1123 /* Reset the chip to erase previous misconfiguration. */
1124 iowrite32(0x00000001, ioaddr + BCR);
1125
1126 /* Ueimor: wait for 50 PCI cycles (and flush posted writes btw).
1127 We surely wait too long (address+data phase). Who cares? */
1128 while (--delay) {
1129 ioread32(ioaddr + BCR);
1130 rmb();
1131 }
1132 }
1133
1134
1135 /* Take lock before calling */
1136 /* Restore chip after reset */
enable_rxtx(struct net_device * dev)1137 static void enable_rxtx(struct net_device *dev)
1138 {
1139 struct netdev_private *np = netdev_priv(dev);
1140 void __iomem *ioaddr = np->mem;
1141
1142 reset_rx_descriptors(dev);
1143
1144 iowrite32(np->tx_ring_dma + ((char*)np->cur_tx - (char*)np->tx_ring),
1145 ioaddr + TXLBA);
1146 iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring),
1147 ioaddr + RXLBA);
1148
1149 iowrite32(np->bcrvalue, ioaddr + BCR);
1150
1151 iowrite32(0, ioaddr + RXPDR);
1152 __set_rx_mode(dev); /* changes np->crvalue, writes it into TCRRCR */
1153
1154 /* Clear and Enable interrupts by setting the interrupt mask. */
1155 iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR);
1156 iowrite32(np->imrvalue, ioaddr + IMR);
1157
1158 iowrite32(0, ioaddr + TXPDR);
1159 }
1160
1161
reset_timer(struct timer_list * t)1162 static void reset_timer(struct timer_list *t)
1163 {
1164 struct netdev_private *np = from_timer(np, t, reset_timer);
1165 struct net_device *dev = np->mii.dev;
1166 unsigned long flags;
1167
1168 printk(KERN_WARNING "%s: resetting tx and rx machinery\n", dev->name);
1169
1170 spin_lock_irqsave(&np->lock, flags);
1171 np->crvalue = np->crvalue_sv;
1172 np->imrvalue = np->imrvalue_sv;
1173
1174 reset_and_disable_rxtx(dev);
1175 /* works for me without this:
1176 reset_tx_descriptors(dev); */
1177 enable_rxtx(dev);
1178 netif_start_queue(dev); /* FIXME: or netif_wake_queue(dev); ? */
1179
1180 np->reset_timer_armed = 0;
1181
1182 spin_unlock_irqrestore(&np->lock, flags);
1183 }
1184
1185
fealnx_tx_timeout(struct net_device * dev,unsigned int txqueue)1186 static void fealnx_tx_timeout(struct net_device *dev, unsigned int txqueue)
1187 {
1188 struct netdev_private *np = netdev_priv(dev);
1189 void __iomem *ioaddr = np->mem;
1190 unsigned long flags;
1191 int i;
1192
1193 printk(KERN_WARNING
1194 "%s: Transmit timed out, status %8.8x, resetting...\n",
1195 dev->name, ioread32(ioaddr + ISR));
1196
1197 {
1198 printk(KERN_DEBUG " Rx ring %p: ", np->rx_ring);
1199 for (i = 0; i < RX_RING_SIZE; i++)
1200 printk(KERN_CONT " %8.8x",
1201 (unsigned int) np->rx_ring[i].status);
1202 printk(KERN_CONT "\n");
1203 printk(KERN_DEBUG " Tx ring %p: ", np->tx_ring);
1204 for (i = 0; i < TX_RING_SIZE; i++)
1205 printk(KERN_CONT " %4.4x", np->tx_ring[i].status);
1206 printk(KERN_CONT "\n");
1207 }
1208
1209 spin_lock_irqsave(&np->lock, flags);
1210
1211 reset_and_disable_rxtx(dev);
1212 reset_tx_descriptors(dev);
1213 enable_rxtx(dev);
1214
1215 spin_unlock_irqrestore(&np->lock, flags);
1216
1217 netif_trans_update(dev); /* prevent tx timeout */
1218 dev->stats.tx_errors++;
1219 netif_wake_queue(dev); /* or .._start_.. ?? */
1220 }
1221
1222
1223 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
init_ring(struct net_device * dev)1224 static void init_ring(struct net_device *dev)
