• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2006 The RE2 Authors.  All Rights Reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4 
5 // Regular expression parser.
6 
7 // The parser is a simple precedence-based parser with a
8 // manual stack.  The parsing work is done by the methods
9 // of the ParseState class.  The Regexp::Parse function is
10 // essentially just a lexer that calls the ParseState method
11 // for each token.
12 
13 // The parser recognizes POSIX extended regular expressions
14 // excluding backreferences, collating elements, and collating
15 // classes.  It also allows the empty string as a regular expression
16 // and recognizes the Perl escape sequences \d, \s, \w, \D, \S, and \W.
17 // See regexp.h for rationale.
18 
19 #include <ctype.h>
20 #include <stddef.h>
21 #include <stdint.h>
22 #include <string.h>
23 #include <algorithm>
24 #include <map>
25 #include <string>
26 #include <vector>
27 
28 #include "util/util.h"
29 #include "util/logging.h"
30 #include "util/strutil.h"
31 #include "util/utf.h"
32 #include "re2/pod_array.h"
33 #include "re2/regexp.h"
34 #include "re2/stringpiece.h"
35 #include "re2/unicode_casefold.h"
36 #include "re2/unicode_groups.h"
37 #include "re2/walker-inl.h"
38 
39 #if defined(RE2_USE_ICU)
40 #include "unicode/uniset.h"
41 #include "unicode/unistr.h"
42 #include "unicode/utypes.h"
43 #endif
44 
45 namespace re2 {
46 
47 // Reduce the maximum repeat count by an order of magnitude when fuzzing.
48 #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
49 static const int kMaxRepeat = 100;
50 #else
51 static const int kMaxRepeat = 1000;
52 #endif
53 
54 // Regular expression parse state.
55 // The list of parsed regexps so far is maintained as a vector of
56 // Regexp pointers called the stack.  Left parenthesis and vertical
57 // bar markers are also placed on the stack, as Regexps with
58 // non-standard opcodes.
59 // Scanning a left parenthesis causes the parser to push a left parenthesis
60 // marker on the stack.
61 // Scanning a vertical bar causes the parser to pop the stack until it finds a
62 // vertical bar or left parenthesis marker (not popping the marker),
63 // concatenate all the popped results, and push them back on
64 // the stack (DoConcatenation).
65 // Scanning a right parenthesis causes the parser to act as though it
66 // has seen a vertical bar, which then leaves the top of the stack in the
67 // form LeftParen regexp VerticalBar regexp VerticalBar ... regexp VerticalBar.
68 // The parser pops all this off the stack and creates an alternation of the
69 // regexps (DoAlternation).
70 
71 class Regexp::ParseState {
72  public:
73   ParseState(ParseFlags flags, const StringPiece& whole_regexp,
74              RegexpStatus* status);
75   ~ParseState();
76 
flags()77   ParseFlags flags() { return flags_; }
rune_max()78   int rune_max() { return rune_max_; }
79 
80   // Parse methods.  All public methods return a bool saying
81   // whether parsing should continue.  If a method returns
82   // false, it has set fields in *status_, and the parser
83   // should return NULL.
84 
85   // Pushes the given regular expression onto the stack.
86   // Could check for too much memory used here.
87   bool PushRegexp(Regexp* re);
88 
89   // Pushes the literal rune r onto the stack.
90   bool PushLiteral(Rune r);
91 
92   // Pushes a regexp with the given op (and no args) onto the stack.
93   bool PushSimpleOp(RegexpOp op);
94 
95   // Pushes a ^ onto the stack.
96   bool PushCarat();
97 
98   // Pushes a \b (word == true) or \B (word == false) onto the stack.
99   bool PushWordBoundary(bool word);
100 
101   // Pushes a $ onto the stack.
102   bool PushDollar();
103 
104   // Pushes a . onto the stack
105   bool PushDot();
106 
107   // Pushes a repeat operator regexp onto the stack.
108   // A valid argument for the operator must already be on the stack.
109   // s is the name of the operator, for use in error messages.
110   bool PushRepeatOp(RegexpOp op, const StringPiece& s, bool nongreedy);
111 
112   // Pushes a repetition regexp onto the stack.
113   // A valid argument for the operator must already be on the stack.
114   bool PushRepetition(int min, int max, const StringPiece& s, bool nongreedy);
115 
116   // Checks whether a particular regexp op is a marker.
117   bool IsMarker(RegexpOp op);
118 
119   // Processes a left parenthesis in the input.
120   // Pushes a marker onto the stack.
121   bool DoLeftParen(const StringPiece& name);
122   bool DoLeftParenNoCapture();
123 
124   // Processes a vertical bar in the input.
125   bool DoVerticalBar();
126 
127   // Processes a right parenthesis in the input.
128   bool DoRightParen();
129 
130   // Processes the end of input, returning the final regexp.
131   Regexp* DoFinish();
132 
133   // Finishes the regexp if necessary, preparing it for use
134   // in a more complicated expression.
135   // If it is a CharClassBuilder, converts into a CharClass.
136   Regexp* FinishRegexp(Regexp*);
137 
138   // These routines don't manipulate the parse stack
139   // directly, but they do need to look at flags_.
140   // ParseCharClass also manipulates the internals of Regexp
141   // while creating *out_re.
142 
143   // Parse a character class into *out_re.
144   // Removes parsed text from s.
145   bool ParseCharClass(StringPiece* s, Regexp** out_re,
146                       RegexpStatus* status);
147 
148   // Parse a character class character into *rp.
149   // Removes parsed text from s.
150   bool ParseCCCharacter(StringPiece* s, Rune *rp,
151                         const StringPiece& whole_class,
152                         RegexpStatus* status);
153 
154   // Parse a character class range into rr.
155   // Removes parsed text from s.
156   bool ParseCCRange(StringPiece* s, RuneRange* rr,
157                     const StringPiece& whole_class,
158                     RegexpStatus* status);
159 
160   // Parse a Perl flag set or non-capturing group from s.
161   bool ParsePerlFlags(StringPiece* s);
162 
163 
164   // Finishes the current concatenation,
165   // collapsing it into a single regexp on the stack.
166   void DoConcatenation();
167 
168   // Finishes the current alternation,
169   // collapsing it to a single regexp on the stack.
170   void DoAlternation();
171 
172   // Generalized DoAlternation/DoConcatenation.
173   void DoCollapse(RegexpOp op);
174 
175   // Maybe concatenate Literals into LiteralString.
176   bool MaybeConcatString(int r, ParseFlags flags);
177 
178 private:
179   ParseFlags flags_;
180   StringPiece whole_regexp_;
181   RegexpStatus* status_;
182   Regexp* stacktop_;
183   int ncap_;  // number of capturing parens seen
184   int rune_max_;  // maximum char value for this encoding
185 
186   ParseState(const ParseState&) = delete;
187   ParseState& operator=(const ParseState&) = delete;
188 };
189 
190 // Pseudo-operators - only on parse stack.
191 const RegexpOp kLeftParen = static_cast<RegexpOp>(kMaxRegexpOp+1);
192 const RegexpOp kVerticalBar = static_cast<RegexpOp>(kMaxRegexpOp+2);
193 
ParseState(ParseFlags flags,const StringPiece & whole_regexp,RegexpStatus * status)194 Regexp::ParseState::ParseState(ParseFlags flags,
195                                const StringPiece& whole_regexp,
196                                RegexpStatus* status)
197   : flags_(flags), whole_regexp_(whole_regexp),
198     status_(status), stacktop_(NULL), ncap_(0) {
199   if (flags_ & Latin1)
200     rune_max_ = 0xFF;
201   else
202     rune_max_ = Runemax;
203 }
204 
205 // Cleans up by freeing all the regexps on the stack.
~ParseState()206 Regexp::ParseState::~ParseState() {
207   Regexp* next;
208   for (Regexp* re = stacktop_; re != NULL; re = next) {
209     next = re->down_;
210     re->down_ = NULL;
211     if (re->op() == kLeftParen)
212       delete re->name_;
213     re->Decref();
214   }
215 }
216 
217 // Finishes the regexp if necessary, preparing it for use in
218 // a more complex expression.
219 // If it is a CharClassBuilder, converts into a CharClass.
FinishRegexp(Regexp * re)220 Regexp* Regexp::ParseState::FinishRegexp(Regexp* re) {
221   if (re == NULL)
222     return NULL;
223   re->down_ = NULL;
224 
225   if (re->op_ == kRegexpCharClass && re->ccb_ != NULL) {
226     CharClassBuilder* ccb = re->ccb_;
227     re->ccb_ = NULL;
228     re->cc_ = ccb->GetCharClass();
229     delete ccb;
230   }
231 
232   return re;
233 }
234 
235 // Pushes the given regular expression onto the stack.
236 // Could check for too much memory used here.
PushRegexp(Regexp * re)237 bool Regexp::ParseState::PushRegexp(Regexp* re) {
238   MaybeConcatString(-1, NoParseFlags);
239 
240   // Special case: a character class of one character is just
241   // a literal.  This is a common idiom for escaping
242   // single characters (e.g., [.] instead of \.), and some
243   // analysis does better with fewer character classes.
244   // Similarly, [Aa] can be rewritten as a literal A with ASCII case folding.
245   if (re->op_ == kRegexpCharClass && re->ccb_ != NULL) {
246     re->ccb_->RemoveAbove(rune_max_);
247     if (re->ccb_->size() == 1) {
248       Rune r = re->ccb_->begin()->lo;
249       re->Decref();
250       re = new Regexp(kRegexpLiteral, flags_);
251       re->rune_ = r;
252     } else if (re->ccb_->size() == 2) {
253       Rune r = re->ccb_->begin()->lo;
254       if ('A' <= r && r <= 'Z' && re->ccb_->Contains(r + 'a' - 'A')) {
255         re->Decref();
256         re = new Regexp(kRegexpLiteral, flags_ | FoldCase);
257         re->rune_ = r + 'a' - 'A';
258       }
259     }
260   }
261 
262   if (!IsMarker(re->op()))
263     re->simple_ = re->ComputeSimple();
264   re->down_ = stacktop_;
265   stacktop_ = re;
266   return true;
267 }
268 
269 // Searches the case folding tables and returns the CaseFold* that contains r.
270 // If there isn't one, returns the CaseFold* with smallest f->lo bigger than r.
271 // If there isn't one, returns NULL.
LookupCaseFold(const CaseFold * f,int n,Rune r)272 const CaseFold* LookupCaseFold(const CaseFold *f, int n, Rune r) {
273   const CaseFold* ef = f + n;
274 
275   // Binary search for entry containing r.
276   while (n > 0) {
277     int m = n/2;
278     if (f[m].lo <= r && r <= f[m].hi)
279       return &f[m];
280     if (r < f[m].lo) {
281       n = m;
282     } else {
283       f += m+1;
284       n -= m+1;
285     }
286   }
287 
288   // There is no entry that contains r, but f points
289   // where it would have been.  Unless f points at
290   // the end of the array, it points at the next entry
291   // after r.
292   if (f < ef)
293     return f;
294 
295   // No entry contains r; no entry contains runes > r.
296   return NULL;
297 }
298 
299 // Returns the result of applying the fold f to the rune r.
ApplyFold(const CaseFold * f,Rune r)300 Rune ApplyFold(const CaseFold *f, Rune r) {
301   switch (f->delta) {
302     default:
303       return r + f->delta;
304 
305     case EvenOddSkip:  // even <-> odd but only applies to every other
306       if ((r - f->lo) % 2)
307         return r;
308       FALLTHROUGH_INTENDED;
309     case EvenOdd:  // even <-> odd
310       if (r%2 == 0)
311         return r + 1;
312       return r - 1;
313 
314     case OddEvenSkip:  // odd <-> even but only applies to every other
315       if ((r - f->lo) % 2)
316         return r;
317       FALLTHROUGH_INTENDED;
318     case OddEven:  // odd <-> even
319       if (r%2 == 1)
320         return r + 1;
321       return r - 1;
322   }
323 }
324 
325 // Returns the next Rune in r's folding cycle (see unicode_casefold.h).
