• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- llvm/Analysis/ValueTracking.h - Walk computations --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ANALYSIS_VALUETRACKING_H
15 #define LLVM_ANALYSIS_VALUETRACKING_H
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/IR/CallSite.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Intrinsics.h"
25 #include <cassert>
26 #include <cstdint>
27 
28 namespace llvm {
29 
30 class AddOperator;
31 class APInt;
32 class AssumptionCache;
33 class DominatorTree;
34 class GEPOperator;
35 class IntrinsicInst;
36 class WithOverflowInst;
37 struct KnownBits;
38 class Loop;
39 class LoopInfo;
40 class MDNode;
41 class OptimizationRemarkEmitter;
42 class StringRef;
43 class TargetLibraryInfo;
44 class Value;
45 
46   /// Determine which bits of V are known to be either zero or one and return
47   /// them in the KnownZero/KnownOne bit sets.
48   ///
49   /// This function is defined on values with integer type, values with pointer
50   /// type, and vectors of integers.  In the case
51   /// where V is a vector, the known zero and known one values are the
52   /// same width as the vector element, and the bit is set only if it is true
53   /// for all of the elements in the vector.
54   void computeKnownBits(const Value *V, KnownBits &Known,
55                         const DataLayout &DL, unsigned Depth = 0,
56                         AssumptionCache *AC = nullptr,
57                         const Instruction *CxtI = nullptr,
58                         const DominatorTree *DT = nullptr,
59                         OptimizationRemarkEmitter *ORE = nullptr,
60                         bool UseInstrInfo = true);
61 
62   /// Returns the known bits rather than passing by reference.
63   KnownBits computeKnownBits(const Value *V, const DataLayout &DL,
64                              unsigned Depth = 0, AssumptionCache *AC = nullptr,
65                              const Instruction *CxtI = nullptr,
66                              const DominatorTree *DT = nullptr,
67                              OptimizationRemarkEmitter *ORE = nullptr,
68                              bool UseInstrInfo = true);
69 
70   /// Compute known bits from the range metadata.
71   /// \p KnownZero the set of bits that are known to be zero
72   /// \p KnownOne the set of bits that are known to be one
73   void computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
74                                          KnownBits &Known);
75 
76   /// Return true if LHS and RHS have no common bits set.
77   bool haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
78                            const DataLayout &DL,
79                            AssumptionCache *AC = nullptr,
80                            const Instruction *CxtI = nullptr,
81                            const DominatorTree *DT = nullptr,
82                            bool UseInstrInfo = true);
83 
84   /// Return true if the given value is known to have exactly one bit set when
85   /// defined. For vectors return true if every element is known to be a power
86   /// of two when defined. Supports values with integer or pointer type and
87   /// vectors of integers. If 'OrZero' is set, then return true if the given
88   /// value is either a power of two or zero.
89   bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
90                               bool OrZero = false, unsigned Depth = 0,
91                               AssumptionCache *AC = nullptr,
92                               const Instruction *CxtI = nullptr,
93                               const DominatorTree *DT = nullptr,
94                               bool UseInstrInfo = true);
95 
96   bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI);
97 
98   /// Return true if the given value is known to be non-zero when defined. For
99   /// vectors, return true if every element is known to be non-zero when
100   /// defined. For pointers, if the context instruction and dominator tree are
101   /// specified, perform context-sensitive analysis and return true if the
102   /// pointer couldn't possibly be null at the specified instruction.
103   /// Supports values with integer or pointer type and vectors of integers.
104   bool isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth = 0,
105                       AssumptionCache *AC = nullptr,
106                       const Instruction *CxtI = nullptr,
107                       const DominatorTree *DT = nullptr,
108                       bool UseInstrInfo = true);
109 
110   /// Return true if the two given values are negation.
111   /// Currently can recoginze Value pair:
112   /// 1: <X, Y> if X = sub (0, Y) or Y = sub (0, X)
113   /// 2: <X, Y> if X = sub (A, B) and Y = sub (B, A)
114   bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW = false);
115 
116   /// Returns true if the give value is known to be non-negative.