1225 {
1226 struct netdev_private *np = netdev_priv(dev);
1227 int i;
1228
1229 /* initialize rx variables */
1230 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1231 np->cur_rx = &np->rx_ring[0];
1232 np->lack_rxbuf = np->rx_ring;
1233 np->really_rx_count = 0;
1234
1235 /* initial rx descriptors. */
1236 for (i = 0; i < RX_RING_SIZE; i++) {
1237 np->rx_ring[i].status = 0;
1238 np->rx_ring[i].control = np->rx_buf_sz << RBSShift;
1239 np->rx_ring[i].next_desc = np->rx_ring_dma +
1240 (i + 1)*sizeof(struct fealnx_desc);
1241 np->rx_ring[i].next_desc_logical = &np->rx_ring[i + 1];
1242 np->rx_ring[i].skbuff = NULL;
1243 }
1244
1245 /* for the last rx descriptor */
1246 np->rx_ring[i - 1].next_desc = np->rx_ring_dma;
1247 np->rx_ring[i - 1].next_desc_logical = np->rx_ring;
1248
1249 /* allocate skb for rx buffers */
1250 for (i = 0; i < RX_RING_SIZE; i++) {
1251 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1252
1253 if (skb == NULL) {
1254 np->lack_rxbuf = &np->rx_ring[i];
1255 break;
1256 }
1257
1258 ++np->really_rx_count;
1259 np->rx_ring[i].skbuff = skb;
1260 np->rx_ring[i].buffer = dma_map_single(&np->pci_dev->dev,
1261 skb->data,
1262 np->rx_buf_sz,
1263 DMA_FROM_DEVICE);
1264 np->rx_ring[i].status = RXOWN;
1265 np->rx_ring[i].control |= RXIC;
1266 }
1267
1268 /* initialize tx variables */
1269 np->cur_tx = &np->tx_ring[0];
1270 np->cur_tx_copy = &np->tx_ring[0];
1271 np->really_tx_count = 0;
1272 np->free_tx_count = TX_RING_SIZE;
1273
1274 for (i = 0; i < TX_RING_SIZE; i++) {
1275 np->tx_ring[i].status = 0;
1276 /* do we need np->tx_ring[i].control = XXX; ?? */
1277 np->tx_ring[i].next_desc = np->tx_ring_dma +
1278 (i + 1)*sizeof(struct fealnx_desc);
1279 np->tx_ring[i].next_desc_logical = &np->tx_ring[i + 1];
1280 np->tx_ring[i].skbuff = NULL;
1281 }
1282
1283 /* for the last tx descriptor */
1284 np->tx_ring[i - 1].next_desc = np->tx_ring_dma;
1285 np->tx_ring[i - 1].next_desc_logical = &np->tx_ring[0];
1286 }
1287
1288
start_tx(struct sk_buff * skb,struct net_device * dev)1289 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1290 {
1291 struct netdev_private *np = netdev_priv(dev);
1292 unsigned long flags;
1293
1294 spin_lock_irqsave(&np->lock, flags);
1295
1296 np->cur_tx_copy->skbuff = skb;
1297
1298 #define one_buffer
1299 #define BPT 1022
1300 #if defined(one_buffer)
1301 np->cur_tx_copy->buffer = dma_map_single(&np->pci_dev->dev, skb->data,
1302 skb->len, DMA_TO_DEVICE);
1303 np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable;
1304 np->cur_tx_copy->control |= (skb->len << PKTSShift); /* pkt size */
1305 np->cur_tx_copy->control |= (skb->len << TBSShift); /* buffer size */
1306 // 89/12/29 add,
1307 if (np->pci_dev->device == 0x891)
1308 np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1309 np->cur_tx_copy->status = TXOWN;
1310 np->cur_tx_copy = np->cur_tx_copy->next_desc_logical;
1311 --np->free_tx_count;
1312 #elif defined(two_buffer)
1313 if (skb->len > BPT) {
1314 struct fealnx_desc *next;
1315
1316 /* for the first descriptor */
1317 np->cur_tx_copy->buffer = dma_map_single(&np->pci_dev->dev,
1318 skb->data, BPT,
1319 DMA_TO_DEVICE);
1320 np->cur_tx_copy->control = TXIC | TXFD | CRCEnable | PADEnable;