326 // Examples:
327 //   CycleFoldRune('A') = 'a'
328 //   CycleFoldRune('a') = 'A'
329 //
330 //   CycleFoldRune('K') = 'k'
331 //   CycleFoldRune('k') = 0x212A (Kelvin)
332 //   CycleFoldRune(0x212A) = 'K'
333 //
334 //   CycleFoldRune('?') = '?'
CycleFoldRune(Rune r)335 Rune CycleFoldRune(Rune r) {
336   const CaseFold* f = LookupCaseFold(unicode_casefold, num_unicode_casefold, r);
337   if (f == NULL || r < f->lo)
338     return r;
339   return ApplyFold(f, r);
340 }
341 
342 // Add lo-hi to the class, along with their fold-equivalent characters.
343 // If lo-hi is already in the class, assume that the fold-equivalent
344 // chars are there too, so there's no work to do.
AddFoldedRange(CharClassBuilder * cc,Rune lo,Rune hi,int depth)345 static void AddFoldedRange(CharClassBuilder* cc, Rune lo, Rune hi, int depth) {
346   // AddFoldedRange calls itself recursively for each rune in the fold cycle.
347   // Most folding cycles are small: there aren't any bigger than four in the
348   // current Unicode tables.  make_unicode_casefold.py checks that
349   // the cycles are not too long, and we double-check here using depth.
350   if (depth > 10) {
351     LOG(DFATAL) << "AddFoldedRange recurses too much.";
352     return;
353   }
354 
355   if (!cc->AddRange(lo, hi))  // lo-hi was already there? we're done
356     return;
357 
358   while (lo <= hi) {
359     const CaseFold* f = LookupCaseFold(unicode_casefold, num_unicode_casefold, lo);
360     if (f == NULL)  // lo has no fold, nor does anything above lo
361       break;
362     if (lo < f->lo) {  // lo has no fold; next rune with a fold is f->lo
363       lo = f->lo;
364       continue;
365     }
366 
367     // Add in the result of folding the range lo - f->hi
368     // and that range's fold, recursively.
369     Rune lo1 = lo;
370     Rune hi1 = std::min<Rune>(hi, f->hi);
371     switch (f->delta) {
372       default:
373         lo1 += f->delta;
374         hi1 += f->delta;
375         break;
376       case EvenOdd:
377         if (lo1%2 == 1)
378           lo1--;
379         if (hi1%2 == 0)
380           hi1++;
381         break;
382       case OddEven:
383         if (lo1%2 == 0)
384           lo1--;
385         if (hi1%2 == 1)
386           hi1++;
387         break;
388     }
389     AddFoldedRange(cc, lo1, hi1, depth+1);
390 
391     // Pick up where this fold left off.
392     lo = f->hi + 1;
393   }
394 }
395 
396 // Pushes the literal rune r onto the stack.
PushLiteral(Rune r)397 bool Regexp::ParseState::PushLiteral(Rune r) {
398   // Do case folding if needed.
399   if ((flags_ & FoldCase) && CycleFoldRune(r) != r) {
400     Regexp* re = new Regexp(kRegexpCharClass, flags_ & ~FoldCase);
401     re->ccb_ = new CharClassBuilder;
402     Rune r1 = r;
403     do {
404       if (!(flags_ & NeverNL) || r != '\n') {
405         re->ccb_->AddRange(r, r);
406       }
407       r = CycleFoldRune(r);
408     } while (r != r1);
409     return PushRegexp(re);
410   }
411 
412   // Exclude newline if applicable.
413   if ((flags_ & NeverNL) && r == '\n')
414     return PushRegexp(new Regexp(kRegexpNoMatch, flags_));
415 
416   // No fancy stuff worked.  Ordinary literal.
417   if (MaybeConcatString(r, flags_))
418     return true;
419 
420   Regexp* re = new Regexp(kRegexpLiteral, flags_);
421   re->rune_ = r;
422   return PushRegexp(re);
423 }
424 
425 // Pushes a ^ onto the stack.
PushCarat()426 bool Regexp::ParseState::PushCarat() {
427   if (flags_ & OneLine) {
428     return PushSimpleOp(kRegexpBeginText);
429   }
430   return PushSimpleOp(kRegexpBeginLine);
431 }
432 
433 // Pushes a \b or \B onto the stack.
PushWordBoundary(bool word)434 bool Regexp::ParseState::PushWordBoundary(bool word) {
435   if (word)
436     return PushSimpleOp(kRegexpWordBoundary);
437   return PushSimpleOp(kRegexpNoWordBoundary);
438 }
439 
440 // Pushes a $ onto the stack.
PushDollar()441 bool Regexp::ParseState::PushDollar() {
442   if (flags_ & OneLine) {
443     // Clumsy marker so that MimicsPCRE() can tell whether
444     // this kRegexpEndText was a $ and not a \z.
445     Regexp::ParseFlags oflags = flags_;
446     flags_ = flags_ | WasDollar;
447     bool ret = PushSimpleOp(kRegexpEndText);
448     flags_ = oflags;
449     return ret;
450   }
451   return PushSimpleOp(kRegexpEndLine);
452 }
453 
454 // Pushes a . onto the stack.
PushDot()455 bool Regexp::ParseState::PushDot() {
456   if ((flags_ & DotNL) && !(flags_ & NeverNL))
457     return PushSimpleOp(kRegexpAnyChar);
458   // Rewrite . into [^\n]
459   Regexp* re = new Regexp(kRegexpCharClass, flags_ & ~FoldCase);
460   re->ccb_ = new CharClassBuilder;
461   re->ccb_->AddRange(0, '\n' - 1);
462   re->ccb_->AddRange('\n' + 1, rune_max_);
463   return PushRegexp(re);
464 }
465 
466 // Pushes a regexp with the given op (and no args) onto the stack.
PushSimpleOp(RegexpOp op)467 bool Regexp::ParseState::PushSimpleOp(RegexpOp op) {
468   Regexp* re = new Regexp(op, flags_);
469   return PushRegexp(re);
470 }
471 
472 // Pushes a repeat operator regexp onto the stack.
473 // A valid argument for the operator must already be on the stack.
474 // The char c is the name of the operator, for use in error messages.
PushRepeatOp(RegexpOp op,const StringPiece & s,bool nongreedy)475 bool Regexp::ParseState::PushRepeatOp(RegexpOp op, const StringPiece& s,
476                                       bool nongreedy) {
477   if (stacktop_ == NULL || IsMarker(stacktop_->op())) {
478     status_->set_code(kRegexpRepeatArgument);
479     status_->set_error_arg(s);
480     return false;
481   }
482   Regexp::ParseFlags fl = flags_;
483   if (nongreedy)
484     fl = fl ^ NonGreedy;
485 
486   // Squash **, ++ and ??. Regexp::Star() et al. handle this too, but
487   // they're mostly for use during simplification, not during parsing.
488   if (op == stacktop_->op() && fl == stacktop_->parse_flags())
489     return true;
490 
491   // Squash *+, *?, +*, +?, ?* and ?+. They all squash to *, so because
492   // op is a repeat, we just have to check that stacktop_->op() is too,
493   // then adjust stacktop_.
494   if ((stacktop_->op() == kRegexpStar ||
495        stacktop_->op() == kRegexpPlus ||
496        stacktop_->op() == kRegexpQuest) &&
497       fl == stacktop_->parse_flags()) {
498     stacktop_->op_ = kRegexpStar;
499     return true;
500   }
501 
502   Regexp* re = new Regexp(op, fl);
503   re->AllocSub(1);
504   re->down_ = stacktop_->down_;
505   re->sub()[0] = FinishRegexp(stacktop_);
506   re->simple_ = re->ComputeSimple();
507   stacktop_ = re;
508   return true;
509 }
510 
511 // RepetitionWalker reports whether the repetition regexp is valid.
512 // Valid means that the combination of the top-level repetition
513 // and any inner repetitions does not exceed n copies of the
514 // innermost thing.
515 // This rewalks the regexp tree and is called for every repetition,
516 // so we have to worry about inducing quadratic behavior in the parser.
517 // We avoid this by only using RepetitionWalker when min or max >= 2.
518 // In that case the depth of any >= 2 nesting can only get to 9 without
519 // triggering a parse error, so each subtree can only be rewalked 9 times.
520 class RepetitionWalker : public Regexp::Walker<int> {
521  public:
RepetitionWalker()522   RepetitionWalker() {}
523   virtual int PreVisit(Regexp* re, int parent_arg, bool* stop);
524   virtual int PostVisit(Regexp* re, int parent_arg, int pre_arg,
525                         int* child_args, int nchild_args);
526   virtual int ShortVisit(Regexp* re, int parent_arg);
527 
528  private:
529   RepetitionWalker(const RepetitionWalker&) = delete;
530   RepetitionWalker& operator=(const RepetitionWalker&) = delete;
531 };
532 
PreVisit(Regexp * re,int parent_arg,bool * stop)533 int RepetitionWalker::PreVisit(Regexp* re, int parent_arg, bool* stop) {
534   int arg = parent_arg;
535   if (re->op() == kRegexpRepeat) {
536     int m = re->max();
537     if (m < 0) {
538       m = re->min();
539     }
540     if (m > 0) {
541       arg /= m;
542     }
543   }
544   return arg;
545 }
546 
PostVisit(Regexp * re,int parent_arg,int pre_arg,int * child_args,int nchild_args)547 int RepetitionWalker::PostVisit(Regexp* re, int parent_arg, int pre_arg,
548                                 int* child_args, int nchild_args) {
549   int arg = pre_arg;
550   for (int i = 0; i < nchild_args; i++) {
551     if (child_args[i] < arg) {
552       arg = child_args[i];
553     }
554   }
555   return arg;
556 }
557 
ShortVisit(Regexp * re,int parent_arg)558 int RepetitionWalker::ShortVisit(Regexp* re, int parent_arg) {
559   // This should never be called, since we use Walk and not
560   // WalkExponential.
561   LOG(DFATAL) << "RepetitionWalker::ShortVisit called";
562   return 0;
563 }
564 
565 // Pushes a repetition regexp onto the stack.
566 // A valid argument for the operator must already be on the stack.
PushRepetition(int min,int max,const StringPiece & s,bool nongreedy)567 bool Regexp::ParseState::PushRepetition(int min, int max,
568                                         const StringPiece& s,
569                                         bool nongreedy) {
570   if ((max != -1 && max < min) || min > kMaxRepeat || max > kMaxRepeat) {
571     status_->set_code(kRegexpRepeatSize);
572     status_->set_error_arg(s);
573     return false;
574   }
575   if (stacktop_ == NULL || IsMarker(stacktop_->op())) {
576     status_->set_code(kRegexpRepeatArgument);
577     status_->set_error_arg(s);
578     return false;
579   }
580   Regexp::ParseFlags fl = flags_;
581   if (nongreedy)
582     fl = fl ^ NonGreedy;
583   Regexp* re = new Regexp(kRegexpRepeat, fl);
584   re->min_ = min;
585   re->max_ = max;
586   re->AllocSub(1);
587   re->down_ = stacktop_->down_;
588   re->sub()[0] = FinishRegexp(stacktop_);
589   re->simple_ = re->ComputeSimple();
590   stacktop_ = re;
591   if (min >= 2 || max >= 2) {
592     RepetitionWalker w;
593     if (w.Walk(stacktop_, kMaxRepeat) == 0) {
594       status_->set_code(kRegexpRepeatSize);
595       status_->set_error_arg(s);
596       return false;
597     }
598   }
599   return true;
600 }
601 
602 // Checks whether a particular regexp op is a marker.
IsMarker(RegexpOp op)603 bool Regexp::ParseState::IsMarker(RegexpOp op) {
604   return op >= kLeftParen;
605 }
606 
607 // Processes a left parenthesis in the input.
608 // Pushes a marker onto the stack.
DoLeftParen(const StringPiece & name)609 bool Regexp::ParseState::DoLeftParen(const StringPiece& name) {
610   Regexp* re = new Regexp(kLeftParen, flags_);
611   re->cap_ = ++ncap_;
612   if (name.data() != NULL)
613     re->name_ = new std::string(name);
614   return PushRegexp(re);
615 }
616 
617 // Pushes a non-capturing marker onto the stack.