117   bool isKnownNonNegative(const Value *V, const DataLayout &DL,
118                           unsigned Depth = 0,
119                           AssumptionCache *AC = nullptr,
120                           const Instruction *CxtI = nullptr,
121                           const DominatorTree *DT = nullptr,
122                           bool UseInstrInfo = true);
123 
124   /// Returns true if the given value is known be positive (i.e. non-negative
125   /// and non-zero).
126   bool isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth = 0,
127                        AssumptionCache *AC = nullptr,
128                        const Instruction *CxtI = nullptr,
129                        const DominatorTree *DT = nullptr,
130                        bool UseInstrInfo = true);
131 
132   /// Returns true if the given value is known be negative (i.e. non-positive
133   /// and non-zero).
134   bool isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth = 0,
135                        AssumptionCache *AC = nullptr,
136                        const Instruction *CxtI = nullptr,
137                        const DominatorTree *DT = nullptr,
138                        bool UseInstrInfo = true);
139 
140   /// Return true if the given values are known to be non-equal when defined.
141   /// Supports scalar integer types only.
142   bool isKnownNonEqual(const Value *V1, const Value *V2, const DataLayout &DL,
143                        AssumptionCache *AC = nullptr,
144                        const Instruction *CxtI = nullptr,
145                        const DominatorTree *DT = nullptr,
146                        bool UseInstrInfo = true);
147 
148   /// Return true if 'V & Mask' is known to be zero. We use this predicate to
149   /// simplify operations downstream. Mask is known to be zero for bits that V
150   /// cannot have.
151   ///
152   /// This function is defined on values with integer type, values with pointer
153   /// type, and vectors of integers.  In the case
154   /// where V is a vector, the mask, known zero, and known one values are the
155   /// same width as the vector element, and the bit is set only if it is true
156   /// for all of the elements in the vector.
157   bool MaskedValueIsZero(const Value *V, const APInt &Mask,
158                          const DataLayout &DL,
159                          unsigned Depth = 0, AssumptionCache *AC = nullptr,
160                          const Instruction *CxtI = nullptr,
161                          const DominatorTree *DT = nullptr,
162                          bool UseInstrInfo = true);
163 
164   /// Return the number of times the sign bit of the register is replicated into
165   /// the other bits. We know that at least 1 bit is always equal to the sign
166   /// bit (itself), but other cases can give us information. For example,
167   /// immediately after an "ashr X, 2", we know that the top 3 bits are all
168   /// equal to each other, so we return 3. For vectors, return the number of
169   /// sign bits for the vector element with the mininum number of known sign
170   /// bits.
171   unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL,
172                               unsigned Depth = 0, AssumptionCache *AC = nullptr,
173                               const Instruction *CxtI = nullptr,
174                               const DominatorTree *DT = nullptr,
175                               bool UseInstrInfo = true);
176 
177   /// This function computes the integer multiple of Base that equals V. If
178   /// successful, it returns true and returns the multiple in Multiple. If
179   /// unsuccessful, it returns false. Also, if V can be simplified to an
180   /// integer, then the simplified V is returned in Val. Look through sext only
181   /// if LookThroughSExt=true.
182   bool ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
183                        bool LookThroughSExt = false,
184                        unsigned Depth = 0);
185 
186   /// Map a call instruction to an intrinsic ID.  Libcalls which have equivalent
187   /// intrinsics are treated as-if they were intrinsics.
188   Intrinsic::ID getIntrinsicForCallSite(ImmutableCallSite ICS,
189                                         const TargetLibraryInfo *TLI);
190 
191   /// Return true if we can prove that the specified FP value is never equal to
192   /// -0.0.
193   bool CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
194                             unsigned Depth = 0);
195 
196   /// Return true if we can prove that the specified FP value is either NaN or
197   /// never less than -0.0.
