1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 /// \file
8 //===----------------------------------------------------------------------===//
9 //
10
11 #include "AMDGPU.h"
12 #include "AMDGPUSubtarget.h"
13 #include "SIInstrInfo.h"
14 #include "SIMachineFunctionInfo.h"
15 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
16 #include "llvm/ADT/DepthFirstIterator.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/CodeGen/MachineFunctionPass.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/raw_ostream.h"
23 #include "llvm/Target/TargetMachine.h"
24
25 #define DEBUG_TYPE "si-fold-operands"
26 using namespace llvm;
27
28 namespace {
29
30 struct FoldCandidate {
31 MachineInstr *UseMI;
32 union {
33 MachineOperand *OpToFold;
34 uint64_t ImmToFold;
35 int FrameIndexToFold;
36 };
37 int ShrinkOpcode;
38 unsigned char UseOpNo;
39 MachineOperand::MachineOperandType Kind;
40 bool Commuted;
41
FoldCandidate__anon6b7f50fc0111::FoldCandidate42 FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp,
43 bool Commuted_ = false,
44 int ShrinkOp = -1) :
45 UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo),
46 Kind(FoldOp->getType()),
47 Commuted(Commuted_) {
48 if (FoldOp->isImm()) {
49 ImmToFold = FoldOp->getImm();
50 } else if (FoldOp->isFI()) {
51 FrameIndexToFold = FoldOp->getIndex();
52 } else {
53 assert(FoldOp->isReg() || FoldOp->isGlobal());
54 OpToFold = FoldOp;
55 }
56 }
57
isFI__anon6b7f50fc0111::FoldCandidate58 bool isFI() const {
59 return Kind == MachineOperand::MO_FrameIndex;
60 }
61
isImm__anon6b7f50fc0111::FoldCandidate62 bool isImm() const {
63 return Kind == MachineOperand::MO_Immediate;
64 }
65
isReg__anon6b7f50fc0111::FoldCandidate66 bool isReg() const {
67 return Kind == MachineOperand::MO_Register;
68 }
69
isGlobal__anon6b7f50fc0111::FoldCandidate70 bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; }
71
isCommuted__anon6b7f50fc0111::FoldCandidate72 bool isCommuted() const {
73 return Commuted;
74 }
75
needsShrink__anon6b7f50fc0111::FoldCandidate76 bool needsShrink() const {
77 return ShrinkOpcode != -1;
78 }
79
getShrinkOpcode__anon6b7f50fc0111::FoldCandidate80 int getShrinkOpcode() const {
81 return ShrinkOpcode;
82 }
83 };
84
85 class SIFoldOperands : public MachineFunctionPass {
86 public:
87 static char ID;
88 MachineRegisterInfo *MRI;
89 const SIInstrInfo *TII;
90 const SIRegisterInfo *TRI;
91 const GCNSubtarget *ST;
92 const SIMachineFunctionInfo *MFI;
93
94 void foldOperand(MachineOperand &OpToFold,
95 MachineInstr *UseMI,
96 int UseOpIdx,
97 SmallVectorImpl<FoldCandidate> &FoldList,
98 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const;
99
100 void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const;
101
102 const MachineOperand *isClamp(const MachineInstr &MI) const;
103 bool tryFoldClamp(MachineInstr &MI);
104
105 std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const;
106 bool tryFoldOMod(MachineInstr &MI);
107
108 public:
SIFoldOperands()109 SIFoldOperands() : MachineFunctionPass(ID) {
110 initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry());
111 }
112
113 bool runOnMachineFunction(MachineFunction &MF) override;
114
getPassName() const115 StringRef getPassName() const override { return "SI Fold Operands"; }
116
getAnalysisUsage(AnalysisUsage & AU) const117 void getAnalysisUsage(AnalysisUsage &AU) const override {
118 AU.setPreservesCFG();
119 MachineFunctionPass::getAnalysisUsage(AU);
120 }
121 };
122
123 } // End anonymous namespace.
124
125 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE,
126 "SI Fold Operands", false, false)
127
128 char SIFoldOperands::ID = 0;
129
130 char &llvm::SIFoldOperandsID = SIFoldOperands::ID;
131
132 // Wrapper around isInlineConstant that understands special cases when
133 // instruction types are replaced during operand folding.
isInlineConstantIfFolded(const SIInstrInfo * TII,const MachineInstr & UseMI,unsigned OpNo,const MachineOperand & OpToFold)134 static bool isInlineConstantIfFolded(const SIInstrInfo *TII,
135 const MachineInstr &UseMI,
136 unsigned OpNo,
137 const MachineOperand &OpToFold) {
138 if (TII->isInlineConstant(UseMI, OpNo, OpToFold))
139 return true;
140
141 unsigned Opc = UseMI.getOpcode();
142 switch (Opc) {
143 case AMDGPU::V_MAC_F32_e64:
144 case AMDGPU::V_MAC_F16_e64:
145 case AMDGPU::V_FMAC_F32_e64:
146 case AMDGPU::V_FMAC_F16_e64: {
147 // Special case for mac. Since this is replaced with mad when folded into
148 // src2, we need to check the legality for the final instruction.
149 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
150 if (static_cast<int>(OpNo) == Src2Idx) {
151 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64 ||
152 Opc == AMDGPU::V_FMAC_F16_e64;
153 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64 ||
154 Opc == AMDGPU::V_FMAC_F32_e64;
155
156 unsigned Opc = IsFMA ?
157 (IsF32 ? AMDGPU::V_FMA_F32 : AMDGPU::V_FMA_F16_gfx9) :
158 (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16);
159 const MCInstrDesc &MadDesc = TII->get(Opc);
160 return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType);
161 }
162 return false;
163 }
164 default:
165 return false;
166 }
167 }
168
169 // TODO: Add heuristic that the frame index might not fit in the addressing mode
170 // immediate offset to avoid materializing in loops.
frameIndexMayFold(const SIInstrInfo * TII,const MachineInstr & UseMI,int OpNo,const MachineOperand & OpToFold)171 static bool frameIndexMayFold(const SIInstrInfo *TII,
172 const MachineInstr &UseMI,
173 int OpNo,
174 const MachineOperand &OpToFold) {
175 return OpToFold.isFI() &&
176 (TII->isMUBUF(UseMI) || TII->isFLATScratch(UseMI)) &&
177 OpNo == AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), AMDGPU::OpName::vaddr);
178 }
179
createSIFoldOperandsPass()180 FunctionPass *llvm::createSIFoldOperandsPass() {
181 return new SIFoldOperands();
182 }
183
updateOperand(FoldCandidate & Fold,const SIInstrInfo & TII,const TargetRegisterInfo & TRI,const GCNSubtarget & ST)184 static bool updateOperand(FoldCandidate &Fold,
185 const SIInstrInfo &TII,
186 const TargetRegisterInfo &TRI,
187 const GCNSubtarget &ST) {
188 MachineInstr *MI = Fold.UseMI;
189 MachineOperand &Old = MI->getOperand(Fold.UseOpNo);
190 assert(Old.isReg());
191
192 if (Fold.isImm()) {
193 if (MI->getDesc().TSFlags & SIInstrFlags::IsPacked &&
194 !(MI->getDesc().TSFlags & SIInstrFlags::IsMAI) &&
195 AMDGPU::isInlinableLiteralV216(static_cast<uint16_t>(Fold.ImmToFold),
196 ST.hasInv2PiInlineImm())) {
197 // Set op_sel/op_sel_hi on this operand or bail out if op_sel is
198 // already set.