DoLeftParenNoCapture()618 bool Regexp::ParseState::DoLeftParenNoCapture() {
619   Regexp* re = new Regexp(kLeftParen, flags_);
620   re->cap_ = -1;
621   return PushRegexp(re);
622 }
623 
624 // Processes a vertical bar in the input.
DoVerticalBar()625 bool Regexp::ParseState::DoVerticalBar() {
626   MaybeConcatString(-1, NoParseFlags);
627   DoConcatenation();
628 
629   // Below the vertical bar is a list to alternate.
630   // Above the vertical bar is a list to concatenate.
631   // We just did the concatenation, so either swap
632   // the result below the vertical bar or push a new
633   // vertical bar on the stack.
634   Regexp* r1;
635   Regexp* r2;
636   if ((r1 = stacktop_) != NULL &&
637       (r2 = r1->down_) != NULL &&
638       r2->op() == kVerticalBar) {
639     Regexp* r3;
640     if ((r3 = r2->down_) != NULL &&
641         (r1->op() == kRegexpAnyChar || r3->op() == kRegexpAnyChar)) {
642       // AnyChar is above or below the vertical bar. Let it subsume
643       // the other when the other is Literal, CharClass or AnyChar.
644       if (r3->op() == kRegexpAnyChar &&
645           (r1->op() == kRegexpLiteral ||
646            r1->op() == kRegexpCharClass ||
647            r1->op() == kRegexpAnyChar)) {
648         // Discard r1.
649         stacktop_ = r2;
650         r1->Decref();
651         return true;
652       }
653       if (r1->op() == kRegexpAnyChar &&
654           (r3->op() == kRegexpLiteral ||
655            r3->op() == kRegexpCharClass ||
656            r3->op() == kRegexpAnyChar)) {
657         // Rearrange the stack and discard r3.
658         r1->down_ = r3->down_;
659         r2->down_ = r1;
660         stacktop_ = r2;
661         r3->Decref();
662         return true;
663       }
664     }
665     // Swap r1 below vertical bar (r2).
666     r1->down_ = r2->down_;
667     r2->down_ = r1;
668     stacktop_ = r2;
669     return true;
670   }
671   return PushSimpleOp(kVerticalBar);
672 }
673 
674 // Processes a right parenthesis in the input.
DoRightParen()675 bool Regexp::ParseState::DoRightParen() {
676   // Finish the current concatenation and alternation.
677   DoAlternation();
678 
679   // The stack should be: LeftParen regexp
680   // Remove the LeftParen, leaving the regexp,
681   // parenthesized.
682   Regexp* r1;
683   Regexp* r2;
684   if ((r1 = stacktop_) == NULL ||
685       (r2 = r1->down_) == NULL ||
686       r2->op() != kLeftParen) {
687     status_->set_code(kRegexpMissingParen);
688     status_->set_error_arg(whole_regexp_);
689     return false;
690   }
691 
692   // Pop off r1, r2.  Will Decref or reuse below.
693   stacktop_ = r2->down_;
694 
695   // Restore flags from when paren opened.
696   Regexp* re = r2;
697   flags_ = re->parse_flags();
698 
699   // Rewrite LeftParen as capture if needed.
700   if (re->cap_ > 0) {
701     re->op_ = kRegexpCapture;
702     // re->cap_ is already set
703     re->AllocSub(1);
704     re->sub()[0] = FinishRegexp(r1);
705     re->simple_ = re->ComputeSimple();
706   } else {
707     re->Decref();
708     re = r1;
709   }
710   return PushRegexp(re);
711 }
712 
713 // Processes the end of input, returning the final regexp.
DoFinish()714 Regexp* Regexp::ParseState::DoFinish() {
715   DoAlternation();
716   Regexp* re = stacktop_;
717   if (re != NULL && re->down_ != NULL) {
718     status_->set_code(kRegexpMissingParen);
719     status_->set_error_arg(whole_regexp_);
720     return NULL;
721   }
722   stacktop_ = NULL;
723   return FinishRegexp(re);
724 }
725 
726 // Returns the leading regexp that re starts with.
727 // The returned Regexp* points into a piece of re,
728 // so it must not be used after the caller calls re->Decref().
LeadingRegexp(Regexp * re)729 Regexp* Regexp::LeadingRegexp(Regexp* re) {
730   if (re->op() == kRegexpEmptyMatch)
731     return NULL;
732   if (re->op() == kRegexpConcat && re->nsub() >= 2) {
733     Regexp** sub = re->sub();
734     if (sub[0]->op() == kRegexpEmptyMatch)
735       return NULL;
736     return sub[0];
737   }
738   return re;
739 }
740 
741 // Removes LeadingRegexp(re) from re and returns what's left.
742 // Consumes the reference to re and may edit it in place.
743 // If caller wants to hold on to LeadingRegexp(re),
744 // must have already Incref'ed it.
RemoveLeadingRegexp(Regexp * re)745 Regexp* Regexp::RemoveLeadingRegexp(Regexp* re) {
746   if (re->op() == kRegexpEmptyMatch)
747     return re;
748   if (re->op() == kRegexpConcat && re->nsub() >= 2) {
749     Regexp** sub = re->sub();
750     if (sub[0]->op() == kRegexpEmptyMatch)
751       return re;
752     sub[0]->Decref();
753     sub[0] = NULL;
754     if (re->nsub() == 2) {
755       // Collapse concatenation to single regexp.
756       Regexp* nre = sub[1];
757       sub[1] = NULL;
758       re->Decref();
759       return nre;
760     }
761     // 3 or more -> 2 or more.
762     re->nsub_--;
763     memmove(sub, sub + 1, re->nsub_ * sizeof sub[0]);
764     return re;
765   }
766   Regexp::ParseFlags pf = re->parse_flags();
767   re->Decref();
768   return new Regexp(kRegexpEmptyMatch, pf);
769 }
770 
771 // Returns the leading string that re starts with.
772 // The returned Rune* points into a piece of re,
773 // so it must not be used after the caller calls re->Decref().
LeadingString(Regexp * re,int * nrune,Regexp::ParseFlags * flags)774 Rune* Regexp::LeadingString(Regexp* re, int *nrune,
775                             Regexp::ParseFlags *flags) {
776   while (re->op() == kRegexpConcat && re->nsub() > 0)
777     re = re->sub()[0];
778 
779   *flags = static_cast<Regexp::ParseFlags>(re->parse_flags_ & Regexp::FoldCase);
780 
781   if (re->op() == kRegexpLiteral) {
782     *nrune = 1;
783     return &re->rune_;
784   }
785 
786   if (re->op() == kRegexpLiteralString) {
787     *nrune = re->nrunes_;
788     return re->runes_;
789   }
790 
791   *nrune = 0;
792   return NULL;
793 }
794 
795 // Removes the first n leading runes from the beginning of re.
796 // Edits re in place.
RemoveLeadingString(Regexp * re,int n)797 void Regexp::RemoveLeadingString(Regexp* re, int n) {
798   // Chase down concats to find first string.
799   // For regexps generated by parser, nested concats are
800   // flattened except when doing so would overflow the 16-bit
801   // limit on the size of a concatenation, so we should never
802   // see more than two here.
803   Regexp* stk[4];
804   size_t d = 0;
805   while (re->op() == kRegexpConcat) {
806     if (d < arraysize(stk))
807       stk[d++] = re;
808     re = re->sub()[0];
809   }
810 
811   // Remove leading string from re.
812   if (re->op() == kRegexpLiteral) {
813     re->rune_ = 0;
814     re->op_ = kRegexpEmptyMatch;
815   } else if (re->op() == kRegexpLiteralString) {
816     if (n >= re->nrunes_) {
817       delete[] re->runes_;
818       re->runes_ = NULL;
819       re->nrunes_ = 0;
820       re->op_ = kRegexpEmptyMatch;
821     } else if (n == re->nrunes_ - 1) {
822       Rune rune = re->runes_[re->nrunes_ - 1];
823       delete[] re->runes_;
824       re->runes_ = NULL;
825       re->nrunes_ = 0;
826       re->rune_ = rune;
827       re->op_ = kRegexpLiteral;
828     } else {
829       re->nrunes_ -= n;
830       memmove(re->runes_, re->runes_ + n, re->nrunes_ * sizeof re->runes_[0]);
831     }
832   }
833 
834   // If re is now empty, concatenations might simplify too.
835   while (d > 0) {
836     re = stk[--d];
837     Regexp** sub = re->sub();
838     if (sub[0]->op() == kRegexpEmptyMatch) {
839       sub[0]->Decref();
840       sub[0] = NULL;
841       // Delete first element of concat.
842       switch (re->nsub()) {
843         case 0:
844         case 1:
845           // Impossible.
846           LOG(DFATAL) << "Concat of " << re->nsub();
847           re->submany_ = NULL;
848           re->op_ = kRegexpEmptyMatch;
849           break;
850 
851         case 2: {
852           // Replace re with sub[1].
853           Regexp* old = sub[1];
854           sub[1] = NULL;
855           re->Swap(old);
856           old->Decref();
857           break;
858         }
859 
860         default:
861           // Slide down.
862           re->nsub_--;
863           memmove(sub, sub + 1, re->nsub_ * sizeof sub[0]);
864           break;
865       }
866     }
867   }
868 }
869 
870 // In the context of factoring alternations, a Splice is: a factored prefix or
871 // merged character class computed by one iteration of one round of factoring;
872 // the span of subexpressions of the alternation to be "spliced" (i.e. removed
873 // and replaced); and, for a factored prefix, the number of suffixes after any
874 // factoring that might have subsequently been performed on them. For a merged
875 // character class, there are no suffixes, of course, so the field is ignored.
876 struct Splice {
Splicere2::Splice877   Splice(Regexp* prefix, Regexp** sub, int nsub)
878       : prefix(prefix),
879         sub(sub),
880         nsub(nsub),
881         nsuffix(-1) {}
882 
883   Regexp* prefix;
884   Regexp** sub;
885   int nsub;
886   int nsuffix;
887 };
888 
889 // Named so because it is used to implement an explicit stack, a Frame is: the
890 // span of subexpressions of the alternation to be factored; the current round
891 // of factoring; any Splices computed; and, for a factored prefix, an iterator
892 // to the next Splice to be factored (i.e. in another Frame) because suffixes.
893 struct Frame {
Framere2::Frame894   Frame(Regexp** sub, int nsub)
895       : sub(sub),
896         nsub(nsub),
897         round(0) {}
898 
899   Regexp** sub;
900   int nsub;
901   int round;
902   std::vector<Splice> splices;
903   int spliceidx;
904 };
905 
906 // Bundled into a class for friend access to Regexp without needing to declare
907 // (or define) Splice in regexp.h.
908 class FactorAlternationImpl {
909  public:
910   static void Round1(Regexp** sub, int nsub,
911                      Regexp::ParseFlags flags,
912                      std::vector<Splice>* splices);
913   static void Round2(Regexp** sub, int nsub,
914                      Regexp::ParseFlags flags,
915                      std::vector<Splice>* splices);
916   static void Round3(Regexp** sub, int nsub,
917                      Regexp::ParseFlags flags,
918                      std::vector<Splice>* splices);
919 };
920 
921 // Factors common prefixes from alternation.
922 // For example,
923 //     ABC|ABD|AEF|BCX|BCY
924 // simplifies to
925 //     A(B(C|D)|EF)|BC(X|Y)
926 // and thence to
927 //     A(B[CD]|EF)|BC[XY]
928 //
929 // Rewrites sub to contain simplified list to alternate and returns
930 // the new length of sub.  Adjusts reference counts accordingly
931 // (incoming sub[i] decremented, outgoing sub[i] incremented).