198   ///
199   ///      NaN --> true
200   ///       +0 --> true
201   ///       -0 --> true
202   ///   x > +0 --> true
203   ///   x < -0 --> false
204   bool CannotBeOrderedLessThanZero(const Value *V, const TargetLibraryInfo *TLI);
205 
206   /// Return true if the floating-point scalar value is not an infinity or if
207   /// the floating-point vector value has no infinities. Return false if a value
208   /// could ever be infinity.
209   bool isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
210                             unsigned Depth = 0);
211 
212   /// Return true if the floating-point scalar value is not a NaN or if the
213   /// floating-point vector value has no NaN elements. Return false if a value
214   /// could ever be NaN.
215   bool isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
216                        unsigned Depth = 0);
217 
218   /// Return true if we can prove that the specified FP value's sign bit is 0.
219   ///
220   ///      NaN --> true/false (depending on the NaN's sign bit)
221   ///       +0 --> true
222   ///       -0 --> false
223   ///   x > +0 --> true
224   ///   x < -0 --> false
225   bool SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI);
226 
227   /// If the specified value can be set by repeating the same byte in memory,
228   /// return the i8 value that it is represented with. This is true for all i8
229   /// values obviously, but is also true for i32 0, i32 -1, i16 0xF0F0, double
230   /// 0.0 etc. If the value can't be handled with a repeated byte store (e.g.
231   /// i16 0x1234), return null. If the value is entirely undef and padding,
232   /// return undef.
233   Value *isBytewiseValue(Value *V, const DataLayout &DL);
234 
235   /// Given an aggregate and an sequence of indices, see if the scalar value
236   /// indexed is already around as a register, for example if it were inserted
237   /// directly into the aggregate.
238   ///
239   /// If InsertBefore is not null, this function will duplicate (modified)
240   /// insertvalues when a part of a nested struct is extracted.
241   Value *FindInsertedValue(Value *V,
242                            ArrayRef<unsigned> idx_range,
243                            Instruction *InsertBefore = nullptr);
244 
245   /// Analyze the specified pointer to see if it can be expressed as a base
246   /// pointer plus a constant offset. Return the base and offset to the caller.
247   ///
248   /// This is a wrapper around Value::stripAndAccumulateConstantOffsets that
249   /// creates and later unpacks the required APInt.
250   inline Value *GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
251                                                  const DataLayout &DL,
252                                                  bool AllowNonInbounds = true) {
253     APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
254     Value *Base =
255         Ptr->stripAndAccumulateConstantOffsets(DL, OffsetAPInt, AllowNonInbounds);
256 
257     Offset = OffsetAPInt.getSExtValue();
258     return Base;
259   }
260   inline const Value *
261   GetPointerBaseWithConstantOffset(const Value *Ptr, int64_t &Offset,
262                                    const DataLayout &DL,
263                                    bool AllowNonInbounds = true) {
264     return GetPointerBaseWithConstantOffset(const_cast<Value *>(Ptr), Offset, DL,
265                                             AllowNonInbounds);
266   }
267 
268   /// Returns true if the GEP is based on a pointer to a string (array of
269   // \p CharSize integers) and is indexing into this string.
270   bool isGEPBasedOnPointerToString(const GEPOperator *GEP,
271                                    unsigned CharSize = 8);
272 
273   /// Represents offset+length into a ConstantDataArray.
274   struct ConstantDataArraySlice {
275     /// ConstantDataArray pointer. nullptr indicates a zeroinitializer (a valid
276     /// initializer, it just doesn't fit the ConstantDataArray interface).
277     const ConstantDataArray *Array;
278 
279     /// Slice starts at this Offset.
280     uint64_t Offset;
281 
282     /// Length of the slice.
283     uint64_t Length;
284 
285     /// Moves the Offset and adjusts Length accordingly.
moveConstantDataArraySlice286     void move(uint64_t Delta) {
287       assert(Delta < Length);
288       Offset += Delta;
289       Length -= Delta;
290     }
291 
292     /// Convenience accessor for elements in the slice.
293     uint64_t operator[](unsigned I) const {
294       return Array==nullptr ? 0 : Array->getElementAsInteger(I + Offset);
295     }
296   };
297 
298   /// Returns true if the value \p V is a pointer into a ConstantDataArray.