199 unsigned Opcode = MI->getOpcode();
200 int OpNo = MI->getOperandNo(&Old);
201 int ModIdx = -1;
202 if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0))
203 ModIdx = AMDGPU::OpName::src0_modifiers;
204 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1))
205 ModIdx = AMDGPU::OpName::src1_modifiers;
206 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2))
207 ModIdx = AMDGPU::OpName::src2_modifiers;
208 assert(ModIdx != -1);
209 ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx);
210 MachineOperand &Mod = MI->getOperand(ModIdx);
211 unsigned Val = Mod.getImm();
212 if ((Val & SISrcMods::OP_SEL_0) || !(Val & SISrcMods::OP_SEL_1))
213 return false;
214 // Only apply the following transformation if that operand requries
215 // a packed immediate.
216 switch (TII.get(Opcode).OpInfo[OpNo].OperandType) {
217 case AMDGPU::OPERAND_REG_IMM_V2FP16:
218 case AMDGPU::OPERAND_REG_IMM_V2INT16:
219 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
220 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
221 // If upper part is all zero we do not need op_sel_hi.
222 if (!isUInt<16>(Fold.ImmToFold)) {
223 if (!(Fold.ImmToFold & 0xffff)) {
224 Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0);
225 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1);
226 Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff);
227 return true;
228 }
229 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1);
230 Old.ChangeToImmediate(Fold.ImmToFold & 0xffff);
231 return true;
232 }
233 break;
234 default:
235 break;
236 }
237 }
238 }
239
240 if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) {
241 MachineBasicBlock *MBB = MI->getParent();
242 auto Liveness = MBB->computeRegisterLiveness(&TRI, AMDGPU::VCC, MI, 16);
243 if (Liveness != MachineBasicBlock::LQR_Dead) {
244 LLVM_DEBUG(dbgs() << "Not shrinking " << MI << " due to vcc liveness\n");
245 return false;
246 }
247
248 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
249 int Op32 = Fold.getShrinkOpcode();
250 MachineOperand &Dst0 = MI->getOperand(0);
251 MachineOperand &Dst1 = MI->getOperand(1);
252 assert(Dst0.isDef() && Dst1.isDef());
253
254 bool HaveNonDbgCarryUse = !MRI.use_nodbg_empty(Dst1.getReg());
255
256 const TargetRegisterClass *Dst0RC = MRI.getRegClass(Dst0.getReg());
257 Register NewReg0 = MRI.createVirtualRegister(Dst0RC);
258
259 MachineInstr *Inst32 = TII.buildShrunkInst(*MI, Op32);
260
261 if (HaveNonDbgCarryUse) {
262 BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), Dst1.getReg())
263 .addReg(AMDGPU::VCC, RegState::Kill);
264 }
265
266 // Keep the old instruction around to avoid breaking iterators, but
267 // replace it with a dummy instruction to remove uses.
268 //
269 // FIXME: We should not invert how this pass looks at operands to avoid
270 // this. Should track set of foldable movs instead of looking for uses
271 // when looking at a use.
272 Dst0.setReg(NewReg0);
273 for (unsigned I = MI->getNumOperands() - 1; I > 0; --I)
274 MI->RemoveOperand(I);
275 MI->setDesc(TII.get(AMDGPU::IMPLICIT_DEF));
276
277 if (Fold.isCommuted())
278 TII.commuteInstruction(*Inst32, false);
279 return true;
280 }
281
282 assert(!Fold.needsShrink() && "not handled");
283
284 if (Fold.isImm()) {
285 Old.ChangeToImmediate(Fold.ImmToFold);
286 return true;
287 }
288
289 if (Fold.isGlobal()) {
290 Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(),
291 Fold.OpToFold->getTargetFlags());
292 return true;
293 }
294
295 if (Fold.isFI()) {
296 Old.ChangeToFrameIndex(Fold.FrameIndexToFold);
297 return true;
298 }
299
300 MachineOperand *New = Fold.OpToFold;
301 Old.substVirtReg(New->getReg(), New->getSubReg(), TRI);
302 Old.setIsUndef(New->isUndef());
303 return true;
304 }
305
isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList,const MachineInstr * MI)306 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList,
307 const MachineInstr *MI) {
308 for (auto Candidate : FoldList) {
309 if (Candidate.UseMI == MI)
310 return true;
311 }
312 return false;
313 }
314
appendFoldCandidate(SmallVectorImpl<FoldCandidate> & FoldList,MachineInstr * MI,unsigned OpNo,MachineOperand * FoldOp,bool Commuted=false,int ShrinkOp=-1)315 static void appendFoldCandidate(SmallVectorImpl<FoldCandidate> &FoldList,
316 MachineInstr *MI, unsigned OpNo,
317 MachineOperand *FoldOp, bool Commuted = false,
318 int ShrinkOp = -1) {
319 // Skip additional folding on the same operand.
320 for (FoldCandidate &Fold : FoldList)
321 if (Fold.UseMI == MI && Fold.UseOpNo == OpNo)
322 return;
323 LLVM_DEBUG(dbgs() << "Append " << (Commuted ? "commuted" : "normal")
324 << " operand " << OpNo << "\n " << *MI << '\n');
325 FoldList.push_back(FoldCandidate(MI, OpNo, FoldOp, Commuted, ShrinkOp));
326 }
327
tryAddToFoldList(SmallVectorImpl<FoldCandidate> & FoldList,MachineInstr * MI,unsigned OpNo,MachineOperand * OpToFold,const SIInstrInfo * TII)328 static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList,
329 MachineInstr *MI, unsigned OpNo,
330 MachineOperand *OpToFold,
331 const SIInstrInfo *TII) {
332 if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) {
333 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2
334 unsigned Opc = MI->getOpcode();
335 if ((Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64 ||
336 Opc == AMDGPU::V_FMAC_F32_e64 || Opc == AMDGPU::V_FMAC_F16_e64) &&
337 (int)OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)) {
338 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64 ||
339 Opc == AMDGPU::V_FMAC_F16_e64;
340 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64 ||
341 Opc == AMDGPU::V_FMAC_F32_e64;
342 unsigned NewOpc = IsFMA ?
343 (IsF32 ? AMDGPU::V_FMA_F32 : AMDGPU::V_FMA_F16_gfx9) :
344 (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16);
345
346 // Check if changing this to a v_mad_{f16, f32} instruction will allow us
347 // to fold the operand.
348 MI->setDesc(TII->get(NewOpc));
349 bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII);
350 if (FoldAsMAD) {
351 MI->untieRegOperand(OpNo);
352 return true;
353 }
354 MI->setDesc(TII->get(Opc));
355 }
356
357 // Special case for s_setreg_b32
358 if (Opc == AMDGPU::S_SETREG_B32 && OpToFold->isImm()) {
359 MI->setDesc(TII->get(AMDGPU::S_SETREG_IMM32_B32));
360 appendFoldCandidate(FoldList, MI, OpNo, OpToFold);
361 return true;
362 }
363
364 // If we are already folding into another operand of MI, then
365 // we can't commute the instruction, otherwise we risk making the
366 // other fold illegal.
367 if (isUseMIInFoldList(FoldList, MI))
368 return false;
369
370 unsigned CommuteOpNo = OpNo;
371
372 // Operand is not legal, so try to commute the instruction to
373 // see if this makes it possible to fold.
374 unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex;
375 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
376 bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1);
377
378 if (CanCommute) {
379 if (CommuteIdx0 == OpNo)
380 CommuteOpNo = CommuteIdx1;
381 else if (CommuteIdx1 == OpNo)
382 CommuteOpNo = CommuteIdx0;
383 }
384
385
386 // One of operands might be an Imm operand, and OpNo may refer to it after
387 // the call of commuteInstruction() below. Such situations are avoided
388 // here explicitly as OpNo must be a register operand to be a candidate
389 // for memory folding.