FactorAlternation(Regexp ** sub,int nsub,ParseFlags flags)932 int Regexp::FactorAlternation(Regexp** sub, int nsub, ParseFlags flags) {
933   std::vector<Frame> stk;
934   stk.emplace_back(sub, nsub);
935 
936   for (;;) {
937     auto& sub = stk.back().sub;
938     auto& nsub = stk.back().nsub;
939     auto& round = stk.back().round;
940     auto& splices = stk.back().splices;
941     auto& spliceidx = stk.back().spliceidx;
942 
943     if (splices.empty()) {
944       // Advance to the next round of factoring. Note that this covers
945       // the initialised state: when splices is empty and round is 0.
946       round++;
947     } else if (spliceidx < static_cast<int>(splices.size())) {
948       // We have at least one more Splice to factor. Recurse logically.
949       stk.emplace_back(splices[spliceidx].sub, splices[spliceidx].nsub);
950       continue;
951     } else {
952       // We have no more Splices to factor. Apply them.
953       auto iter = splices.begin();
954       int out = 0;
955       for (int i = 0; i < nsub; ) {
956         // Copy until we reach where the next Splice begins.
957         while (sub + i < iter->sub)
958           sub[out++] = sub[i++];
959         switch (round) {
960           case 1:
961           case 2: {
962             // Assemble the Splice prefix and the suffixes.
963             Regexp* re[2];
964             re[0] = iter->prefix;
965             re[1] = Regexp::AlternateNoFactor(iter->sub, iter->nsuffix, flags);
966             sub[out++] = Regexp::Concat(re, 2, flags);
967             i += iter->nsub;
968             break;
969           }
970           case 3:
971             // Just use the Splice prefix.
972             sub[out++] = iter->prefix;
973             i += iter->nsub;
974             break;
975           default:
976             LOG(DFATAL) << "unknown round: " << round;
977             break;
978         }
979         // If we are done, copy until the end of sub.
980         if (++iter == splices.end()) {
981           while (i < nsub)
982             sub[out++] = sub[i++];
983         }
984       }
985       splices.clear();
986       nsub = out;
987       // Advance to the next round of factoring.
988       round++;
989     }
990 
991     switch (round) {
992       case 1:
993         FactorAlternationImpl::Round1(sub, nsub, flags, &splices);
994         break;
995       case 2:
996         FactorAlternationImpl::Round2(sub, nsub, flags, &splices);
997         break;
998       case 3:
999         FactorAlternationImpl::Round3(sub, nsub, flags, &splices);
1000         break;
1001       case 4:
1002         if (stk.size() == 1) {
1003           // We are at the top of the stack. Just return.
1004           return nsub;
1005         } else {
1006           // Pop the stack and set the number of suffixes.
1007           // (Note that references will be invalidated!)
1008           int nsuffix = nsub;
1009           stk.pop_back();
1010           stk.back().splices[stk.back().spliceidx].nsuffix = nsuffix;
1011           ++stk.back().spliceidx;
1012           continue;
1013         }
1014       default:
1015         LOG(DFATAL) << "unknown round: " << round;
1016         break;
1017     }
1018 
1019     // Set spliceidx depending on whether we have Splices to factor.
1020     if (splices.empty() || round == 3) {
1021       spliceidx = static_cast<int>(splices.size());
1022     } else {
1023       spliceidx = 0;
1024     }
1025   }
1026 }
1027 
Round1(Regexp ** sub,int nsub,Regexp::ParseFlags flags,std::vector<Splice> * splices)1028 void FactorAlternationImpl::Round1(Regexp** sub, int nsub,
1029                                    Regexp::ParseFlags flags,
1030                                    std::vector<Splice>* splices) {
1031   // Round 1: Factor out common literal prefixes.
1032   int start = 0;
1033   Rune* rune = NULL;
1034   int nrune = 0;
1035   Regexp::ParseFlags runeflags = Regexp::NoParseFlags;
1036   for (int i = 0; i <= nsub; i++) {
1037     // Invariant: sub[start:i] consists of regexps that all
1038     // begin with rune[0:nrune].
1039     Rune* rune_i = NULL;
1040     int nrune_i = 0;
1041     Regexp::ParseFlags runeflags_i = Regexp::NoParseFlags;
1042     if (i < nsub) {
1043       rune_i = Regexp::LeadingString(sub[i], &nrune_i, &runeflags_i);
1044       if (runeflags_i == runeflags) {
1045         int same = 0;
1046         while (same < nrune && same < nrune_i && rune[same] == rune_i[same])
1047           same++;
1048         if (same > 0) {
1049           // Matches at least one rune in current range.  Keep going around.
1050           nrune = same;
1051           continue;
1052         }
1053       }
1054     }
1055 
1056     // Found end of a run with common leading literal string:
1057     // sub[start:i] all begin with rune[0:nrune],
1058     // but sub[i] does not even begin with rune[0].
1059     if (i == start) {
1060       // Nothing to do - first iteration.
1061     } else if (i == start+1) {
1062       // Just one: don't bother factoring.
1063     } else {
1064       Regexp* prefix = Regexp::LiteralString(rune, nrune, runeflags);
1065       for (int j = start; j < i; j++)
1066         Regexp::RemoveLeadingString(sub[j], nrune);
1067       splices->emplace_back(prefix, sub + start, i - start);
1068     }
1069 
1070     // Prepare for next iteration (if there is one).
1071     if (i < nsub) {
1072       start = i;
1073       rune = rune_i;
1074       nrune = nrune_i;
1075       runeflags = runeflags_i;
1076     }
1077   }
1078 }
1079 
Round2(Regexp ** sub,int nsub,Regexp::ParseFlags flags,std::vector<Splice> * splices)1080 void FactorAlternationImpl::Round2(Regexp** sub, int nsub,
1081                                    Regexp::ParseFlags flags,
1082                                    std::vector<Splice>* splices) {
1083   // Round 2: Factor out common simple prefixes,
1084   // just the first piece of each concatenation.
1085   // This will be good enough a lot of the time.
1086   //
1087   // Complex subexpressions (e.g. involving quantifiers)
1088   // are not safe to factor because that collapses their
1089   // distinct paths through the automaton, which affects
1090   // correctness in some cases.
1091   int start = 0;
1092   Regexp* first = NULL;
1093   for (int i = 0; i <= nsub; i++) {
1094     // Invariant: sub[start:i] consists of regexps that all
1095     // begin with first.
1096     Regexp* first_i = NULL;
1097     if (i < nsub) {
1098       first_i = Regexp::LeadingRegexp(sub[i]);
1099       if (first != NULL &&
1100           // first must be an empty-width op
1101           // OR a char class, any char or any byte
1102           // OR a fixed repeat of a literal, char class, any char or any byte.
1103           (first->op() == kRegexpBeginLine ||
1104            first->op() == kRegexpEndLine ||
1105            first->op() == kRegexpWordBoundary ||
1106            first->op() == kRegexpNoWordBoundary ||
1107            first->op() == kRegexpBeginText ||
1108            first->op() == kRegexpEndText ||
1109            first->op() == kRegexpCharClass ||
1110            first->op() == kRegexpAnyChar ||
1111            first->op() == kRegexpAnyByte ||
1112            (first->op() == kRegexpRepeat &&
1113             first->min() == first->max() &&
1114             (first->sub()[0]->op() == kRegexpLiteral ||
1115              first->sub()[0]->op() == kRegexpCharClass ||
1116              first->sub()[0]->op() == kRegexpAnyChar ||
1117              first->sub()[0]->op() == kRegexpAnyByte))) &&
1118           Regexp::Equal(first, first_i))
1119         continue;
1120     }
1121 
1122     // Found end of a run with common leading regexp:
1123     // sub[start:i] all begin with first,
1124     // but sub[i] does not.
1125     if (i == start) {
1126       // Nothing to do - first iteration.
1127     } else if (i == start+1) {
1128       // Just one: don't bother factoring.
1129     } else {
1130       Regexp* prefix = first->Incref();
1131       for (int j = start; j < i; j++)
1132         sub[j] = Regexp::RemoveLeadingRegexp(sub[j]);
1133       splices->emplace_back(prefix, sub + start, i - start);
1134     }
1135 
1136     // Prepare for next iteration (if there is one).
1137     if (i < nsub) {
1138       start = i;
1139       first = first_i;
1140     }
1141   }
1142 }
1143 
Round3(Regexp ** sub,int nsub,Regexp::ParseFlags flags,std::vector<Splice> * splices)1144 void FactorAlternationImpl::Round3(Regexp** sub, int nsub,
1145                                    Regexp::ParseFlags flags,
1146                                    std::vector<Splice>* splices) {
1147   // Round 3: Merge runs of literals and/or character classes.
1148   int start = 0;
1149   Regexp* first = NULL;
1150   for (int i = 0; i <= nsub; i++) {
1151     // Invariant: sub[start:i] consists of regexps that all
1152     // are either literals (i.e. runes) or character classes.
1153     Regexp* first_i = NULL;
1154     if (i < nsub) {
1155       first_i = sub[i];
1156       if (first != NULL &&
1157           (first->op() == kRegexpLiteral ||
1158            first->op() == kRegexpCharClass) &&
1159           (first_i->op() == kRegexpLiteral ||
1160            first_i->op() == kRegexpCharClass))
1161         continue;
1162     }
1163 
1164     // Found end of a run of Literal/CharClass:
1165     // sub[start:i] all are either one or the other,
1166     // but sub[i] is not.
1167     if (i == start) {
1168       // Nothing to do - first iteration.
1169     } else if (i == start+1) {
1170       // Just one: don't bother factoring.
1171     } else {
1172       CharClassBuilder ccb;
1173       for (int j = start; j < i; j++) {
1174         Regexp* re = sub[j];
1175         if (re->op() == kRegexpCharClass) {
1176           CharClass* cc = re->cc();
1177           for (CharClass::iterator it = cc->begin(); it != cc->end(); ++it)
1178             ccb.AddRange(it->lo, it->hi);
1179         } else if (re->op() == kRegexpLiteral) {
1180           ccb.AddRangeFlags(re->rune(), re->rune(), re->parse_flags());
1181         } else {
1182           LOG(DFATAL) << "RE2: unexpected op: " << re->op() << " "
1183                       << re->ToString();
1184         }
1185         re->Decref();
1186       }
1187       Regexp* re = Regexp::NewCharClass(ccb.GetCharClass(), flags);
1188       splices->emplace_back(re, sub + start, i - start);
1189     }
1190 
1191     // Prepare for next iteration (if there is one).
1192     if (i < nsub) {
1193       start = i;
1194       first = first_i;
1195     }
1196   }
1197 }
1198 
1199 // Collapse the regexps on top of the stack, down to the
1200 // first marker, into a new op node (op == kRegexpAlternate
1201 // or op == kRegexpConcat).
DoCollapse(RegexpOp op)1202 void Regexp::ParseState::DoCollapse(RegexpOp op) {
1203   // Scan backward to marker, counting children of composite.
1204   int n = 0;
1205   Regexp* next = NULL;
1206   Regexp* sub;
1207   for (sub = stacktop_; sub != NULL && !IsMarker(sub->op()); sub = next) {
1208     next = sub->down_;
1209     if (sub->op_ == op)
1210       n += sub->nsub_;
1211     else
1212       n++;
1213   }
1214 
1215   // If there's just one child, leave it alone.
1216   // (Concat of one thing is that one thing; alternate of one thing is same.)
1217   if (stacktop_ != NULL && stacktop_->down_ == next)
1218     return;
1219 
1220   // Construct op (alternation or concatenation), flattening op of op.
1221   PODArray<Regexp*> subs(n);
1222   next = NULL;
1223   int i = n;
1224   for (sub = stacktop_; sub != NULL && !IsMarker(sub->op()); sub = next) {
1225     next = sub->down_;
1226     if (sub->op_ == op) {
1227       Regexp** sub_subs = sub->sub();
1228       for (int k = sub->nsub_ - 1; k >= 0; k--)
1229         subs[--i] = sub_subs[k]->Incref();
1230       sub->Decref();
1231     } else {
1232       subs[--i] = FinishRegexp(sub);
1233     }
1234   }
1235 
1236   Regexp* re = ConcatOrAlternate(op, subs.data(), n, flags_, true);
1237   re->simple_ = re->ComputeSimple();
1238   re->down_ = next;
1239   stacktop_ = re;
1240 }
1241 
1242 // Finishes the current concatenation,
1243 // collapsing it into a single regexp on the stack.