1321 np->cur_tx_copy->control |= (skb->len << PKTSShift); /* pkt size */
1322 np->cur_tx_copy->control |= (BPT << TBSShift); /* buffer size */
1323
1324 /* for the last descriptor */
1325 next = np->cur_tx_copy->next_desc_logical;
1326 next->skbuff = skb;
1327 next->control = TXIC | TXLD | CRCEnable | PADEnable;
1328 next->control |= (skb->len << PKTSShift); /* pkt size */
1329 next->control |= ((skb->len - BPT) << TBSShift); /* buf size */
1330 // 89/12/29 add,
1331 if (np->pci_dev->device == 0x891)
1332 np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1333 next->buffer = dma_map_single(&ep->pci_dev->dev,
1334 skb->data + BPT, skb->len - BPT,
1335 DMA_TO_DEVICE);
1336
1337 next->status = TXOWN;
1338 np->cur_tx_copy->status = TXOWN;
1339
1340 np->cur_tx_copy = next->next_desc_logical;
1341 np->free_tx_count -= 2;
1342 } else {
1343 np->cur_tx_copy->buffer = dma_map_single(&np->pci_dev->dev,
1344 skb->data, skb->len,
1345 DMA_TO_DEVICE);
1346 np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable;
1347 np->cur_tx_copy->control |= (skb->len << PKTSShift); /* pkt size */
1348 np->cur_tx_copy->control |= (skb->len << TBSShift); /* buffer size */
1349 // 89/12/29 add,
1350 if (np->pci_dev->device == 0x891)
1351 np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1352 np->cur_tx_copy->status = TXOWN;
1353 np->cur_tx_copy = np->cur_tx_copy->next_desc_logical;
1354 --np->free_tx_count;
1355 }
1356 #endif
1357
1358 if (np->free_tx_count < 2)
1359 netif_stop_queue(dev);
1360 ++np->really_tx_count;
1361 iowrite32(0, np->mem + TXPDR);
1362
1363 spin_unlock_irqrestore(&np->lock, flags);
1364 return NETDEV_TX_OK;
1365 }
1366
1367
1368 /* Take lock before calling */
1369 /* Chip probably hosed tx ring. Clean up. */
reset_tx_descriptors(struct net_device * dev)1370 static void reset_tx_descriptors(struct net_device *dev)
1371 {
1372 struct netdev_private *np = netdev_priv(dev);
1373 struct fealnx_desc *cur;
1374 int i;
1375
1376 /* initialize tx variables */
1377 np->cur_tx = &np->tx_ring[0];
1378 np->cur_tx_copy = &np->tx_ring[0];
1379 np->really_tx_count = 0;
1380 np->free_tx_count = TX_RING_SIZE;
1381
1382 for (i = 0; i < TX_RING_SIZE; i++) {
1383 cur = &np->tx_ring[i];
1384 if (cur->skbuff) {
1385 dma_unmap_single(&np->pci_dev->dev, cur->buffer,
1386 cur->skbuff->len, DMA_TO_DEVICE);
1387 dev_kfree_skb_any(cur->skbuff);
1388 cur->skbuff = NULL;
1389 }
1390 cur->status = 0;
1391 cur->control = 0; /* needed? */
1392 /* probably not needed. We do it for purely paranoid reasons */
1393 cur->next_desc = np->tx_ring_dma +
1394 (i + 1)*sizeof(struct fealnx_desc);
1395 cur->next_desc_logical = &np->tx_ring[i + 1];
1396 }
1397 /* for the last tx descriptor */
1398 np->tx_ring[TX_RING_SIZE - 1].next_desc = np->tx_ring_dma;
1399 np->tx_ring[TX_RING_SIZE - 1].next_desc_logical = &np->tx_ring[0];
1400 }
1401
1402
1403 /* Take lock and stop rx before calling this */
reset_rx_descriptors(struct net_device * dev)1404 static void reset_rx_descriptors(struct net_device *dev)
1405 {
1406 struct netdev_private *np = netdev_priv(dev);
1407 struct fealnx_desc *cur = np->cur_rx;
1408 int i;
1409
1410 allocate_rx_buffers(dev);
1411
1412 for (i = 0; i < RX_RING_SIZE; i++) {
1413 if (cur->skbuff)