390 if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() ||
391 !MI->getOperand(CommuteIdx1).isReg()))
392 return false;
393
394 if (!CanCommute ||
395 !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1))
396 return false;
397
398 if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) {
399 if ((Opc == AMDGPU::V_ADD_I32_e64 ||
400 Opc == AMDGPU::V_SUB_I32_e64 ||
401 Opc == AMDGPU::V_SUBREV_I32_e64) && // FIXME
402 (OpToFold->isImm() || OpToFold->isFI() || OpToFold->isGlobal())) {
403 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
404
405 // Verify the other operand is a VGPR, otherwise we would violate the
406 // constant bus restriction.
407 unsigned OtherIdx = CommuteOpNo == CommuteIdx0 ? CommuteIdx1 : CommuteIdx0;
408 MachineOperand &OtherOp = MI->getOperand(OtherIdx);
409 if (!OtherOp.isReg() ||
410 !TII->getRegisterInfo().isVGPR(MRI, OtherOp.getReg()))
411 return false;
412
413 assert(MI->getOperand(1).isDef());
414
415 // Make sure to get the 32-bit version of the commuted opcode.
416 unsigned MaybeCommutedOpc = MI->getOpcode();
417 int Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc);
418
419 appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true, Op32);
420 return true;
421 }
422
423 TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1);
424 return false;
425 }
426
427 appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true);
428 return true;
429 }
430
431 // Check the case where we might introduce a second constant operand to a
432 // scalar instruction
433 if (TII->isSALU(MI->getOpcode())) {
434 const MCInstrDesc &InstDesc = MI->getDesc();
435 const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpNo];
436 const SIRegisterInfo &SRI = TII->getRegisterInfo();
437
438 // Fine if the operand can be encoded as an inline constant
439 if (OpToFold->isImm()) {
440 if (!SRI.opCanUseInlineConstant(OpInfo.OperandType) ||
441 !TII->isInlineConstant(*OpToFold, OpInfo)) {
442 // Otherwise check for another constant
443 for (unsigned i = 0, e = InstDesc.getNumOperands(); i != e; ++i) {
444 auto &Op = MI->getOperand(i);
445 if (OpNo != i &&
446 TII->isLiteralConstantLike(Op, OpInfo)) {
447 return false;
448 }
449 }
450 }
451 }
452 }
453
454 appendFoldCandidate(FoldList, MI, OpNo, OpToFold);
455 return true;
456 }
457
458 // If the use operand doesn't care about the value, this may be an operand only
459 // used for register indexing, in which case it is unsafe to fold.
isUseSafeToFold(const SIInstrInfo * TII,const MachineInstr & MI,const MachineOperand & UseMO)460 static bool isUseSafeToFold(const SIInstrInfo *TII,
461 const MachineInstr &MI,
462 const MachineOperand &UseMO) {
463 return !UseMO.isUndef() && !TII->isSDWA(MI);
464 //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg());
465 }
466
467 // Find a def of the UseReg, check if it is a reg_seqence and find initializers
468 // for each subreg, tracking it to foldable inline immediate if possible.
469 // Returns true on success.
getRegSeqInit(SmallVectorImpl<std::pair<MachineOperand *,unsigned>> & Defs,Register UseReg,uint8_t OpTy,const SIInstrInfo * TII,const MachineRegisterInfo & MRI)470 static bool getRegSeqInit(
471 SmallVectorImpl<std::pair<MachineOperand*, unsigned>> &Defs,
472 Register UseReg, uint8_t OpTy,
473 const SIInstrInfo *TII, const MachineRegisterInfo &MRI) {
474 MachineInstr *Def = MRI.getUniqueVRegDef(UseReg);
475 if (!Def || !Def->isRegSequence())
476 return false;
477
478 for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) {
479 MachineOperand *Sub = &Def->getOperand(I);
480 assert (Sub->isReg());
481
482 for (MachineInstr *SubDef = MRI.getUniqueVRegDef(Sub->getReg());
483 SubDef && Sub->isReg() && !Sub->getSubReg() &&
484 TII->isFoldableCopy(*SubDef);
485 SubDef = MRI.getUniqueVRegDef(Sub->getReg())) {
486 MachineOperand *Op = &SubDef->getOperand(1);
487 if (Op->isImm()) {
488 if (TII->isInlineConstant(*Op, OpTy))
489 Sub = Op;
490 break;
491 }
492 if (!Op->isReg())
493 break;
494 Sub = Op;
495 }
496
497 Defs.push_back(std::make_pair(Sub, Def->getOperand(I + 1).getImm()));
498 }
499
500 return true;
501 }
502
tryToFoldACImm(const SIInstrInfo * TII,const MachineOperand & OpToFold,MachineInstr * UseMI,unsigned UseOpIdx,SmallVectorImpl<FoldCandidate> & FoldList)503 static bool tryToFoldACImm(const SIInstrInfo *TII,
504 const MachineOperand &OpToFold,
505 MachineInstr *UseMI,
506 unsigned UseOpIdx,
507 SmallVectorImpl<FoldCandidate> &FoldList) {
508 const MCInstrDesc &Desc = UseMI->getDesc();
509 const MCOperandInfo *OpInfo = Desc.OpInfo;
510 if (!OpInfo || UseOpIdx >= Desc.getNumOperands())
511 return false;
512
513 uint8_t OpTy = OpInfo[UseOpIdx].OperandType;
514 if (OpTy < AMDGPU::OPERAND_REG_INLINE_AC_FIRST ||
515 OpTy > AMDGPU::OPERAND_REG_INLINE_AC_LAST)
516 return false;
517
518 if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy) &&
519 TII->isOperandLegal(*UseMI, UseOpIdx, &OpToFold)) {
520 UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm());
521 return true;
522 }
523
524 if (!OpToFold.isReg())
525 return false;
526
527 Register UseReg = OpToFold.getReg();
528 if (!Register::isVirtualRegister(UseReg))
529 return false;
530
531 if (llvm::find_if(FoldList, [UseMI](const FoldCandidate &FC) {
532 return FC.UseMI == UseMI; }) != FoldList.end())
533 return false;
534
535 MachineRegisterInfo &MRI = UseMI->getParent()->getParent()->getRegInfo();
536 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs;
537 if (!getRegSeqInit(Defs, UseReg, OpTy, TII, MRI))
538 return false;
539
540 int32_t Imm;
541 for (unsigned I = 0, E = Defs.size(); I != E; ++I) {
542 const MachineOperand *Op = Defs[I].first;
543 if (!Op->isImm())
544 return false;
545
546 auto SubImm = Op->getImm();
547 if (!I) {
548 Imm = SubImm;
549 if (!TII->isInlineConstant(*Op, OpTy) ||
550 !TII->isOperandLegal(*UseMI, UseOpIdx, Op))
551 return false;
552
553 continue;
554 }
555 if (Imm != SubImm)
556 return false; // Can only fold splat constants
557 }
558
559 appendFoldCandidate(FoldList, UseMI, UseOpIdx, Defs[0].first);
560 return true;
561 }
562
foldOperand(MachineOperand & OpToFold,MachineInstr * UseMI,int UseOpIdx,SmallVectorImpl<FoldCandidate> & FoldList,SmallVectorImpl<MachineInstr * > & CopiesToReplace) const563 void SIFoldOperands::foldOperand(
564 MachineOperand &OpToFold,
565 MachineInstr *UseMI,
566 int UseOpIdx,
567 SmallVectorImpl<FoldCandidate> &FoldList,
568 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const {
569 const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx);
570
571 if (!isUseSafeToFold(TII, *UseMI, UseOp))
572 return;
573
574 // FIXME: Fold operands with subregs.