DoConcatenation()1244 void Regexp::ParseState::DoConcatenation() {
1245   Regexp* r1 = stacktop_;
1246   if (r1 == NULL || IsMarker(r1->op())) {
1247     // empty concatenation is special case
1248     Regexp* re = new Regexp(kRegexpEmptyMatch, flags_);
1249     PushRegexp(re);
1250   }
1251   DoCollapse(kRegexpConcat);
1252 }
1253 
1254 // Finishes the current alternation,
1255 // collapsing it to a single regexp on the stack.
DoAlternation()1256 void Regexp::ParseState::DoAlternation() {
1257   DoVerticalBar();
1258   // Now stack top is kVerticalBar.
1259   Regexp* r1 = stacktop_;
1260   stacktop_ = r1->down_;
1261   r1->Decref();
1262   DoCollapse(kRegexpAlternate);
1263 }
1264 
1265 // Incremental conversion of concatenated literals into strings.
1266 // If top two elements on stack are both literal or string,
1267 // collapse into single string.
1268 // Don't walk down the stack -- the parser calls this frequently
1269 // enough that below the bottom two is known to be collapsed.
1270 // Only called when another regexp is about to be pushed
1271 // on the stack, so that the topmost literal is not being considered.
1272 // (Otherwise ab* would turn into (ab)*.)
1273 // If r >= 0, consider pushing a literal r on the stack.
1274 // Return whether that happened.
MaybeConcatString(int r,ParseFlags flags)1275 bool Regexp::ParseState::MaybeConcatString(int r, ParseFlags flags) {
1276   Regexp* re1;
1277   Regexp* re2;
1278   if ((re1 = stacktop_) == NULL || (re2 = re1->down_) == NULL)
1279     return false;
1280 
1281   if (re1->op_ != kRegexpLiteral && re1->op_ != kRegexpLiteralString)
1282     return false;
1283   if (re2->op_ != kRegexpLiteral && re2->op_ != kRegexpLiteralString)
1284     return false;
1285   if ((re1->parse_flags_ & FoldCase) != (re2->parse_flags_ & FoldCase))
1286     return false;
1287 
1288   if (re2->op_ == kRegexpLiteral) {
1289     // convert into string
1290     Rune rune = re2->rune_;
1291     re2->op_ = kRegexpLiteralString;
1292     re2->nrunes_ = 0;
1293     re2->runes_ = NULL;
1294     re2->AddRuneToString(rune);
1295   }
1296 
1297   // push re1 into re2.
1298   if (re1->op_ == kRegexpLiteral) {
1299     re2->AddRuneToString(re1->rune_);
1300   } else {
1301     for (int i = 0; i < re1->nrunes_; i++)
1302       re2->AddRuneToString(re1->runes_[i]);
1303     re1->nrunes_ = 0;
1304     delete[] re1->runes_;
1305     re1->runes_ = NULL;
1306   }
1307 
1308   // reuse re1 if possible
1309   if (r >= 0) {
1310     re1->op_ = kRegexpLiteral;
1311     re1->rune_ = r;
1312     re1->parse_flags_ = static_cast<uint16_t>(flags);
1313     return true;
1314   }
1315 
1316   stacktop_ = re2;
1317   re1->Decref();
1318   return false;
1319 }
1320 
1321 // Lexing routines.
1322 
1323 // Parses a decimal integer, storing it in *np.
1324 // Sets *s to span the remainder of the string.
ParseInteger(StringPiece * s,int * np)1325 static bool ParseInteger(StringPiece* s, int* np) {
1326   if (s->empty() || !isdigit((*s)[0] & 0xFF))
1327     return false;
1328   // Disallow leading zeros.
1329   if (s->size() >= 2 && (*s)[0] == '0' && isdigit((*s)[1] & 0xFF))
1330     return false;
1331   int n = 0;
1332   int c;
1333   while (!s->empty() && isdigit(c = (*s)[0] & 0xFF)) {
1334     // Avoid overflow.
1335     if (n >= 100000000)
1336       return false;
1337     n = n*10 + c - '0';
1338     s->remove_prefix(1);  // digit
1339   }
1340   *np = n;
1341   return true;
1342 }
1343 
1344 // Parses a repetition suffix like {1,2} or {2} or {2,}.
1345 // Sets *s to span the remainder of the string on success.
1346 // Sets *lo and *hi to the given range.
1347 // In the case of {2,}, the high number is unbounded;
1348 // sets *hi to -1 to signify this.
1349 // {,2} is NOT a valid suffix.
1350 // The Maybe in the name signifies that the regexp parse
1351 // doesn't fail even if ParseRepetition does, so the StringPiece
1352 // s must NOT be edited unless MaybeParseRepetition returns true.
MaybeParseRepetition(StringPiece * sp,int * lo,int * hi)1353 static bool MaybeParseRepetition(StringPiece* sp, int* lo, int* hi) {
1354   StringPiece s = *sp;
1355   if (s.empty() || s[0] != '{')
1356     return false;
1357   s.remove_prefix(1);  // '{'
1358   if (!ParseInteger(&s, lo))
1359     return false;
1360   if (s.empty())
1361     return false;
1362   if (s[0] == ',') {
1363     s.remove_prefix(1);  // ','
1364     if (s.empty())
1365       return false;
1366     if (s[0] == '}') {
1367       // {2,} means at least 2
1368       *hi = -1;
1369     } else {
1370       // {2,4} means 2, 3, or 4.
1371       if (!ParseInteger(&s, hi))
1372         return false;
1373     }
1374   } else {
1375     // {2} means exactly two
1376     *hi = *lo;
1377   }
1378   if (s.empty() || s[0] != '}')
1379     return false;
1380   s.remove_prefix(1);  // '}'
1381   *sp = s;
1382   return true;
1383 }
1384 
1385 // Removes the next Rune from the StringPiece and stores it in *r.
1386 // Returns number of bytes removed from sp.
1387 // Behaves as though there is a terminating NUL at the end of sp.
1388 // Argument order is backwards from usual Google style
1389 // but consistent with chartorune.
StringPieceToRune(Rune * r,StringPiece * sp,RegexpStatus * status)1390 static int StringPieceToRune(Rune *r, StringPiece *sp, RegexpStatus* status) {
1391   // fullrune() takes int, not size_t. However, it just looks
1392   // at the leading byte and treats any length >= 4 the same.
1393   if (fullrune(sp->data(), static_cast<int>(std::min(size_t{4}, sp->size())))) {
1394     int n = chartorune(r, sp->data());
1395     // Some copies of chartorune have a bug that accepts
1396     // encodings of values in (10FFFF, 1FFFFF] as valid.
1397     // Those values break the character class algorithm,
1398     // which assumes Runemax is the largest rune.
1399     if (*r > Runemax) {
1400       n = 1;
1401       *r = Runeerror;
1402     }
1403     if (!(n == 1 && *r == Runeerror)) {  // no decoding error
1404       sp->remove_prefix(n);
1405       return n;
1406     }
1407   }
1408 
1409   status->set_code(kRegexpBadUTF8);
1410   status->set_error_arg(StringPiece());
1411   return -1;
1412 }
1413 
1414 // Return whether name is valid UTF-8.
1415 // If not, set status to kRegexpBadUTF8.
IsValidUTF8(const StringPiece & s,RegexpStatus * status)1416 static bool IsValidUTF8(const StringPiece& s, RegexpStatus* status) {
1417   StringPiece t = s;
1418   Rune r;
1419   while (!t.empty()) {
1420     if (StringPieceToRune(&r, &t, status) < 0)
1421       return false;
1422   }
1423   return true;
1424 }
1425 
1426 // Is c a hex digit?
IsHex(int c)1427 static int IsHex(int c) {
1428   return ('0' <= c && c <= '9') ||
1429          ('A' <= c && c <= 'F') ||
1430          ('a' <= c && c <= 'f');
1431 }
1432 
1433 // Convert hex digit to value.
UnHex(int c)1434 static int UnHex(int c) {
1435   if ('0' <= c && c <= '9')
1436     return c - '0';
1437   if ('A' <= c && c <= 'F')
1438     return c - 'A' + 10;
1439   if ('a' <= c && c <= 'f')
1440     return c - 'a' + 10;
1441   LOG(DFATAL) << "Bad hex digit " << c;
1442   return 0;
1443 }
1444 
1445 // Parse an escape sequence (e.g., \n, \{).
1446 // Sets *s to span the remainder of the string.
1447 // Sets *rp to the named character.
ParseEscape(StringPiece * s,Rune * rp,RegexpStatus * status,int rune_max)1448 static bool ParseEscape(StringPiece* s, Rune* rp,
1449                         RegexpStatus* status, int rune_max) {
1450   const char* begin = s->data();
1451   if (s->empty() || (*s)[0] != '\\') {
1452     // Should not happen - caller always checks.
1453     status->set_code(kRegexpInternalError);
1454     status->set_error_arg(StringPiece());
1455     return false;
1456   }
1457   if (s->size() == 1) {
1458     status->set_code(kRegexpTrailingBackslash);
1459     status->set_error_arg(StringPiece());
1460     return false;
1461   }
1462   Rune c, c1;
1463   s->remove_prefix(1);  // backslash
1464   if (StringPieceToRune(&c, s, status) < 0)
1465     return false;
1466   int code;
1467   switch (c) {
1468     default:
1469       if (c < Runeself && !isalpha(c) && !isdigit(c)) {
1470         // Escaped non-word characters are always themselves.
1471         // PCRE is not quite so rigorous: it accepts things like
1472         // \q, but we don't.  We once rejected \_, but too many
1473         // programs and people insist on using it, so allow \_.
1474         *rp = c;
1475         return true;
1476       }
1477       goto BadEscape;
1478 
1479     // Octal escapes.
1480     case '1':
1481     case '2':
1482     case '3':
1483     case '4':
1484     case '5':
1485     case '6':
1486     case '7':
1487       // Single non-zero octal digit is a backreference; not supported.
1488       if (s->empty() || (*s)[0] < '0' || (*s)[0] > '7')
1489         goto BadEscape;
1490       FALLTHROUGH_INTENDED;
1491     case '0':
1492       // consume up to three octal digits; already have one.
1493       code = c - '0';
1494       if (!s->empty() && '0' <= (c = (*s)[0]) && c <= '7') {
1495         code = code * 8 + c - '0';
1496         s->remove_prefix(1);  // digit
1497         if (!s->empty()) {
1498           c = (*s)[0];
1499           if ('0' <= c && c <= '7') {
1500             code = code * 8 + c - '0';
1501             s->remove_prefix(1);  // digit
1502           }
1503         }
1504       }
1505       if (code > rune_max)
1506         goto BadEscape;
1507       *rp = code;
1508       return true;
1509 
1510     // Hexadecimal escapes
1511     case 'x':
1512       if (s->empty())
1513         goto BadEscape;
1514       if (StringPieceToRune(&c, s, status) < 0)
1515         return false;
1516       if (c == '{') {
1517         // Any number of digits in braces.
1518         // Update n as we consume the string, so that
1519         // the whole thing gets shown in the error message.
1520         // Perl accepts any text at all; it ignores all text
1521         // after the first non-hex digit.  We require only hex digits,
1522         // and at least one.
1523         if (StringPieceToRune(&c, s, status) < 0)
1524           return false;
1525         int nhex = 0;
1526         code = 0;
1527         while (IsHex(c)) {
1528           nhex++;
1529           code = code * 16 + UnHex(c);
1530           if (code > rune_max)
1531             goto BadEscape;
1532           if (s->empty())
1533             goto BadEscape;
1534           if (StringPieceToRune(&c, s, status) < 0)
1535             return false;
1536         }
1537         if (c != '}' || nhex == 0)
1538           goto BadEscape;
1539         *rp = code;
1540         return true;
1541       }
1542       // Easy case: two hex digits.