299   /// If successful \p Slice will point to a ConstantDataArray info object
300   /// with an appropriate offset.
301   bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice,
302                                 unsigned ElementSize, uint64_t Offset = 0);
303 
304   /// This function computes the length of a null-terminated C string pointed to
305   /// by V. If successful, it returns true and returns the string in Str. If
306   /// unsuccessful, it returns false. This does not include the trailing null
307   /// character by default. If TrimAtNul is set to false, then this returns any
308   /// trailing null characters as well as any other characters that come after
309   /// it.
310   bool getConstantStringInfo(const Value *V, StringRef &Str,
311                              uint64_t Offset = 0, bool TrimAtNul = true);
312 
313   /// If we can compute the length of the string pointed to by the specified
314   /// pointer, return 'len+1'.  If we can't, return 0.
315   uint64_t GetStringLength(const Value *V, unsigned CharSize = 8);
316 
317   /// This function returns call pointer argument that is considered the same by
318   /// aliasing rules. You CAN'T use it to replace one value with another. If
319   /// \p MustPreserveNullness is true, the call must preserve the nullness of
320   /// the pointer.
321   const Value *getArgumentAliasingToReturnedPointer(const CallBase *Call,
322                                                     bool MustPreserveNullness);
323   inline Value *
getArgumentAliasingToReturnedPointer(CallBase * Call,bool MustPreserveNullness)324   getArgumentAliasingToReturnedPointer(CallBase *Call,
325                                        bool MustPreserveNullness) {
326     return const_cast<Value *>(getArgumentAliasingToReturnedPointer(
327         const_cast<const CallBase *>(Call), MustPreserveNullness));
328   }
329 
330   /// {launder,strip}.invariant.group returns pointer that aliases its argument,
331   /// and it only captures pointer by returning it.
332   /// These intrinsics are not marked as nocapture, because returning is
333   /// considered as capture. The arguments are not marked as returned neither,
334   /// because it would make it useless. If \p MustPreserveNullness is true,
335   /// the intrinsic must preserve the nullness of the pointer.
336   bool isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
337       const CallBase *Call, bool MustPreserveNullness);
338 
339   /// This method strips off any GEP address adjustments and pointer casts from
340   /// the specified value, returning the original object being addressed. Note
341   /// that the returned value has pointer type if the specified value does. If
342   /// the MaxLookup value is non-zero, it limits the number of instructions to
343   /// be stripped off.
344   Value *GetUnderlyingObject(Value *V, const DataLayout &DL,
345                              unsigned MaxLookup = 6);
346   inline const Value *GetUnderlyingObject(const Value *V, const DataLayout &DL,
347                                           unsigned MaxLookup = 6) {
348     return GetUnderlyingObject(const_cast<Value *>(V), DL, MaxLookup);
349   }
350 
351   /// This method is similar to GetUnderlyingObject except that it can
352   /// look through phi and select instructions and return multiple objects.
353   ///
354   /// If LoopInfo is passed, loop phis are further analyzed.  If a pointer
355   /// accesses different objects in each iteration, we don't look through the
356   /// phi node. E.g. consider this loop nest:
357   ///
358   ///   int **A;
359   ///   for (i)
360   ///     for (j) {
361   ///        A[i][j] = A[i-1][j] * B[j]
362   ///     }
363   ///
364   /// This is transformed by Load-PRE to stash away A[i] for the next iteration
365   /// of the outer loop:
366   ///
367   ///   Curr = A[0];          // Prev_0
368   ///   for (i: 1..N) {
369   ///     Prev = Curr;        // Prev = PHI (Prev_0, Curr)
370   ///     Curr = A[i];
371   ///     for (j: 0..N) {
372   ///        Curr[j] = Prev[j] * B[j]
373   ///     }
374   ///   }
375   ///
376   /// Since A[i] and A[i-1] are independent pointers, getUnderlyingObjects
377   /// should not assume that Curr and Prev share the same underlying object thus
378   /// it shouldn't look through the phi above.