575 if (UseOp.isReg() && OpToFold.isReg()) {
576 if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister)
577 return;
578 }
579
580 // Special case for REG_SEQUENCE: We can't fold literals into
581 // REG_SEQUENCE instructions, so we have to fold them into the
582 // uses of REG_SEQUENCE.
583 if (UseMI->isRegSequence()) {
584 Register RegSeqDstReg = UseMI->getOperand(0).getReg();
585 unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm();
586
587 MachineRegisterInfo::use_iterator Next;
588 for (MachineRegisterInfo::use_iterator
589 RSUse = MRI->use_begin(RegSeqDstReg), RSE = MRI->use_end();
590 RSUse != RSE; RSUse = Next) {
591 Next = std::next(RSUse);
592
593 MachineInstr *RSUseMI = RSUse->getParent();
594
595 if (tryToFoldACImm(TII, UseMI->getOperand(0), RSUseMI,
596 RSUse.getOperandNo(), FoldList))
597 continue;
598
599 if (RSUse->getSubReg() != RegSeqDstSubReg)
600 continue;
601
602 foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList,
603 CopiesToReplace);
604 }
605
606 return;
607 }
608
609 if (tryToFoldACImm(TII, OpToFold, UseMI, UseOpIdx, FoldList))
610 return;
611
612 if (frameIndexMayFold(TII, *UseMI, UseOpIdx, OpToFold)) {
613 // Sanity check that this is a stack access.
614 // FIXME: Should probably use stack pseudos before frame lowering.
615 MachineOperand *SOff = TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset);
616 if (!SOff->isReg() || (SOff->getReg() != MFI->getScratchWaveOffsetReg() &&
617 SOff->getReg() != MFI->getStackPtrOffsetReg()))
618 return;
619
620 if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() !=
621 MFI->getScratchRSrcReg())
622 return;
623
624 // A frame index will resolve to a positive constant, so it should always be
625 // safe to fold the addressing mode, even pre-GFX9.
626 UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex());
627 SOff->setReg(MFI->getStackPtrOffsetReg());
628 return;
629 }
630
631 bool FoldingImmLike =
632 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
633
634 if (FoldingImmLike && UseMI->isCopy()) {
635 Register DestReg = UseMI->getOperand(0).getReg();
636
637 // Don't fold into a copy to a physical register. Doing so would interfere
638 // with the register coalescer's logic which would avoid redundant
639 // initalizations.
640 if (DestReg.isPhysical())
641 return;
642
643 const TargetRegisterClass *DestRC = MRI->getRegClass(DestReg);
644
645 Register SrcReg = UseMI->getOperand(1).getReg();
646 if (SrcReg.isVirtual()) { // XXX - This can be an assert?
647 const TargetRegisterClass * SrcRC = MRI->getRegClass(SrcReg);
648 if (TRI->isSGPRClass(SrcRC) && TRI->hasVectorRegisters(DestRC)) {
649 MachineRegisterInfo::use_iterator NextUse;
650 SmallVector<FoldCandidate, 4> CopyUses;
651 for (MachineRegisterInfo::use_iterator
652 Use = MRI->use_begin(DestReg), E = MRI->use_end();
653 Use != E; Use = NextUse) {
654 NextUse = std::next(Use);
655 FoldCandidate FC = FoldCandidate(Use->getParent(),
656 Use.getOperandNo(), &UseMI->getOperand(1));
657 CopyUses.push_back(FC);
658 }
659 for (auto & F : CopyUses) {
660 foldOperand(*F.OpToFold, F.UseMI, F.UseOpNo,
661 FoldList, CopiesToReplace);
662 }
663 }
664 }
665
666 if (DestRC == &AMDGPU::AGPR_32RegClass &&
667 TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) {
668 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32));
669 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm());
670 CopiesToReplace.push_back(UseMI);
671 return;
672 }
673
674 // In order to fold immediates into copies, we need to change the
675 // copy to a MOV.
676
677 unsigned MovOp = TII->getMovOpcode(DestRC);
678 if (MovOp == AMDGPU::COPY)
679 return;
680
681 UseMI->setDesc(TII->get(MovOp));
682 MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin();
683 MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end();
684 while (ImpOpI != ImpOpE) {
685 MachineInstr::mop_iterator Tmp = ImpOpI;
686 ImpOpI++;
687 UseMI->RemoveOperand(UseMI->getOperandNo(Tmp));
688 }
689 CopiesToReplace.push_back(UseMI);
690 } else {
691 if (UseMI->isCopy() && OpToFold.isReg() &&
692 UseMI->getOperand(0).getReg().isVirtual() &&
693 !UseMI->getOperand(1).getSubReg()) {
694 LLVM_DEBUG(dbgs() << "Folding " << OpToFold
695 << "\n into " << *UseMI << '\n');
696 unsigned Size = TII->getOpSize(*UseMI, 1);
697 Register UseReg = OpToFold.getReg();
698 UseMI->getOperand(1).setReg(UseReg);
699 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg());
700 UseMI->getOperand(1).setIsKill(false);
701 CopiesToReplace.push_back(UseMI);
702 OpToFold.setIsKill(false);
703
704 // That is very tricky to store a value into an AGPR. v_accvgpr_write_b32
705 // can only accept VGPR or inline immediate. Recreate a reg_sequence with
706 // its initializers right here, so we will rematerialize immediates and
707 // avoid copies via different reg classes.
708 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs;
709 if (Size > 4 && TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) &&
710 getRegSeqInit(Defs, UseReg, AMDGPU::OPERAND_REG_INLINE_C_INT32, TII,
711 *MRI)) {
712 const DebugLoc &DL = UseMI->getDebugLoc();
713 MachineBasicBlock &MBB = *UseMI->getParent();
714
715 UseMI->setDesc(TII->get(AMDGPU::REG_SEQUENCE));
716 for (unsigned I = UseMI->getNumOperands() - 1; I > 0; --I)
717 UseMI->RemoveOperand(I);
718
719 MachineInstrBuilder B(*MBB.getParent(), UseMI);
720 DenseMap<TargetInstrInfo::RegSubRegPair, Register> VGPRCopies;
721 SmallSetVector<TargetInstrInfo::RegSubRegPair, 32> SeenAGPRs;
722 for (unsigned I = 0; I < Size / 4; ++I) {
723 MachineOperand *Def = Defs[I].first;
724 TargetInstrInfo::RegSubRegPair CopyToVGPR;
725 if (Def->isImm() &&
726 TII->isInlineConstant(*Def, AMDGPU::OPERAND_REG_INLINE_C_INT32)) {
727 int64_t Imm = Def->getImm();
728
729 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
730 BuildMI(MBB, UseMI, DL,
731 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32), Tmp).addImm(Imm);
732 B.addReg(Tmp);
733 } else if (Def->isReg() && TRI->isAGPR(*MRI, Def->getReg())) {
734 auto Src = getRegSubRegPair(*Def);
735 Def->setIsKill(false);
736 if (!SeenAGPRs.insert(Src)) {
737 // We cannot build a reg_sequence out of the same registers, they
738 // must be copied. Better do it here before copyPhysReg() created
739 // several reads to do the AGPR->VGPR->AGPR copy.
740 CopyToVGPR = Src;
741 } else {
742 B.addReg(Src.Reg, Def->isUndef() ? RegState::Undef : 0,
743 Src.SubReg);
744 }
745 } else {
746 assert(Def->isReg());
747 Def->setIsKill(false);
748 auto Src = getRegSubRegPair(*Def);
749
750 // Direct copy from SGPR to AGPR is not possible. To avoid creation
751 // of exploded copies SGPR->VGPR->AGPR in the copyPhysReg() later,
752 // create a copy here and track if we already have such a copy.