1543       if (s->empty())
1544         goto BadEscape;
1545       if (StringPieceToRune(&c1, s, status) < 0)
1546         return false;
1547       if (!IsHex(c) || !IsHex(c1))
1548         goto BadEscape;
1549       *rp = UnHex(c) * 16 + UnHex(c1);
1550       return true;
1551 
1552     // C escapes.
1553     case 'n':
1554       *rp = '\n';
1555       return true;
1556     case 'r':
1557       *rp = '\r';
1558       return true;
1559     case 't':
1560       *rp = '\t';
1561       return true;
1562 
1563     // Less common C escapes.
1564     case 'a':
1565       *rp = '\a';
1566       return true;
1567     case 'f':
1568       *rp = '\f';
1569       return true;
1570     case 'v':
1571       *rp = '\v';
1572       return true;
1573 
1574     // This code is disabled to avoid misparsing
1575     // the Perl word-boundary \b as a backspace
1576     // when in POSIX regexp mode.  Surprisingly,
1577     // in Perl, \b means word-boundary but [\b]
1578     // means backspace.  We don't support that:
1579     // if you want a backspace embed a literal
1580     // backspace character or use \x08.
1581     //
1582     // case 'b':
1583     //   *rp = '\b';
1584     //   return true;
1585   }
1586 
1587   LOG(DFATAL) << "Not reached in ParseEscape.";
1588 
1589 BadEscape:
1590   // Unrecognized escape sequence.
1591   status->set_code(kRegexpBadEscape);
1592   status->set_error_arg(
1593       StringPiece(begin, static_cast<size_t>(s->data() - begin)));
1594   return false;
1595 }
1596 
1597 // Add a range to the character class, but exclude newline if asked.
1598 // Also handle case folding.
AddRangeFlags(Rune lo,Rune hi,Regexp::ParseFlags parse_flags)1599 void CharClassBuilder::AddRangeFlags(
1600     Rune lo, Rune hi, Regexp::ParseFlags parse_flags) {
1601 
1602   // Take out \n if the flags say so.
1603   bool cutnl = !(parse_flags & Regexp::ClassNL) ||
1604                (parse_flags & Regexp::NeverNL);
1605   if (cutnl && lo <= '\n' && '\n' <= hi) {
1606     if (lo < '\n')
1607       AddRangeFlags(lo, '\n' - 1, parse_flags);
1608     if (hi > '\n')
1609       AddRangeFlags('\n' + 1, hi, parse_flags);
1610     return;
1611   }
1612 
1613   // If folding case, add fold-equivalent characters too.
1614   if (parse_flags & Regexp::FoldCase)
1615     AddFoldedRange(this, lo, hi, 0);
1616   else
1617     AddRange(lo, hi);
1618 }
1619 
1620 // Look for a group with the given name.
LookupGroup(const StringPiece & name,const UGroup * groups,int ngroups)1621 static const UGroup* LookupGroup(const StringPiece& name,
1622                                  const UGroup *groups, int ngroups) {
1623   // Simple name lookup.
1624   for (int i = 0; i < ngroups; i++)
1625     if (StringPiece(groups[i].name) == name)
1626       return &groups[i];
1627   return NULL;
1628 }
1629 
1630 // Look for a POSIX group with the given name (e.g., "[:^alpha:]")
LookupPosixGroup(const StringPiece & name)1631 static const UGroup* LookupPosixGroup(const StringPiece& name) {
1632   return LookupGroup(name, posix_groups, num_posix_groups);
1633 }
1634 
LookupPerlGroup(const StringPiece & name)1635 static const UGroup* LookupPerlGroup(const StringPiece& name) {
1636   return LookupGroup(name, perl_groups, num_perl_groups);
1637 }
1638 
1639 #if !defined(RE2_USE_ICU)
1640 // Fake UGroup containing all Runes
1641 static URange16 any16[] = { { 0, 65535 } };
1642 static URange32 any32[] = { { 65536, Runemax } };
1643 static UGroup anygroup = { "Any", +1, any16, 1, any32, 1 };
1644 
1645 // Look for a Unicode group with the given name (e.g., "Han")
LookupUnicodeGroup(const StringPiece & name)1646 static const UGroup* LookupUnicodeGroup(const StringPiece& name) {
1647   // Special case: "Any" means any.
1648   if (name == StringPiece("Any"))
1649     return &anygroup;
1650   return LookupGroup(name, unicode_groups, num_unicode_groups);
1651 }
1652 #endif
1653 
1654 // Add a UGroup or its negation to the character class.
AddUGroup(CharClassBuilder * cc,const UGroup * g,int sign,Regexp::ParseFlags parse_flags)1655 static void AddUGroup(CharClassBuilder *cc, const UGroup *g, int sign,
1656                       Regexp::ParseFlags parse_flags) {
1657   if (sign == +1) {
1658     for (int i = 0; i < g->nr16; i++) {
1659       cc->AddRangeFlags(g->r16[i].lo, g->r16[i].hi, parse_flags);
1660     }
1661     for (int i = 0; i < g->nr32; i++) {
1662       cc->AddRangeFlags(g->r32[i].lo, g->r32[i].hi, parse_flags);
1663     }
1664   } else {
1665     if (parse_flags & Regexp::FoldCase) {
1666       // Normally adding a case-folded group means
1667       // adding all the extra fold-equivalent runes too.
1668       // But if we're adding the negation of the group,
1669       // we have to exclude all the runes that are fold-equivalent
1670       // to what's already missing.  Too hard, so do in two steps.
1671       CharClassBuilder ccb1;
1672       AddUGroup(&ccb1, g, +1, parse_flags);
1673       // If the flags say to take out \n, put it in, so that negating will take it out.
1674       // Normally AddRangeFlags does this, but we're bypassing AddRangeFlags.
1675       bool cutnl = !(parse_flags & Regexp::ClassNL) ||
1676                    (parse_flags & Regexp::NeverNL);
1677       if (cutnl) {
1678         ccb1.AddRange('\n', '\n');
1679       }
1680       ccb1.Negate();
1681       cc->AddCharClass(&ccb1);
1682       return;
1683     }
1684     int next = 0;
1685     for (int i = 0; i < g->nr16; i++) {
1686       if (next < g->r16[i].lo)
1687         cc->AddRangeFlags(next, g->r16[i].lo - 1, parse_flags);
1688       next = g->r16[i].hi + 1;
1689     }
1690     for (int i = 0; i < g->nr32; i++) {
1691       if (next < g->r32[i].lo)
1692         cc->AddRangeFlags(next, g->r32[i].lo - 1, parse_flags);
1693       next = g->r32[i].hi + 1;
1694     }
1695     if (next <= Runemax)
1696       cc->AddRangeFlags(next, Runemax, parse_flags);
1697   }
1698 }
1699 
1700 // Maybe parse a Perl character class escape sequence.
1701 // Only recognizes the Perl character classes (\d \s \w \D \S \W),
1702 // not the Perl empty-string classes (\b \B \A \Z \z).
1703 // On success, sets *s to span the remainder of the string
1704 // and returns the corresponding UGroup.
1705 // The StringPiece must *NOT* be edited unless the call succeeds.
MaybeParsePerlCCEscape(StringPiece * s,Regexp::ParseFlags parse_flags)1706 const UGroup* MaybeParsePerlCCEscape(StringPiece* s, Regexp::ParseFlags parse_flags) {
1707   if (!(parse_flags & Regexp::PerlClasses))
1708     return NULL;
1709   if (s->size() < 2 || (*s)[0] != '\\')
1710     return NULL;
1711   // Could use StringPieceToRune, but there aren't
1712   // any non-ASCII Perl group names.
1713   StringPiece name(s->data(), 2);
1714   const UGroup *g = LookupPerlGroup(name);
1715   if (g == NULL)
1716     return NULL;
1717   s->remove_prefix(name.size());
1718   return g;
1719 }
1720 
1721 enum ParseStatus {
1722   kParseOk,  // Did some parsing.
1723   kParseError,  // Found an error.
1724   kParseNothing,  // Decided not to parse.
1725 };
1726 
1727 // Maybe parses a Unicode character group like \p{Han} or \P{Han}
1728 // (the latter is a negated group).
ParseUnicodeGroup(StringPiece * s,Regexp::ParseFlags parse_flags,CharClassBuilder * cc,RegexpStatus * status)1729 ParseStatus ParseUnicodeGroup(StringPiece* s, Regexp::ParseFlags parse_flags,
1730                               CharClassBuilder *cc,
1731                               RegexpStatus* status) {
1732   // Decide whether to parse.
1733   if (!(parse_flags & Regexp::UnicodeGroups))
1734     return kParseNothing;
1735   if (s->size() < 2 || (*s)[0] != '\\')
1736     return kParseNothing;
1737   Rune c = (*s)[1];
1738   if (c != 'p' && c != 'P')
1739     return kParseNothing;
1740 
1741   // Committed to parse.  Results:
1742   int sign = +1;  // -1 = negated char class
1743   if (c == 'P')
1744     sign = -sign;
1745   StringPiece seq = *s;  // \p{Han} or \pL
1746   StringPiece name;  // Han or L
1747   s->remove_prefix(2);  // '\\', 'p'
1748 
1749   if (!StringPieceToRune(&c, s, status))
1750     return kParseError;
1751   if (c != '{') {
1752     // Name is the bit of string we just skipped over for c.
1753     const char* p = seq.data() + 2;
1754     name = StringPiece(p, static_cast<size_t>(s->data() - p));
1755   } else {
1756     // Name is in braces. Look for closing }
1757     size_t end = s->find('}', 0);
1758     if (end == StringPiece::npos) {
1759       if (!IsValidUTF8(seq, status))
1760         return kParseError;
1761       status->set_code(kRegexpBadCharRange);
1762       status->set_error_arg(seq);
1763       return kParseError;
1764     }
1765     name = StringPiece(s->data(), end);  // without '}'
1766     s->remove_prefix(end + 1);  // with '}'
1767     if (!IsValidUTF8(name, status))
1768       return kParseError;
1769   }
1770 
1771   // Chop seq where s now begins.
1772   seq = StringPiece(seq.data(), static_cast<size_t>(s->data() - seq.data()));
1773 
1774   if (!name.empty() && name[0] == '^') {
1775     sign = -sign;
1776     name.remove_prefix(1);  // '^'
1777   }
1778 
1779 #if !defined(RE2_USE_ICU)
1780   // Look up the group in the RE2 Unicode data.
1781   const UGroup *g = LookupUnicodeGroup(name);
1782   if (g == NULL) {
1783     status->set_code(kRegexpBadCharRange);
1784     status->set_error_arg(seq);
1785     return kParseError;
1786   }
1787 
1788   AddUGroup(cc, g, sign, parse_flags);
1789 #else
1790   // Look up the group in the ICU Unicode data. Because ICU provides full
1791   // Unicode properties support, this could be more than a lookup by name.
1792   ::icu::UnicodeString ustr = ::icu::UnicodeString::fromUTF8(
1793       std::string("\\p{") + std::string(name) + std::string("}"));
1794   UErrorCode uerr = U_ZERO_ERROR;
1795   ::icu::UnicodeSet uset(ustr, uerr);
1796   if (U_FAILURE(uerr)) {
1797     status->set_code(kRegexpBadCharRange);
1798     status->set_error_arg(seq);
1799     return kParseError;
1800   }
1801 
1802   // Convert the UnicodeSet to a URange32 and UGroup that we can add.
1803   int nr = uset.getRangeCount();
1804   URange32* r = new URange32[nr];
1805   for (int i = 0; i < nr; i++) {
1806     r[i].lo = uset.getRangeStart(i);
1807     r[i].hi = uset.getRangeEnd(i);
1808   }
1809   UGroup g = {"", +1, 0, 0, r, nr};
1810   AddUGroup(cc, &g, sign, parse_flags);
1811   delete[] r;
1812 #endif
1813 
1814   return kParseOk;
1815 }
1816 
1817 // Parses a character class name like [:alnum:].
1818 // Sets *s to span the remainder of the string.
1819 // Adds the ranges corresponding to the class to ranges.