1414 cur->status = RXOWN;
1415 cur = cur->next_desc_logical;
1416 }
1417
1418 iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring),
1419 np->mem + RXLBA);
1420 }
1421
1422
1423 /* The interrupt handler does all of the Rx thread work and cleans up
1424 after the Tx thread. */
intr_handler(int irq,void * dev_instance)1425 static irqreturn_t intr_handler(int irq, void *dev_instance)
1426 {
1427 struct net_device *dev = (struct net_device *) dev_instance;
1428 struct netdev_private *np = netdev_priv(dev);
1429 void __iomem *ioaddr = np->mem;
1430 long boguscnt = max_interrupt_work;
1431 unsigned int num_tx = 0;
1432 int handled = 0;
1433
1434 spin_lock(&np->lock);
1435
1436 iowrite32(0, ioaddr + IMR);
1437
1438 do {
1439 u32 intr_status = ioread32(ioaddr + ISR);
1440
1441 /* Acknowledge all of the current interrupt sources ASAP. */
1442 iowrite32(intr_status, ioaddr + ISR);
1443
1444 if (debug)
1445 printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n", dev->name,
1446 intr_status);
1447
1448 if (!(intr_status & np->imrvalue))
1449 break;
1450
1451 handled = 1;
1452
1453 // 90/1/16 delete,
1454 //
1455 // if (intr_status & FBE)
1456 // { /* fatal error */
1457 // stop_nic_tx(ioaddr, 0);
1458 // stop_nic_rx(ioaddr, 0);
1459 // break;
1460 // };
1461
1462 if (intr_status & TUNF)
1463 iowrite32(0, ioaddr + TXPDR);
1464
1465 if (intr_status & CNTOVF) {
1466 /* missed pkts */
1467 dev->stats.rx_missed_errors +=
1468 ioread32(ioaddr + TALLY) & 0x7fff;
1469
1470 /* crc error */
1471 dev->stats.rx_crc_errors +=
1472 (ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1473 }
1474
1475 if (intr_status & (RI | RBU)) {
1476 if (intr_status & RI)
1477 netdev_rx(dev);
1478 else {
1479 stop_nic_rx(ioaddr, np->crvalue);
1480 reset_rx_descriptors(dev);
1481 iowrite32(np->crvalue, ioaddr + TCRRCR);
1482 }
1483 }
1484
1485 while (np->really_tx_count) {
1486 long tx_status = np->cur_tx->status;
1487 long tx_control = np->cur_tx->control;
1488
1489 if (!(tx_control & TXLD)) { /* this pkt is combined by two tx descriptors */
1490 struct fealnx_desc *next;
1491
1492 next = np->cur_tx->next_desc_logical;
1493 tx_status = next->status;
1494 tx_control = next->control;
1495 }
1496
1497 if (tx_status & TXOWN)
1498 break;
1499
1500 if (!(np->crvalue & CR_W_ENH)) {
1501 if (tx_status & (CSL | LC | EC | UDF | HF)) {
1502 dev->stats.tx_errors++;
1503 if (tx_status & EC)
1504 dev->stats.tx_aborted_errors++;
1505 if (tx_status & CSL)
1506 dev->stats.tx_carrier_errors++;
1507 if (tx_status & LC)
1508 dev->stats.tx_window_errors++;
1509 if (tx_status & UDF)
1510 dev->stats.tx_fifo_errors++;
1511 if ((tx_status & HF) && np->mii.full_duplex == 0)
1512 dev->stats.tx_heartbeat_errors++;
1513
1514 } else {
1515 dev->stats.tx_bytes +=
1516 ((tx_control & PKTSMask) >> PKTSShift);
1517
1518 dev->stats.collisions +=
1519 ((tx_status & NCRMask) >> NCRShift);
1520 dev->stats.tx_packets++;
1521 }
1522 } else {
1523 dev->stats.tx_bytes +=
1524 ((tx_control & PKTSMask) >> PKTSShift);
1525 dev->stats.tx_packets++;
1526 }
1527
1528 /* Free the original skb. */
1529 dma_unmap_single(&np->pci_dev->dev,
1530 np->cur_tx->buffer,
1531 np->cur_tx->skbuff->len,
1532 DMA_TO_DEVICE);
1533 dev_consume_skb_irq(np->cur_tx->skbuff);