753 if (TRI->isSGPRReg(*MRI, Src.Reg)) {
754 CopyToVGPR = Src;
755 } else {
756 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
757 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Tmp).add(*Def);
758 B.addReg(Tmp);
759 }
760 }
761
762 if (CopyToVGPR.Reg) {
763 Register Vgpr;
764 if (VGPRCopies.count(CopyToVGPR)) {
765 Vgpr = VGPRCopies[CopyToVGPR];
766 } else {
767 Vgpr = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass);
768 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Vgpr).add(*Def);
769 VGPRCopies[CopyToVGPR] = Vgpr;
770 }
771 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
772 BuildMI(MBB, UseMI, DL,
773 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32), Tmp).addReg(Vgpr);
774 B.addReg(Tmp);
775 }
776
777 B.addImm(Defs[I].second);
778 }
779 LLVM_DEBUG(dbgs() << "Folded " << *UseMI << '\n');
780 return;
781 }
782
783 if (Size != 4)
784 return;
785 if (TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) &&
786 TRI->isVGPR(*MRI, UseMI->getOperand(1).getReg()))
787 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32));
788 else if (TRI->isVGPR(*MRI, UseMI->getOperand(0).getReg()) &&
789 TRI->isAGPR(*MRI, UseMI->getOperand(1).getReg()))
790 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32));
791 return;
792 }
793
794 unsigned UseOpc = UseMI->getOpcode();
795 if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 ||
796 (UseOpc == AMDGPU::V_READLANE_B32 &&
797 (int)UseOpIdx ==
798 AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) {
799 // %vgpr = V_MOV_B32 imm
800 // %sgpr = V_READFIRSTLANE_B32 %vgpr
801 // =>
802 // %sgpr = S_MOV_B32 imm
803 if (FoldingImmLike) {
804 if (execMayBeModifiedBeforeUse(*MRI,
805 UseMI->getOperand(UseOpIdx).getReg(),
806 *OpToFold.getParent(),
807 *UseMI))
808 return;
809
810 UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32));
811
812 // FIXME: ChangeToImmediate should clear subreg
813 UseMI->getOperand(1).setSubReg(0);
814 if (OpToFold.isImm())
815 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm());
816 else
817 UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex());
818 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane)
819 return;
820 }
821
822 if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) {
823 if (execMayBeModifiedBeforeUse(*MRI,
824 UseMI->getOperand(UseOpIdx).getReg(),
825 *OpToFold.getParent(),
826 *UseMI))
827 return;
828
829 // %vgpr = COPY %sgpr0
830 // %sgpr1 = V_READFIRSTLANE_B32 %vgpr
831 // =>
832 // %sgpr1 = COPY %sgpr0
833 UseMI->setDesc(TII->get(AMDGPU::COPY));
834 UseMI->getOperand(1).setReg(OpToFold.getReg());
835 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg());
836 UseMI->getOperand(1).setIsKill(false);
837 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane)
838 return;
839 }
840 }
841
842 const MCInstrDesc &UseDesc = UseMI->getDesc();
843
844 // Don't fold into target independent nodes. Target independent opcodes
845 // don't have defined register classes.
846 if (UseDesc.isVariadic() ||
847 UseOp.isImplicit() ||
848 UseDesc.OpInfo[UseOpIdx].RegClass == -1)
849 return;
850 }
851
852 if (!FoldingImmLike) {
853 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
854
855 // FIXME: We could try to change the instruction from 64-bit to 32-bit
856 // to enable more folding opportunites. The shrink operands pass
857 // already does this.
858 return;
859 }
860
861
862 const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc();
863 const TargetRegisterClass *FoldRC =
864 TRI->getRegClass(FoldDesc.OpInfo[0].RegClass);
865
866 // Split 64-bit constants into 32-bits for folding.
867 if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) {
868 Register UseReg = UseOp.getReg();
869 const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg);
870
871 if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64)
872 return;
873
874 APInt Imm(64, OpToFold.getImm());
875 if (UseOp.getSubReg() == AMDGPU::sub0) {
876 Imm = Imm.getLoBits(32);
877 } else {
878 assert(UseOp.getSubReg() == AMDGPU::sub1);
879 Imm = Imm.getHiBits(32);
880 }
881
882 MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue());
883 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII);
884 return;
885 }
886
887
888
889 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
890 }
891
evalBinaryInstruction(unsigned Opcode,int32_t & Result,uint32_t LHS,uint32_t RHS)892 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result,
893 uint32_t LHS, uint32_t RHS) {
894 switch (Opcode) {
895 case AMDGPU::V_AND_B32_e64:
896 case AMDGPU::V_AND_B32_e32:
897 case AMDGPU::S_AND_B32:
898 Result = LHS & RHS;
899 return true;
900 case AMDGPU::V_OR_B32_e64:
901 case AMDGPU::V_OR_B32_e32:
902 case AMDGPU::S_OR_B32:
903 Result = LHS | RHS;
904 return true;
905 case AMDGPU::V_XOR_B32_e64:
906 case AMDGPU::V_XOR_B32_e32:
907 case AMDGPU::S_XOR_B32:
908 Result = LHS ^ RHS;
909 return true;
910 case AMDGPU::V_LSHL_B32_e64:
911 case AMDGPU::V_LSHL_B32_e32:
912 case AMDGPU::S_LSHL_B32:
913 // The instruction ignores the high bits for out of bounds shifts.
914 Result = LHS << (RHS & 31);
915 return true;
916 case AMDGPU::V_LSHLREV_B32_e64:
917 case AMDGPU::V_LSHLREV_B32_e32:
918 Result = RHS << (LHS & 31);
919 return true;
920 case AMDGPU::V_LSHR_B32_e64:
921 case AMDGPU::V_LSHR_B32_e32:
922 case AMDGPU::S_LSHR_B32:
923 Result = LHS >> (RHS & 31);
924 return true;
925 case AMDGPU::V_LSHRREV_B32_e64:
926 case AMDGPU::V_LSHRREV_B32_e32:
927 Result = RHS >> (LHS & 31);
928 return true;
929 case AMDGPU::V_ASHR_I32_e64:
930 case AMDGPU::V_ASHR_I32_e32:
931 case AMDGPU::S_ASHR_I32:
932 Result = static_cast<int32_t>(LHS) >> (RHS & 31);
933 return true;
934 case AMDGPU::V_ASHRREV_I32_e64:
935 case AMDGPU::V_ASHRREV_I32_e32:
936 Result = static_cast<int32_t>(RHS) >> (LHS & 31);
937 return true;
938 default:
939 return false;
940 }
941 }
942
getMovOpc(bool IsScalar)943 static unsigned getMovOpc(bool IsScalar) {
944 return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
945 }
946
947 /// Remove any leftover implicit operands from mutating the instruction. e.g.
948 /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def
949 /// anymore.
stripExtraCopyOperands(MachineInstr & MI)950 static void stripExtraCopyOperands(MachineInstr &MI) {
951 const MCInstrDesc &Desc = MI.getDesc();
952 unsigned NumOps = Desc.getNumOperands() +
953 Desc.getNumImplicitUses() +
954 Desc.getNumImplicitDefs();
955
956 for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I)
957 MI.RemoveOperand(I);
958 }
959
mutateCopyOp(MachineInstr & MI,const MCInstrDesc & NewDesc)960 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) {
961 MI.setDesc(NewDesc);
962 stripExtraCopyOperands(MI);
963 }
964
getImmOrMaterializedImm(MachineRegisterInfo & MRI,MachineOperand & Op)965 static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI,
966 MachineOperand &Op) {
967 if (Op.isReg()) {
968 // If this has a subregister, it obviously is a register source.