ParseCCName(StringPiece * s,Regexp::ParseFlags parse_flags,CharClassBuilder * cc,RegexpStatus * status)1820 static ParseStatus ParseCCName(StringPiece* s, Regexp::ParseFlags parse_flags,
1821                                CharClassBuilder *cc,
1822                                RegexpStatus* status) {
1823   // Check begins with [:
1824   const char* p = s->data();
1825   const char* ep = s->data() + s->size();
1826   if (ep - p < 2 || p[0] != '[' || p[1] != ':')
1827     return kParseNothing;
1828 
1829   // Look for closing :].
1830   const char* q;
1831   for (q = p+2; q <= ep-2 && (*q != ':' || *(q+1) != ']'); q++)
1832     ;
1833 
1834   // If no closing :], then ignore.
1835   if (q > ep-2)
1836     return kParseNothing;
1837 
1838   // Got it.  Check that it's valid.
1839   q += 2;
1840   StringPiece name(p, static_cast<size_t>(q - p));
1841 
1842   const UGroup *g = LookupPosixGroup(name);
1843   if (g == NULL) {
1844     status->set_code(kRegexpBadCharRange);
1845     status->set_error_arg(name);
1846     return kParseError;
1847   }
1848 
1849   s->remove_prefix(name.size());
1850   AddUGroup(cc, g, g->sign, parse_flags);
1851   return kParseOk;
1852 }
1853 
1854 // Parses a character inside a character class.
1855 // There are fewer special characters here than in the rest of the regexp.
1856 // Sets *s to span the remainder of the string.
1857 // Sets *rp to the character.
ParseCCCharacter(StringPiece * s,Rune * rp,const StringPiece & whole_class,RegexpStatus * status)1858 bool Regexp::ParseState::ParseCCCharacter(StringPiece* s, Rune *rp,
1859                                           const StringPiece& whole_class,
1860                                           RegexpStatus* status) {
1861   if (s->empty()) {
1862     status->set_code(kRegexpMissingBracket);
1863     status->set_error_arg(whole_class);
1864     return false;
1865   }
1866 
1867   // Allow regular escape sequences even though
1868   // many need not be escaped in this context.
1869   if ((*s)[0] == '\\')
1870     return ParseEscape(s, rp, status, rune_max_);
1871 
1872   // Otherwise take the next rune.
1873   return StringPieceToRune(rp, s, status) >= 0;
1874 }
1875 
1876 // Parses a character class character, or, if the character
1877 // is followed by a hyphen, parses a character class range.
1878 // For single characters, rr->lo == rr->hi.
1879 // Sets *s to span the remainder of the string.
1880 // Sets *rp to the character.
ParseCCRange(StringPiece * s,RuneRange * rr,const StringPiece & whole_class,RegexpStatus * status)1881 bool Regexp::ParseState::ParseCCRange(StringPiece* s, RuneRange* rr,
1882                                       const StringPiece& whole_class,
1883                                       RegexpStatus* status) {
1884   StringPiece os = *s;
1885   if (!ParseCCCharacter(s, &rr->lo, whole_class, status))
1886     return false;
1887   // [a-] means (a|-), so check for final ].
1888   if (s->size() >= 2 && (*s)[0] == '-' && (*s)[1] != ']') {
1889     s->remove_prefix(1);  // '-'
1890     if (!ParseCCCharacter(s, &rr->hi, whole_class, status))
1891       return false;
1892     if (rr->hi < rr->lo) {
1893       status->set_code(kRegexpBadCharRange);
1894       status->set_error_arg(
1895           StringPiece(os.data(), static_cast<size_t>(s->data() - os.data())));
1896       return false;
1897     }
1898   } else {
1899     rr->hi = rr->lo;
1900   }
1901   return true;
1902 }
1903 
1904 // Parses a possibly-negated character class expression like [^abx-z[:digit:]].
1905 // Sets *s to span the remainder of the string.
1906 // Sets *out_re to the regexp for the class.
ParseCharClass(StringPiece * s,Regexp ** out_re,RegexpStatus * status)1907 bool Regexp::ParseState::ParseCharClass(StringPiece* s,
1908                                         Regexp** out_re,
1909                                         RegexpStatus* status) {
1910   StringPiece whole_class = *s;
1911   if (s->empty() || (*s)[0] != '[') {
1912     // Caller checked this.
1913     status->set_code(kRegexpInternalError);
1914     status->set_error_arg(StringPiece());
1915     return false;
1916   }
1917   bool negated = false;
1918   Regexp* re = new Regexp(kRegexpCharClass, flags_ & ~FoldCase);
1919   re->ccb_ = new CharClassBuilder;
1920   s->remove_prefix(1);  // '['
1921   if (!s->empty() && (*s)[0] == '^') {
1922     s->remove_prefix(1);  // '^'
1923     negated = true;
1924     if (!(flags_ & ClassNL) || (flags_ & NeverNL)) {
1925       // If NL can't match implicitly, then pretend
1926       // negated classes include a leading \n.
1927       re->ccb_->AddRange('\n', '\n');
1928     }
1929   }
1930   bool first = true;  // ] is okay as first char in class
1931   while (!s->empty() && ((*s)[0] != ']' || first)) {
1932     // - is only okay unescaped as first or last in class.
1933     // Except that Perl allows - anywhere.
1934     if ((*s)[0] == '-' && !first && !(flags_&PerlX) &&
1935         (s->size() == 1 || (*s)[1] != ']')) {
1936       StringPiece t = *s;
1937       t.remove_prefix(1);  // '-'
1938       Rune r;
1939       int n = StringPieceToRune(&r, &t, status);
1940       if (n < 0) {
1941         re->Decref();
1942         return false;
1943       }
1944       status->set_code(kRegexpBadCharRange);
1945       status->set_error_arg(StringPiece(s->data(), 1+n));
1946       re->Decref();
1947       return false;
1948     }
1949     first = false;
1950 
1951     // Look for [:alnum:] etc.
1952     if (s->size() > 2 && (*s)[0] == '[' && (*s)[1] == ':') {
1953       switch (ParseCCName(s, flags_, re->ccb_, status)) {
1954         case kParseOk:
1955           continue;
1956         case kParseError:
1957           re->Decref();
1958           return false;
1959         case kParseNothing:
1960           break;
1961       }
1962     }
1963 
1964     // Look for Unicode character group like \p{Han}
1965     if (s->size() > 2 &&
1966         (*s)[0] == '\\' &&
1967         ((*s)[1] == 'p' || (*s)[1] == 'P')) {
1968       switch (ParseUnicodeGroup(s, flags_, re->ccb_, status)) {
1969         case kParseOk:
1970           continue;
1971         case kParseError:
1972           re->Decref();
1973           return false;
1974         case kParseNothing:
1975           break;
1976       }
1977     }
1978 
1979     // Look for Perl character class symbols (extension).
1980     const UGroup *g = MaybeParsePerlCCEscape(s, flags_);
1981     if (g != NULL) {
1982       AddUGroup(re->ccb_, g, g->sign, flags_);
1983       continue;
1984     }
1985 
1986     // Otherwise assume single character or simple range.
1987     RuneRange rr;
1988     if (!ParseCCRange(s, &rr, whole_class, status)) {
1989       re->Decref();
1990       return false;
1991     }
1992     // AddRangeFlags is usually called in response to a class like
1993     // \p{Foo} or [[:foo:]]; for those, it filters \n out unless
1994     // Regexp::ClassNL is set.  In an explicit range or singleton
1995     // like we just parsed, we do not filter \n out, so set ClassNL
1996     // in the flags.
1997     re->ccb_->AddRangeFlags(rr.lo, rr.hi, flags_ | Regexp::ClassNL);
1998   }
1999   if (s->empty()) {
2000     status->set_code(kRegexpMissingBracket);
2001     status->set_error_arg(whole_class);
2002     re->Decref();
2003     return false;
2004   }
2005   s->remove_prefix(1);  // ']'
2006 
2007   if (negated)
2008     re->ccb_->Negate();
2009 
2010   *out_re = re;
2011   return true;
2012 }
2013 
2014 // Is this a valid capture name?  [A-Za-z0-9_]+
2015 // PCRE limits names to 32 bytes.
2016 // Python rejects names starting with digits.
2017 // We don't enforce either of those.
IsValidCaptureName(const StringPiece & name)2018 static bool IsValidCaptureName(const StringPiece& name) {
2019   if (name.empty())
2020     return false;
2021   for (size_t i = 0; i < name.size(); i++) {
2022     int c = name[i];
2023     if (('0' <= c && c <= '9') ||
2024         ('a' <= c && c <= 'z') ||
2025         ('A' <= c && c <= 'Z') ||
2026         c == '_')
2027       continue;
2028     return false;
2029   }
2030   return true;
2031 }
2032 
2033 // Parses a Perl flag setting or non-capturing group or both,
2034 // like (?i) or (?: or (?i:.  Removes from s, updates parse state.
2035 // The caller must check that s begins with "(?".
2036 // Returns true on success.  If the Perl flag is not
2037 // well-formed or not supported, sets status_ and returns false.
ParsePerlFlags(StringPiece * s)2038 bool Regexp::ParseState::ParsePerlFlags(StringPiece* s) {
2039   StringPiece t = *s;
2040 
2041   // Caller is supposed to check this.
2042   if (!(flags_ & PerlX) || t.size() < 2 || t[0] != '(' || t[1] != '?') {
2043     LOG(DFATAL) << "Bad call to ParseState::ParsePerlFlags";
2044     status_->set_code(kRegexpInternalError);
2045     return false;
2046   }
2047 
2048   t.remove_prefix(2);  // "(?"
2049 
2050   // Check for named captures, first introduced in Python's regexp library.
2051   // As usual, there are three slightly different syntaxes:
2052   //
2053   //   (?P<name>expr)   the original, introduced by Python
2054   //   (?<name>expr)    the .NET alteration, adopted by Perl 5.10
2055   //   (?'name'expr)    another .NET alteration, adopted by Perl 5.10
2056   //
2057   // Perl 5.10 gave in and implemented the Python version too,
2058   // but they claim that the last two are the preferred forms.
2059   // PCRE and languages based on it (specifically, PHP and Ruby)
2060   // support all three as well.  EcmaScript 4 uses only the Python form.
2061   //
2062   // In both the open source world (via Code Search) and the
2063   // Google source tree, (?P<expr>name) is the dominant form,
2064   // so that's the one we implement.  One is enough.
2065   if (t.size() > 2 && t[0] == 'P' && t[1] == '<') {
2066     // Pull out name.
2067     size_t end = t.find('>', 2);
2068     if (end == StringPiece::npos) {
2069       if (!IsValidUTF8(*s, status_))
2070         return false;
2071       status_->set_code(kRegexpBadNamedCapture);
2072       status_->set_error_arg(*s);
2073       return false;
2074     }
2075 
2076     // t is "P<name>...", t[end] == '>'
2077     StringPiece capture(t.data()-2, end+3);  // "(?P<name>"
2078     StringPiece name(t.data()+2, end-2);     // "name"
2079     if (!IsValidUTF8(name, status_))
2080       return false;
2081     if (!IsValidCaptureName(name)) {
2082       status_->set_code(kRegexpBadNamedCapture);
2083       status_->set_error_arg(capture);
2084       return false;
2085     }
2086 
2087     if (!DoLeftParen(name)) {
2088       // DoLeftParen's failure set status_.
2089       return false;
2090     }
2091 
2092     s->remove_prefix(
2093         static_cast<size_t>(capture.data() + capture.size() - s->data()));
2094     return true;
2095   }
2096 
2097   bool negated = false;
2098   bool sawflags = false;
2099   int nflags = flags_;
2100   Rune c;
2101   for (bool done = false; !done; ) {
2102     if (t.empty())
2103       goto BadPerlOp;
2104     if (StringPieceToRune(&c, &t, status_) < 0)
2105       return false;
2106     switch (c) {
2107       default:
2108         goto BadPerlOp;
2109 
2110       // Parse flags.