1534 np->cur_tx->skbuff = NULL;
1535 --np->really_tx_count;
1536 if (np->cur_tx->control & TXLD) {
1537 np->cur_tx = np->cur_tx->next_desc_logical;
1538 ++np->free_tx_count;
1539 } else {
1540 np->cur_tx = np->cur_tx->next_desc_logical;
1541 np->cur_tx = np->cur_tx->next_desc_logical;
1542 np->free_tx_count += 2;
1543 }
1544 num_tx++;
1545 } /* end of for loop */
1546
1547 if (num_tx && np->free_tx_count >= 2)
1548 netif_wake_queue(dev);
1549
1550 /* read transmit status for enhanced mode only */
1551 if (np->crvalue & CR_W_ENH) {
1552 long data;
1553
1554 data = ioread32(ioaddr + TSR);
1555 dev->stats.tx_errors += (data & 0xff000000) >> 24;
1556 dev->stats.tx_aborted_errors +=
1557 (data & 0xff000000) >> 24;
1558 dev->stats.tx_window_errors +=
1559 (data & 0x00ff0000) >> 16;
1560 dev->stats.collisions += (data & 0x0000ffff);
1561 }
1562
1563 if (--boguscnt < 0) {
1564 printk(KERN_WARNING "%s: Too much work at interrupt, "
1565 "status=0x%4.4x.\n", dev->name, intr_status);
1566 if (!np->reset_timer_armed) {
1567 np->reset_timer_armed = 1;
1568 np->reset_timer.expires = RUN_AT(HZ/2);
1569 add_timer(&np->reset_timer);
1570 stop_nic_rxtx(ioaddr, 0);
1571 netif_stop_queue(dev);
1572 /* or netif_tx_disable(dev); ?? */
1573 /* Prevent other paths from enabling tx,rx,intrs */
1574 np->crvalue_sv = np->crvalue;
1575 np->imrvalue_sv = np->imrvalue;
1576 np->crvalue &= ~(CR_W_TXEN | CR_W_RXEN); /* or simply = 0? */
1577 np->imrvalue = 0;
1578 }
1579
1580 break;
1581 }
1582 } while (1);
1583
1584 /* read the tally counters */
1585 /* missed pkts */
1586 dev->stats.rx_missed_errors += ioread32(ioaddr + TALLY) & 0x7fff;
1587
1588 /* crc error */
1589 dev->stats.rx_crc_errors +=
1590 (ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1591
1592 if (debug)
1593 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1594 dev->name, ioread32(ioaddr + ISR));
1595
1596 iowrite32(np->imrvalue, ioaddr + IMR);
1597
1598 spin_unlock(&np->lock);
1599
1600 return IRQ_RETVAL(handled);
1601 }
1602
1603
1604 /* This routine is logically part of the interrupt handler, but separated
1605 for clarity and better register allocation. */
netdev_rx(struct net_device * dev)1606 static int netdev_rx(struct net_device *dev)
1607 {
1608 struct netdev_private *np = netdev_priv(dev);
1609 void __iomem *ioaddr = np->mem;
1610
1611 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1612 while (!(np->cur_rx->status & RXOWN) && np->cur_rx->skbuff) {
1613 s32 rx_status = np->cur_rx->status;
1614
1615 if (np->really_rx_count == 0)
1616 break;
1617
1618 if (debug)
1619 printk(KERN_DEBUG " netdev_rx() status was %8.8x.\n", rx_status);
1620
1621 if ((!((rx_status & RXFSD) && (rx_status & RXLSD))) ||
1622 (rx_status & ErrorSummary)) {
1623 if (rx_status & ErrorSummary) { /* there was a fatal error */
1624 if (debug)
1625 printk(KERN_DEBUG
1626 "%s: Receive error, Rx status %8.8x.\n",
1627 dev->name, rx_status);
1628
1629 dev->stats.rx_errors++; /* end of a packet. */
1630 if (rx_status & (LONGPKT | RUNTPKT))
1631 dev->stats.rx_length_errors++;
1632 if (rx_status & RXER)
1633 dev->stats.rx_frame_errors++;
1634 if (rx_status & CRC)
1635 dev->stats.rx_crc_errors++;
1636 } else {
1637 int need_to_reset = 0;
1638 int desno = 0;