969 if (Op.getSubReg() != AMDGPU::NoSubRegister ||
970 !Register::isVirtualRegister(Op.getReg()))
971 return &Op;
972
973 MachineInstr *Def = MRI.getVRegDef(Op.getReg());
974 if (Def && Def->isMoveImmediate()) {
975 MachineOperand &ImmSrc = Def->getOperand(1);
976 if (ImmSrc.isImm())
977 return &ImmSrc;
978 }
979 }
980
981 return &Op;
982 }
983
984 // Try to simplify operations with a constant that may appear after instruction
985 // selection.
986 // TODO: See if a frame index with a fixed offset can fold.
tryConstantFoldOp(MachineRegisterInfo & MRI,const SIInstrInfo * TII,MachineInstr * MI,MachineOperand * ImmOp)987 static bool tryConstantFoldOp(MachineRegisterInfo &MRI,
988 const SIInstrInfo *TII,
989 MachineInstr *MI,
990 MachineOperand *ImmOp) {
991 unsigned Opc = MI->getOpcode();
992 if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 ||
993 Opc == AMDGPU::S_NOT_B32) {
994 MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm());
995 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32)));
996 return true;
997 }
998
999 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
1000 if (Src1Idx == -1)
1001 return false;
1002
1003 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
1004 MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx));
1005 MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx));
1006
1007 if (!Src0->isImm() && !Src1->isImm())
1008 return false;
1009
1010 if (MI->getOpcode() == AMDGPU::V_LSHL_OR_B32) {
1011 if (Src0->isImm() && Src0->getImm() == 0) {
1012 // v_lshl_or_b32 0, X, Y -> copy Y
1013 // v_lshl_or_b32 0, X, K -> v_mov_b32 K
1014 bool UseCopy = TII->getNamedOperand(*MI, AMDGPU::OpName::src2)->isReg();
1015 MI->RemoveOperand(Src1Idx);
1016 MI->RemoveOperand(Src0Idx);
1017
1018 MI->setDesc(TII->get(UseCopy ? AMDGPU::COPY : AMDGPU::V_MOV_B32_e32));
1019 return true;
1020 }
1021 }
1022
1023 // and k0, k1 -> v_mov_b32 (k0 & k1)
1024 // or k0, k1 -> v_mov_b32 (k0 | k1)
1025 // xor k0, k1 -> v_mov_b32 (k0 ^ k1)
1026 if (Src0->isImm() && Src1->isImm()) {
1027 int32_t NewImm;
1028 if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm()))
1029 return false;
1030
1031 const SIRegisterInfo &TRI = TII->getRegisterInfo();
1032 bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg());
1033
1034 // Be careful to change the right operand, src0 may belong to a different
1035 // instruction.
1036 MI->getOperand(Src0Idx).ChangeToImmediate(NewImm);
1037 MI->RemoveOperand(Src1Idx);
1038 mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR)));
1039 return true;
1040 }
1041
1042 if (!MI->isCommutable())
1043 return false;
1044
1045 if (Src0->isImm() && !Src1->isImm()) {
1046 std::swap(Src0, Src1);
1047 std::swap(Src0Idx, Src1Idx);
1048 }
1049
1050 int32_t Src1Val = static_cast<int32_t>(Src1->getImm());
1051 if (Opc == AMDGPU::V_OR_B32_e64 ||
1052 Opc == AMDGPU::V_OR_B32_e32 ||
1053 Opc == AMDGPU::S_OR_B32) {
1054 if (Src1Val == 0) {
1055 // y = or x, 0 => y = copy x
1056 MI->RemoveOperand(Src1Idx);
1057 mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
1058 } else if (Src1Val == -1) {
1059 // y = or x, -1 => y = v_mov_b32 -1
1060 MI->RemoveOperand(Src1Idx);
1061 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32)));
1062 } else
1063 return false;
1064
1065 return true;
1066 }
1067
1068 if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 ||
1069 MI->getOpcode() == AMDGPU::V_AND_B32_e32 ||
1070 MI->getOpcode() == AMDGPU::S_AND_B32) {
1071 if (Src1Val == 0) {
1072 // y = and x, 0 => y = v_mov_b32 0
1073 MI->RemoveOperand(Src0Idx);
1074 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32)));
1075 } else if (Src1Val == -1) {
1076 // y = and x, -1 => y = copy x
1077 MI->RemoveOperand(Src1Idx);
1078 mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
1079 stripExtraCopyOperands(*MI);
1080 } else
1081 return false;
1082
1083 return true;
1084 }
1085
1086 if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 ||
1087 MI->getOpcode() == AMDGPU::V_XOR_B32_e32 ||
1088 MI->getOpcode() == AMDGPU::S_XOR_B32) {
1089 if (Src1Val == 0) {
1090 // y = xor x, 0 => y = copy x
1091 MI->RemoveOperand(Src1Idx);
1092 mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
1093 return true;
1094 }
1095 }
1096
1097 return false;
1098 }
1099
1100 // Try to fold an instruction into a simpler one
tryFoldInst(const SIInstrInfo * TII,MachineInstr * MI)1101 static bool tryFoldInst(const SIInstrInfo *TII,
1102 MachineInstr *MI) {
1103 unsigned Opc = MI->getOpcode();
1104
1105 if (Opc == AMDGPU::V_CNDMASK_B32_e32 ||
1106 Opc == AMDGPU::V_CNDMASK_B32_e64 ||
1107 Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) {
1108 const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0);
1109 const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1);
1110 int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers);
1111 int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers);
1112 if (Src1->isIdenticalTo(*Src0) &&
1113 (Src1ModIdx == -1 || !MI->getOperand(Src1ModIdx).getImm()) &&
1114 (Src0ModIdx == -1 || !MI->getOperand(Src0ModIdx).getImm())) {
1115 LLVM_DEBUG(dbgs() << "Folded " << *MI << " into ");
1116 auto &NewDesc =
1117 TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false));
1118 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
1119 if (Src2Idx != -1)
1120 MI->RemoveOperand(Src2Idx);
1121 MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1));
1122 if (Src1ModIdx != -1)
1123 MI->RemoveOperand(Src1ModIdx);
1124 if (Src0ModIdx != -1)
1125 MI->RemoveOperand(Src0ModIdx);
1126 mutateCopyOp(*MI, NewDesc);
1127 LLVM_DEBUG(dbgs() << *MI << '\n');
1128 return true;
1129 }
1130 }
1131
1132 return false;
1133 }
1134
foldInstOperand(MachineInstr & MI,MachineOperand & OpToFold) const1135 void SIFoldOperands::foldInstOperand(MachineInstr &MI,
1136 MachineOperand &OpToFold) const {
1137 // We need mutate the operands of new mov instructions to add implicit
1138 // uses of EXEC, but adding them invalidates the use_iterator, so defer
1139 // this.
1140 SmallVector<MachineInstr *, 4> CopiesToReplace;
1141 SmallVector<FoldCandidate, 4> FoldList;
1142 MachineOperand &Dst = MI.getOperand(0);
1143
1144 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
1145 if (FoldingImm) {
1146 unsigned NumLiteralUses = 0;
1147 MachineOperand *NonInlineUse = nullptr;
1148 int NonInlineUseOpNo = -1;
1149
1150 MachineRegisterInfo::use_iterator NextUse;
1151 for (MachineRegisterInfo::use_iterator
1152 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end();
1153 Use != E; Use = NextUse) {
1154 NextUse = std::next(Use);
1155 MachineInstr *UseMI = Use->getParent();
1156 unsigned OpNo = Use.getOperandNo();
1157
1158 // Folding the immediate may reveal operations that can be constant
1159 // folded or replaced with a copy. This can happen for example after
1160 // frame indices are lowered to constants or from splitting 64-bit
1161 // constants.