2111       case 'i':
2112         sawflags = true;
2113         if (negated)
2114           nflags &= ~FoldCase;
2115         else
2116           nflags |= FoldCase;
2117         break;
2118 
2119       case 'm':  // opposite of our OneLine
2120         sawflags = true;
2121         if (negated)
2122           nflags |= OneLine;
2123         else
2124           nflags &= ~OneLine;
2125         break;
2126 
2127       case 's':
2128         sawflags = true;
2129         if (negated)
2130           nflags &= ~DotNL;
2131         else
2132           nflags |= DotNL;
2133         break;
2134 
2135       case 'U':
2136         sawflags = true;
2137         if (negated)
2138           nflags &= ~NonGreedy;
2139         else
2140           nflags |= NonGreedy;
2141         break;
2142 
2143       // Negation
2144       case '-':
2145         if (negated)
2146           goto BadPerlOp;
2147         negated = true;
2148         sawflags = false;
2149         break;
2150 
2151       // Open new group.
2152       case ':':
2153         if (!DoLeftParenNoCapture()) {
2154           // DoLeftParenNoCapture's failure set status_.
2155           return false;
2156         }
2157         done = true;
2158         break;
2159 
2160       // Finish flags.
2161       case ')':
2162         done = true;
2163         break;
2164     }
2165   }
2166 
2167   if (negated && !sawflags)
2168     goto BadPerlOp;
2169 
2170   flags_ = static_cast<Regexp::ParseFlags>(nflags);
2171   *s = t;
2172   return true;
2173 
2174 BadPerlOp:
2175   status_->set_code(kRegexpBadPerlOp);
2176   status_->set_error_arg(
2177       StringPiece(s->data(), static_cast<size_t>(t.data() - s->data())));
2178   return false;
2179 }
2180 
2181 // Converts latin1 (assumed to be encoded as Latin1 bytes)
2182 // into UTF8 encoding in string.
2183 // Can't use EncodingUtils::EncodeLatin1AsUTF8 because it is
2184 // deprecated and because it rejects code points 0x80-0x9F.
ConvertLatin1ToUTF8(const StringPiece & latin1,std::string * utf)2185 void ConvertLatin1ToUTF8(const StringPiece& latin1, std::string* utf) {
2186   char buf[UTFmax];
2187 
2188   utf->clear();
2189   for (size_t i = 0; i < latin1.size(); i++) {
2190     Rune r = latin1[i] & 0xFF;
2191     int n = runetochar(buf, &r);
2192     utf->append(buf, n);
2193   }
2194 }
2195 
2196 // Parses the regular expression given by s,
2197 // returning the corresponding Regexp tree.
2198 // The caller must Decref the return value when done with it.
2199 // Returns NULL on error.
Parse(const StringPiece & s,ParseFlags global_flags,RegexpStatus * status)2200 Regexp* Regexp::Parse(const StringPiece& s, ParseFlags global_flags,
2201                       RegexpStatus* status) {
2202   // Make status non-NULL (easier on everyone else).
2203   RegexpStatus xstatus;
2204   if (status == NULL)
2205     status = &xstatus;
2206 
2207   ParseState ps(global_flags, s, status);
2208   StringPiece t = s;
2209 
2210   // Convert regexp to UTF-8 (easier on the rest of the parser).
2211   if (global_flags & Latin1) {
2212     std::string* tmp = new std::string;
2213     ConvertLatin1ToUTF8(t, tmp);
2214     status->set_tmp(tmp);
2215     t = *tmp;
2216   }
2217 
2218   if (global_flags & Literal) {
2219     // Special parse loop for literal string.
2220     while (!t.empty()) {
2221       Rune r;
2222       if (StringPieceToRune(&r, &t, status) < 0)
2223         return NULL;
2224       if (!ps.PushLiteral(r))
2225         return NULL;
2226     }
2227     return ps.DoFinish();
2228   }
2229 
2230   StringPiece lastunary = StringPiece();
2231   while (!t.empty()) {
2232     StringPiece isunary = StringPiece();
2233     switch (t[0]) {
2234       default: {
2235         Rune r;
2236         if (StringPieceToRune(&r, &t, status) < 0)
2237           return NULL;
2238         if (!ps.PushLiteral(r))
2239           return NULL;
2240         break;
2241       }
2242 
2243       case '(':
2244         // "(?" introduces Perl escape.
2245         if ((ps.flags() & PerlX) && (t.size() >= 2 && t[1] == '?')) {
2246           // Flag changes and non-capturing groups.
2247           if (!ps.ParsePerlFlags(&t))
2248             return NULL;
2249           break;
2250         }
2251         if (ps.flags() & NeverCapture) {
2252           if (!ps.DoLeftParenNoCapture())
2253             return NULL;
2254         } else {
2255           if (!ps.DoLeftParen(StringPiece()))
2256             return NULL;
2257         }
2258         t.remove_prefix(1);  // '('
2259         break;
2260 
2261       case '|':
2262         if (!ps.DoVerticalBar())
2263           return NULL;
2264         t.remove_prefix(1);  // '|'
2265         break;
2266 
2267       case ')':
2268         if (!ps.DoRightParen())
2269           return NULL;
2270         t.remove_prefix(1);  // ')'
2271         break;
2272 
2273       case '^':  // Beginning of line.
2274         if (!ps.PushCarat())
2275           return NULL;
2276         t.remove_prefix(1);  // '^'
2277         break;
2278 
2279       case '$':  // End of line.
2280         if (!ps.PushDollar())
2281           return NULL;
2282         t.remove_prefix(1);  // '$'
2283         break;
2284 
2285       case '.':  // Any character (possibly except newline).
2286         if (!ps.PushDot())
2287           return NULL;
2288         t.remove_prefix(1);  // '.'
2289         break;
2290 
2291       case '[': {  // Character class.
2292         Regexp* re;
2293         if (!ps.ParseCharClass(&t, &re, status))
2294           return NULL;
2295         if (!ps.PushRegexp(re))
2296           return NULL;
2297         break;
2298       }
2299 
2300       case '*': {  // Zero or more.
2301         RegexpOp op;
2302         op = kRegexpStar;
2303         goto Rep;
2304       case '+':  // One or more.
2305         op = kRegexpPlus;
2306         goto Rep;
2307       case '?':  // Zero or one.
2308         op = kRegexpQuest;
2309         goto Rep;
2310       Rep:
2311         StringPiece opstr = t;
2312         bool nongreedy = false;
2313         t.remove_prefix(1);  // '*' or '+' or '?'
2314         if (ps.flags() & PerlX) {
2315           if (!t.empty() && t[0] == '?') {
2316             nongreedy = true;
2317             t.remove_prefix(1);  // '?'
2318           }
2319           if (!lastunary.empty()) {
2320             // In Perl it is not allowed to stack repetition operators:
2321             //   a** is a syntax error, not a double-star.
2322             // (and a++ means something else entirely, which we don't support!)
2323             status->set_code(kRegexpRepeatOp);
2324             status->set_error_arg(StringPiece(
2325                 lastunary.data(),
2326                 static_cast<size_t>(t.data() - lastunary.data())));
2327             return NULL;
2328           }
2329         }
2330         opstr = StringPiece(opstr.data(),
2331                             static_cast<size_t>(t.data() - opstr.data()));
2332         if (!ps.PushRepeatOp(op, opstr, nongreedy))
2333           return NULL;
2334         isunary = opstr;
2335         break;
2336       }
2337 
2338       case '{': {  // Counted repetition.
2339         int lo, hi;
2340         StringPiece opstr = t;
2341         if (!MaybeParseRepetition(&t, &lo, &hi)) {
2342           // Treat like a literal.
2343           if (!ps.PushLiteral('{'))
2344             return NULL;
2345           t.remove_prefix(1);  // '{'
2346           break;
2347         }
2348         bool nongreedy = false;
2349         if (ps.flags() & PerlX) {
2350           if (!t.empty() && t[0] == '?') {
2351             nongreedy = true;
2352             t.remove_prefix(1);  // '?'
2353           }
2354           if (!lastunary.empty()) {
2355             // Not allowed to stack repetition operators.
2356             status->set_code(kRegexpRepeatOp);
2357             status->set_error_arg(StringPiece(
2358                 lastunary.data(),
2359                 static_cast<size_t>(t.data() - lastunary.data())));
2360             return NULL;
2361           }
2362         }
2363         opstr = StringPiece(opstr.data(),
2364                             static_cast<size_t>(t.data() - opstr.data()));
2365         if (!ps.PushRepetition(lo, hi, opstr, nongreedy))
2366           return NULL;
2367         isunary = opstr;
2368         break;
2369       }
2370 
2371       case '\\': {  // Escaped character or Perl sequence.
2372         // \b and \B: word boundary or not
2373         if ((ps.flags() & Regexp::PerlB) &&
2374             t.size() >= 2 && (t[1] == 'b' || t[1] == 'B')) {
2375           if (!ps.PushWordBoundary(t[1] == 'b'))
2376             return NULL;
2377           t.remove_prefix(2);  // '\\', 'b'
2378           break;
2379         }
2380 
2381         if ((ps.flags() & Regexp::PerlX) && t.size() >= 2) {
2382           if (t[1] == 'A') {
2383             if (!ps.PushSimpleOp(kRegexpBeginText))
2384               return NULL;
2385             t.remove_prefix(2);  // '\\', 'A'
2386             break;
2387           }
2388           if (t[1] == 'z') {
2389             if (!ps.PushSimpleOp(kRegexpEndText))
2390               return NULL;
2391             t.remove_prefix(2);  // '\\', 'z'
2392             break;
2393           }
2394           // Do not recognize \Z, because this library can't
2395           // implement the exact Perl/PCRE semantics.
2396           // (This library treats "(?-m)$" as \z, even though
2397           // in Perl and PCRE it is equivalent to \Z.)
2398 
2399           if (t[1] == 'C') {  // \C: any byte [sic]
2400             if (!ps.PushSimpleOp(kRegexpAnyByte))
2401               return NULL;
2402             t.remove_prefix(2);  // '\\', 'C'
2403             break;
2404           }
2405 
2406           if (t[1] == 'Q') {  // \Q ... \E: the ... is always literals
2407             t.remove_prefix(2);  // '\\', 'Q'
2408             while (!t.empty()) {
2409               if (t.size() >= 2 && t[0] == '\\' && t[1] == 'E') {
2410                 t.remove_prefix(2);  // '\\', 'E'
2411                 break;
2412               }
2413               Rune r;
2414               if (StringPieceToRune(&r, &t, status) < 0)
2415                 return NULL;
2416               if (!ps.PushLiteral(r))
2417                 return NULL;
2418             }
2419             break;
2420           }
2421         }
2422 
2423         if (t.size() >= 2 && (t[1] == 'p' || t[1] == 'P')) {
2424           Regexp* re = new Regexp(kRegexpCharClass, ps.flags() & ~FoldCase);
2425           re->ccb_ = new CharClassBuilder;
2426           switch (ParseUnicodeGroup(&t, ps.flags(), re->ccb_, status)) {
2427             case kParseOk:
2428               if (!ps.PushRegexp(re))
2429                 return NULL;
2430               goto Break2;
2431             case kParseError:
2432               re->Decref();
2433               return NULL;
2434             case kParseNothing:
2435               re->Decref();
2436               break;
2437           }
2438         }
2439 
2440         const UGroup *g = MaybeParsePerlCCEscape(&t, ps.flags());
2441         if (g != NULL) {
2442           Regexp* re = new Regexp(kRegexpCharClass, ps.flags() & ~FoldCase);
2443           re->ccb_ = new CharClassBuilder;
2444           AddUGroup(re->ccb_, g, g->sign, ps.flags());
2445           if (!ps.PushRegexp(re))
2446             return NULL;
2447           break;
2448         }
2449 
2450         Rune r;
2451         if (!ParseEscape(&t, &r, status, ps.rune_max()))
2452           return NULL;
2453         if (!ps.PushLiteral(r))
2454           return NULL;
2455         break;
2456       }
2457     }
2458   Break2:
2459     lastunary = isunary;
2460   }
2461   return ps.DoFinish();
2462 }
2463 
2464 }  // namespace re2
2465