1639
1640 if (rx_status & RXFSD) { /* this pkt is too long, over one rx buffer */
1641 struct fealnx_desc *cur;
1642
1643 /* check this packet is received completely? */
1644 cur = np->cur_rx;
1645 while (desno <= np->really_rx_count) {
1646 ++desno;
1647 if ((!(cur->status & RXOWN)) &&
1648 (cur->status & RXLSD))
1649 break;
1650 /* goto next rx descriptor */
1651 cur = cur->next_desc_logical;
1652 }
1653 if (desno > np->really_rx_count)
1654 need_to_reset = 1;
1655 } else /* RXLSD did not find, something error */
1656 need_to_reset = 1;
1657
1658 if (need_to_reset == 0) {
1659 int i;
1660
1661 dev->stats.rx_length_errors++;
1662
1663 /* free all rx descriptors related this long pkt */
1664 for (i = 0; i < desno; ++i) {
1665 if (!np->cur_rx->skbuff) {
1666 printk(KERN_DEBUG
1667 "%s: I'm scared\n", dev->name);
1668 break;
1669 }
1670 np->cur_rx->status = RXOWN;
1671 np->cur_rx = np->cur_rx->next_desc_logical;
1672 }
1673 continue;
1674 } else { /* rx error, need to reset this chip */
1675 stop_nic_rx(ioaddr, np->crvalue);
1676 reset_rx_descriptors(dev);
1677 iowrite32(np->crvalue, ioaddr + TCRRCR);
1678 }
1679 break; /* exit the while loop */
1680 }
1681 } else { /* this received pkt is ok */
1682
1683 struct sk_buff *skb;
1684 /* Omit the four octet CRC from the length. */
1685 short pkt_len = ((rx_status & FLNGMASK) >> FLNGShift) - 4;
1686
1687 #ifndef final_version
1688 if (debug)
1689 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d"
1690 " status %x.\n", pkt_len, rx_status);
1691 #endif
1692
1693 /* Check if the packet is long enough to accept without copying
1694 to a minimally-sized skbuff. */
1695 if (pkt_len < rx_copybreak &&
1696 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1697 skb_reserve(skb, 2); /* 16 byte align the IP header */
1698 dma_sync_single_for_cpu(&np->pci_dev->dev,
1699 np->cur_rx->buffer,
1700 np->rx_buf_sz,
1701 DMA_FROM_DEVICE);
1702 /* Call copy + cksum if available. */
1703
1704 #if ! defined(__alpha__)
1705 skb_copy_to_linear_data(skb,
1706 np->cur_rx->skbuff->data, pkt_len);
1707 skb_put(skb, pkt_len);
1708 #else
1709 skb_put_data(skb, np->cur_rx->skbuff->data,
1710 pkt_len);
1711 #endif
1712 dma_sync_single_for_device(&np->pci_dev->dev,
1713 np->cur_rx->buffer,
1714 np->rx_buf_sz,
1715 DMA_FROM_DEVICE);
1716 } else {
1717 dma_unmap_single(&np->pci_dev->dev,
1718 np->cur_rx->buffer,
1719 np->rx_buf_sz,
1720 DMA_FROM_DEVICE);
1721 skb_put(skb = np->cur_rx->skbuff, pkt_len);
1722 np->cur_rx->skbuff = NULL;
1723 --np->really_rx_count;
1724 }
1725 skb->protocol = eth_type_trans(skb, dev);
1726 netif_rx(skb);
1727 dev->stats.rx_packets++;
1728 dev->stats.rx_bytes += pkt_len;
1729 }
1730
1731 np->cur_rx = np->cur_rx->next_desc_logical;
1732 } /* end of while loop */
1733
1734 /* allocate skb for rx buffers */
1735 allocate_rx_buffers(dev);
1736
1737 return 0;
1738 }
1739
1740
get_stats(struct net_device * dev)1741 static struct net_device_stats *get_stats(struct net_device *dev)
1742 {
1743 struct netdev_private *np = netdev_priv(dev);
1744 void __iomem *ioaddr = np->mem;
1745
1746 /* The chip only need report frame silently dropped. */
1747 if (netif_running(dev)) {
1748 dev->stats.rx_missed_errors +=
1749 ioread32(ioaddr + TALLY) & 0x7fff;