1162 //
1163 // We may also encounter cases where one or both operands are
1164 // immediates materialized into a register, which would ordinarily not
1165 // be folded due to multiple uses or operand constraints.
1166
1167 if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) {
1168 LLVM_DEBUG(dbgs() << "Constant folded " << *UseMI << '\n');
1169
1170 // Some constant folding cases change the same immediate's use to a new
1171 // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user
1172 // again. The same constant folded instruction could also have a second
1173 // use operand.
1174 NextUse = MRI->use_begin(Dst.getReg());
1175 FoldList.clear();
1176 continue;
1177 }
1178
1179 // Try to fold any inline immediate uses, and then only fold other
1180 // constants if they have one use.
1181 //
1182 // The legality of the inline immediate must be checked based on the use
1183 // operand, not the defining instruction, because 32-bit instructions
1184 // with 32-bit inline immediate sources may be used to materialize
1185 // constants used in 16-bit operands.
1186 //
1187 // e.g. it is unsafe to fold:
1188 // s_mov_b32 s0, 1.0 // materializes 0x3f800000
1189 // v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00
1190
1191 // Folding immediates with more than one use will increase program size.
1192 // FIXME: This will also reduce register usage, which may be better
1193 // in some cases. A better heuristic is needed.
1194 if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) {
1195 foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace);
1196 } else if (frameIndexMayFold(TII, *UseMI, OpNo, OpToFold)) {
1197 foldOperand(OpToFold, UseMI, OpNo, FoldList,
1198 CopiesToReplace);
1199 } else {
1200 if (++NumLiteralUses == 1) {
1201 NonInlineUse = &*Use;
1202 NonInlineUseOpNo = OpNo;
1203 }
1204 }
1205 }
1206
1207 if (NumLiteralUses == 1) {
1208 MachineInstr *UseMI = NonInlineUse->getParent();
1209 foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace);
1210 }
1211 } else {
1212 // Folding register.
1213 SmallVector <MachineRegisterInfo::use_iterator, 4> UsesToProcess;
1214 for (MachineRegisterInfo::use_iterator
1215 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end();
1216 Use != E; ++Use) {
1217 UsesToProcess.push_back(Use);
1218 }
1219 for (auto U : UsesToProcess) {
1220 MachineInstr *UseMI = U->getParent();
1221
1222 foldOperand(OpToFold, UseMI, U.getOperandNo(),
1223 FoldList, CopiesToReplace);
1224 }
1225 }
1226
1227 MachineFunction *MF = MI.getParent()->getParent();
1228 // Make sure we add EXEC uses to any new v_mov instructions created.
1229 for (MachineInstr *Copy : CopiesToReplace)
1230 Copy->addImplicitDefUseOperands(*MF);
1231
1232 for (FoldCandidate &Fold : FoldList) {
1233 assert(!Fold.isReg() || Fold.OpToFold);
1234 if (Fold.isReg() && Register::isVirtualRegister(Fold.OpToFold->getReg())) {
1235 Register Reg = Fold.OpToFold->getReg();
1236 MachineInstr *DefMI = Fold.OpToFold->getParent();
1237 if (DefMI->readsRegister(AMDGPU::EXEC, TRI) &&
1238 execMayBeModifiedBeforeUse(*MRI, Reg, *DefMI, *Fold.UseMI))
1239 continue;
1240 }
1241 if (updateOperand(Fold, *TII, *TRI, *ST)) {
1242 // Clear kill flags.
1243 if (Fold.isReg()) {
1244 assert(Fold.OpToFold && Fold.OpToFold->isReg());
1245 // FIXME: Probably shouldn't bother trying to fold if not an
1246 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR
1247 // copies.
1248 MRI->clearKillFlags(Fold.OpToFold->getReg());
1249 }
1250 LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo "
1251 << static_cast<int>(Fold.UseOpNo) << " of "
1252 << *Fold.UseMI << '\n');
1253 tryFoldInst(TII, Fold.UseMI);
1254 } else if (Fold.isCommuted()) {
1255 // Restoring instruction's original operand order if fold has failed.
1256 TII->commuteInstruction(*Fold.UseMI, false);
1257 }
1258 }
1259 }
1260
1261 // Clamp patterns are canonically selected to v_max_* instructions, so only
1262 // handle them.
isClamp(const MachineInstr & MI) const1263 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const {
1264 unsigned Op = MI.getOpcode();
1265 switch (Op) {
1266 case AMDGPU::V_MAX_F32_e64:
1267 case AMDGPU::V_MAX_F16_e64:
1268 case AMDGPU::V_MAX_F64:
1269 case AMDGPU::V_PK_MAX_F16: {
1270 if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm())
1271 return nullptr;
1272
1273 // Make sure sources are identical.
1274 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1275 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1276 if (!Src0->isReg() || !Src1->isReg() ||
1277 Src0->getReg() != Src1->getReg() ||
1278 Src0->getSubReg() != Src1->getSubReg() ||
1279 Src0->getSubReg() != AMDGPU::NoSubRegister)
1280 return nullptr;
1281
1282 // Can't fold up if we have modifiers.
1283 if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
1284 return nullptr;
1285
1286 unsigned Src0Mods
1287 = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm();
1288 unsigned Src1Mods
1289 = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm();
1290
1291 // Having a 0 op_sel_hi would require swizzling the output in the source
1292 // instruction, which we can't do.
1293 unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1
1294 : 0u;
1295 if (Src0Mods != UnsetMods && Src1Mods != UnsetMods)
1296 return nullptr;
1297 return Src0;
1298 }
1299 default:
1300 return nullptr;
1301 }
1302 }
1303
1304 // We obviously have multiple uses in a clamp since the register is used twice
1305 // in the same instruction.
hasOneNonDBGUseInst(const MachineRegisterInfo & MRI,unsigned Reg)1306 static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) {
1307 int Count = 0;
1308 for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
1309 I != E; ++I) {
1310 if (++Count > 1)
1311 return false;
1312 }
1313
1314 return true;
1315 }
1316
1317 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel.
tryFoldClamp(MachineInstr & MI)1318 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) {
1319 const MachineOperand *ClampSrc = isClamp(MI);
1320 if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg()))
1321 return false;
1322
1323 MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg());
1324
1325 // The type of clamp must be compatible.
1326 if (TII->getClampMask(*Def) != TII->getClampMask(MI))
1327 return false;
1328
1329 MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp);
1330 if (!DefClamp)
1331 return false;
1332
1333 LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def
1334 << '\n');
1335
1336 // Clamp is applied after omod, so it is OK if omod is set.
1337 DefClamp->setImm(1);
1338 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
1339 MI.eraseFromParent();
1340 return true;
1341 }
1342
getOModValue(unsigned Opc,int64_t Val)1343 static int getOModValue(unsigned Opc, int64_t Val) {
1344 switch (Opc) {
1345 case AMDGPU::V_MUL_F32_e64: {
1346 switch (static_cast<uint32_t>(Val)) {
1347 case 0x3f000000: // 0.5
1348 return SIOutMods::DIV2;
1349 case 0x40000000: // 2.0
1350 return SIOutMods::MUL2;
1351 case 0x40800000: // 4.0
1352 return SIOutMods::MUL4;
1353 default:
1354 return SIOutMods::NONE;
1355 }
1356 }
1357 case AMDGPU::V_MUL_F16_e64: {
1358 switch (static_cast<uint16_t>(Val)) {
1359 case 0x3800: // 0.5
1360 return SIOutMods::DIV2;
1361 case 0x4000: // 2.0
1362 return SIOutMods::MUL2;
1363 case 0x4400: // 4.0
1364 return SIOutMods::MUL4;
1365 default:
1366 return SIOutMods::NONE;
1367 }
1368 }
1369 default:
1370 llvm_unreachable("invalid mul opcode");
1371 }
1372 }
1373
1374 // FIXME: Does this really not support denormals with f16?
1375 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not
1376 // handled, so will anything other than that break?
1377 std::pair<const MachineOperand *, int>
isOMod(const MachineInstr & MI) const1378 SIFoldOperands::isOMod(const MachineInstr &MI) const {
1379 unsigned Op = MI.getOpcode();
1380 switch (Op) {
1381 case AMDGPU::V_MUL_F32_e64:
1382 case AMDGPU::V_MUL_F16_e64: {
1383 // If output denormals are enabled, omod is ignored.
1384 if ((Op == AMDGPU::V_MUL_F32_e64 && MFI->getMode().FP32Denormals) ||
1385 (Op == AMDGPU::V_MUL_F16_e64 && MFI->getMode().FP64FP16Denormals))
1386 return std::make_pair(nullptr, SIOutMods::NONE);
1387
1388 const MachineOperand *RegOp = nullptr;
1389 const MachineOperand *ImmOp = nullptr;
1390 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1391 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1392 if (Src0->isImm()) {
1393 ImmOp = Src0;
1394 RegOp = Src1;
1395 } else if (Src1->isImm()) {
1396 ImmOp = Src1;
1397 RegOp = Src0;
1398 } else
1399 return std::make_pair(nullptr, SIOutMods::NONE);
1400
1401 int OMod = getOModValue(Op, ImmOp->getImm());
1402 if (OMod == SIOutMods::NONE ||
1403 TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) ||
1404 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) ||
1405 TII->hasModifiersSet(MI, AMDGPU::OpName::omod) ||
1406 TII->hasModifiersSet(MI, AMDGPU::OpName::clamp))
1407 return std::make_pair(nullptr, SIOutMods::NONE);
1408
1409 return std::make_pair(RegOp, OMod);
1410 }
1411 case AMDGPU::V_ADD_F32_e64:
1412 case AMDGPU::V_ADD_F16_e64: {
1413 // If output denormals are enabled, omod is ignored.
1414 if ((Op == AMDGPU::V_ADD_F32_e64 && MFI->getMode().FP32Denormals) ||
1415 (Op == AMDGPU::V_ADD_F16_e64 && MFI->getMode().FP64FP16Denormals))
1416 return std::make_pair(nullptr, SIOutMods::NONE);
1417
1418 // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x
1419 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1420 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1421
1422 if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() &&
1423 Src0->getSubReg() == Src1->getSubReg() &&
1424 !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) &&
1425 !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) &&
1426 !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) &&
1427 !TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
1428 return std::make_pair(Src0, SIOutMods::MUL2);
1429
1430 return std::make_pair(nullptr, SIOutMods::NONE);
1431 }
1432 default:
1433 return std::make_pair(nullptr, SIOutMods::NONE);
1434 }
1435 }
1436
1437 // FIXME: Does this need to check IEEE bit on function?
tryFoldOMod(MachineInstr & MI)1438 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) {
1439 const MachineOperand *RegOp;
1440 int OMod;
1441 std::tie(RegOp, OMod) = isOMod(MI);
1442 if (OMod == SIOutMods::NONE || !RegOp->isReg() ||
1443 RegOp->getSubReg() != AMDGPU::NoSubRegister ||
1444 !hasOneNonDBGUseInst(*MRI, RegOp->getReg()))
1445 return false;
1446
1447 MachineInstr *Def = MRI->getVRegDef(RegOp->getReg());
1448 MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod);
1449 if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE)
1450 return false;
1451
1452 // Clamp is applied after omod. If the source already has clamp set, don't
1453 // fold it.
1454 if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp))
1455 return false;
1456
1457 LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n');
1458
1459 DefOMod->setImm(OMod);
1460 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
1461 MI.eraseFromParent();
1462 return true;
1463 }
1464
runOnMachineFunction(MachineFunction & MF)1465 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) {
1466 if (skipFunction(MF.getFunction()))
1467 return false;
1468
1469 MRI = &MF.getRegInfo();
1470 ST = &MF.getSubtarget<GCNSubtarget>();
1471 TII = ST->getInstrInfo();
1472 TRI = &TII->getRegisterInfo();
1473 MFI = MF.getInfo<SIMachineFunctionInfo>();
1474
1475 // omod is ignored by hardware if IEEE bit is enabled. omod also does not
1476 // correctly handle signed zeros.
1477 //
1478 // FIXME: Also need to check strictfp
1479 bool IsIEEEMode = MFI->getMode().IEEE;
1480 bool HasNSZ = MFI->hasNoSignedZerosFPMath();
1481
1482 for (MachineBasicBlock *MBB : depth_first(&MF)) {
1483 MachineBasicBlock::iterator I, Next;
1484
1485 MachineOperand *CurrentKnownM0Val = nullptr;
1486 for (I = MBB->begin(); I != MBB->end(); I = Next) {
1487 Next = std::next(I);
1488 MachineInstr &MI = *I;
1489
1490 tryFoldInst(TII, &MI);
1491
1492 if (!TII->isFoldableCopy(MI)) {
1493 // Saw an unknown clobber of m0, so we no longer know what it is.
1494 if (CurrentKnownM0Val && MI.modifiesRegister(AMDGPU::M0, TRI))
1495 CurrentKnownM0Val = nullptr;
1496
1497 // TODO: Omod might be OK if there is NSZ only on the source
1498 // instruction, and not the omod multiply.
1499 if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) ||
1500 !tryFoldOMod(MI))
1501 tryFoldClamp(MI);
1502
1503 continue;
1504 }
1505
1506 // Specially track simple redefs of m0 to the same value in a block, so we
1507 // can erase the later ones.
1508 if (MI.getOperand(0).getReg() == AMDGPU::M0) {
1509 MachineOperand &NewM0Val = MI.getOperand(1);
1510 if (CurrentKnownM0Val && CurrentKnownM0Val->isIdenticalTo(NewM0Val)) {
1511 MI.eraseFromParent();
1512 continue;
1513 }
1514
1515 // We aren't tracking other physical registers
1516 CurrentKnownM0Val = (NewM0Val.isReg() && NewM0Val.getReg().isPhysical()) ?
1517 nullptr : &NewM0Val;
1518 continue;
1519 }
1520
1521 MachineOperand &OpToFold = MI.getOperand(1);
1522 bool FoldingImm =
1523 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
1524
1525 // FIXME: We could also be folding things like TargetIndexes.
1526 if (!FoldingImm && !OpToFold.isReg())
1527 continue;
1528
1529 if (OpToFold.isReg() && !Register::isVirtualRegister(OpToFold.getReg()))
1530 continue;
1531
1532 // Prevent folding operands backwards in the function. For example,
1533 // the COPY opcode must not be replaced by 1 in this example:
1534 //
1535 // %3 = COPY %vgpr0; VGPR_32:%3
1536 // ...
1537 // %vgpr0 = V_MOV_B32_e32 1, implicit %exec
1538 MachineOperand &Dst = MI.getOperand(0);
1539 if (Dst.isReg() && !Register::isVirtualRegister(Dst.getReg()))
1540 continue;
1541
1542 foldInstOperand(MI, OpToFold);
1543 }
1544 }
1545 return true;
1546 }
1547