1750 dev->stats.rx_crc_errors +=
1751 (ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1752 }
1753
1754 return &dev->stats;
1755 }
1756
1757
1758 /* for dev->set_multicast_list */
set_rx_mode(struct net_device * dev)1759 static void set_rx_mode(struct net_device *dev)
1760 {
1761 spinlock_t *lp = &((struct netdev_private *)netdev_priv(dev))->lock;
1762 unsigned long flags;
1763 spin_lock_irqsave(lp, flags);
1764 __set_rx_mode(dev);
1765 spin_unlock_irqrestore(lp, flags);
1766 }
1767
1768
1769 /* Take lock before calling */
__set_rx_mode(struct net_device * dev)1770 static void __set_rx_mode(struct net_device *dev)
1771 {
1772 struct netdev_private *np = netdev_priv(dev);
1773 void __iomem *ioaddr = np->mem;
1774 u32 mc_filter[2]; /* Multicast hash filter */
1775 u32 rx_mode;
1776
1777 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1778 memset(mc_filter, 0xff, sizeof(mc_filter));
1779 rx_mode = CR_W_PROM | CR_W_AB | CR_W_AM;
1780 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1781 (dev->flags & IFF_ALLMULTI)) {
1782 /* Too many to match, or accept all multicasts. */
1783 memset(mc_filter, 0xff, sizeof(mc_filter));
1784 rx_mode = CR_W_AB | CR_W_AM;
1785 } else {
1786 struct netdev_hw_addr *ha;
1787
1788 memset(mc_filter, 0, sizeof(mc_filter));
1789 netdev_for_each_mc_addr(ha, dev) {
1790 unsigned int bit;
1791 bit = (ether_crc(ETH_ALEN, ha->addr) >> 26) ^ 0x3F;
1792 mc_filter[bit >> 5] |= (1 << bit);
1793 }
1794 rx_mode = CR_W_AB | CR_W_AM;
1795 }
1796
1797 stop_nic_rxtx(ioaddr, np->crvalue);
1798
1799 iowrite32(mc_filter[0], ioaddr + MAR0);
1800 iowrite32(mc_filter[1], ioaddr + MAR1);
1801 np->crvalue &= ~CR_W_RXMODEMASK;
1802 np->crvalue |= rx_mode;
1803 iowrite32(np->crvalue, ioaddr + TCRRCR);
1804 }
1805
netdev_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1806 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1807 {
1808 struct netdev_private *np = netdev_priv(dev);
1809
1810 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1811 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1812 }
1813
netdev_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1814 static int netdev_get_link_ksettings(struct net_device *dev,
1815 struct ethtool_link_ksettings *cmd)
1816 {
1817 struct netdev_private *np = netdev_priv(dev);
1818
1819 spin_lock_irq(&np->lock);
1820 mii_ethtool_get_link_ksettings(&np->mii, cmd);
1821 spin_unlock_irq(&np->lock);
1822
1823 return 0;
1824 }
1825
netdev_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1826 static int netdev_set_link_ksettings(struct net_device *dev,
1827 const struct ethtool_link_ksettings *cmd)
1828 {
1829 struct netdev_private *np = netdev_priv(dev);
1830 int rc;
1831
1832 spin_lock_irq(&np->lock);
1833 rc = mii_ethtool_set_link_ksettings(&np->mii, cmd);
1834 spin_unlock_irq(&np->lock);
1835
1836 return rc;
1837 }
1838
netdev_nway_reset(struct net_device * dev)1839 static int netdev_nway_reset(struct net_device *dev)
1840 {
1841 struct netdev_private *np = netdev_priv(dev);
1842 return mii_nway_restart(&np->mii);
1843 }
1844
netdev_get_link(struct net_device * dev)1845 static u32 netdev_get_link(struct net_device *dev)
1846 {
1847 struct netdev_private *np = netdev_priv(dev);
1848 return mii_link_ok(&np->mii);
1849 }
1850
netdev_get_msglevel(struct net_device * dev)1851 static u32 netdev_get_msglevel(struct net_device *dev)
1852 {
1853 return debug;
1854 }
1855
netdev_set_msglevel(struct net_device * dev,u32 value)1856 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1857 {
1858 debug = value;
1859 }
1860
1861 static const struct ethtool_ops netdev_ethtool_ops = {
1862 .get_drvinfo = netdev_get_drvinfo,
1863 .nway_reset = netdev_nway_reset,
1864 .get_link = netdev_get_link,
1865 .get_msglevel = netdev_get_msglevel,
1866 .set_msglevel = netdev_set_msglevel,
1867 .get_link_ksettings = netdev_get_link_ksettings,
1868 .set_link_ksettings = netdev_set_link_ksettings,
1869 };
1870
mii_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1871 static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1872 {
1873 struct netdev_private *np = netdev_priv(dev);
1874 int rc;
1875
1876 if (!netif_running(dev))
1877 return -EINVAL;
1878
1879 spin_lock_irq(&np->lock);
1880 rc = generic_mii_ioctl(&np->mii, if_mii(rq), cmd, NULL);
1881 spin_unlock_irq(&np->lock);
1882
1883 return rc;
1884 }
1885
1886
netdev_close(struct net_device * dev)1887 static int netdev_close(struct net_device *dev)
1888 {
1889 struct netdev_private *np = netdev_priv(dev);
1890 void __iomem *ioaddr = np->mem;
1891 int i;
1892
1893 netif_stop_queue(dev);
1894
1895 /* Disable interrupts by clearing the interrupt mask. */
1896 iowrite32(0x0000, ioaddr + IMR);
1897
1898 /* Stop the chip's Tx and Rx processes. */
1899 stop_nic_rxtx(ioaddr, 0);
1900
1901 del_timer_sync(&np->timer);
1902 del_timer_sync(&np->reset_timer);
1903
1904 free_irq(np->pci_dev->irq, dev);
1905
1906 /* Free all the skbuffs in the Rx queue. */
1907 for (i = 0; i < RX_RING_SIZE; i++) {
1908 struct sk_buff *skb = np->rx_ring[i].skbuff;
1909
1910 np->rx_ring[i].status = 0;
1911 if (skb) {
1912 dma_unmap_single(&np->pci_dev->dev,
1913 np->rx_ring[i].buffer, np->rx_buf_sz,
1914 DMA_FROM_DEVICE);
1915 dev_kfree_skb(skb);
1916 np->rx_ring[i].skbuff = NULL;
1917 }
1918 }
1919
1920 for (i = 0; i < TX_RING_SIZE; i++) {
1921 struct sk_buff *skb = np->tx_ring[i].skbuff;
1922
1923 if (skb) {
1924 dma_unmap_single(&np->pci_dev->dev,
1925 np->tx_ring[i].buffer, skb->len,
1926 DMA_TO_DEVICE);
1927 dev_kfree_skb(skb);
1928 np->tx_ring[i].skbuff = NULL;
1929 }
1930 }
1931
1932 return 0;
1933 }
1934
1935 static const struct pci_device_id fealnx_pci_tbl[] = {
1936 {0x1516, 0x0800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1937 {0x1516, 0x0803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1},
1938 {0x1516, 0x0891, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2},
1939 {} /* terminate list */
1940 };
1941 MODULE_DEVICE_TABLE(pci, fealnx_pci_tbl);
1942
1943
1944 static struct pci_driver fealnx_driver = {
1945 .name = "fealnx",
1946 .id_table = fealnx_pci_tbl,
1947 .probe = fealnx_init_one,
1948 .remove = fealnx_remove_one,
1949 };
1950
fealnx_init(void)1951 static int __init fealnx_init(void)
1952 {
1953 return pci_register_driver(&fealnx_driver);
1954 }
1955
fealnx_exit(void)1956 static void __exit fealnx_exit(void)
1957 {
1958 pci_unregister_driver(&fealnx_driver);
1959 }
1960
1961 module_init(fealnx_init);
1962 module_exit(fealnx_exit);
1963