379   void GetUnderlyingObjects(const Value *V,
380                             SmallVectorImpl<const Value *> &Objects,
381                             const DataLayout &DL, LoopInfo *LI = nullptr,
382                             unsigned MaxLookup = 6);
383 
384   /// This is a wrapper around GetUnderlyingObjects and adds support for basic
385   /// ptrtoint+arithmetic+inttoptr sequences.
386   bool getUnderlyingObjectsForCodeGen(const Value *V,
387                             SmallVectorImpl<Value *> &Objects,
388                             const DataLayout &DL);
389 
390   /// Return true if the only users of this pointer are lifetime markers.
391   bool onlyUsedByLifetimeMarkers(const Value *V);
392 
393   /// Return true if speculation of the given load must be suppressed to avoid
394   /// ordering or interfering with an active sanitizer.  If not suppressed,
395   /// dereferenceability and alignment must be proven separately.  Note: This
396   /// is only needed for raw reasoning; if you use the interface below
397   /// (isSafeToSpeculativelyExecute), this is handled internally.
398   bool mustSuppressSpeculation(const LoadInst &LI);
399 
400   /// Return true if the instruction does not have any effects besides
401   /// calculating the result and does not have undefined behavior.
402   ///
403   /// This method never returns true for an instruction that returns true for
404   /// mayHaveSideEffects; however, this method also does some other checks in
405   /// addition. It checks for undefined behavior, like dividing by zero or
406   /// loading from an invalid pointer (but not for undefined results, like a
407   /// shift with a shift amount larger than the width of the result). It checks
408   /// for malloc and alloca because speculatively executing them might cause a
409   /// memory leak. It also returns false for instructions related to control
410   /// flow, specifically terminators and PHI nodes.
411   ///
412   /// If the CtxI is specified this method performs context-sensitive analysis
413   /// and returns true if it is safe to execute the instruction immediately
414   /// before the CtxI.
415   ///
416   /// If the CtxI is NOT specified this method only looks at the instruction
417   /// itself and its operands, so if this method returns true, it is safe to
418   /// move the instruction as long as the correct dominance relationships for
419   /// the operands and users hold.
420   ///
421   /// This method can return true for instructions that read memory;
422   /// for such instructions, moving them may change the resulting value.
423   bool isSafeToSpeculativelyExecute(const Value *V,
424                                     const Instruction *CtxI = nullptr,
425                                     const DominatorTree *DT = nullptr);
426 
427   /// Returns true if the result or effects of the given instructions \p I
428   /// depend on or influence global memory.
429   /// Memory dependence arises for example if the instruction reads from
430   /// memory or may produce effects or undefined behaviour. Memory dependent
431   /// instructions generally cannot be reorderd with respect to other memory
432   /// dependent instructions or moved into non-dominated basic blocks.
433   /// Instructions which just compute a value based on the values of their
434   /// operands are not memory dependent.
435   bool mayBeMemoryDependent(const Instruction &I);
436 
437   /// Return true if it is an intrinsic that cannot be speculated but also
438   /// cannot trap.
439   bool isAssumeLikeIntrinsic(const Instruction *I);
440 
441   /// Return true if it is valid to use the assumptions provided by an
442   /// assume intrinsic, I, at the point in the control-flow identified by the
443   /// context instruction, CxtI.
444   bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI,
445                                const DominatorTree *DT = nullptr);
446 
447   enum class OverflowResult {
448     /// Always overflows in the direction of signed/unsigned min value.
449     AlwaysOverflowsLow,
450     /// Always overflows in the direction of signed/unsigned max value.
451     AlwaysOverflowsHigh,
452     /// May or may not overflow.
453     MayOverflow,
454     /// Never overflows.
455     NeverOverflows,
456   };
457 
458   OverflowResult computeOverflowForUnsignedMul(const Value *LHS,
459                                                const Value *RHS,
460                                                const DataLayout &DL,
461                                                AssumptionCache *AC,
462                                                const Instruction *CxtI,
463                                                const DominatorTree *DT,
464                                                bool UseInstrInfo = true);
465   OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
466                                              const DataLayout &DL,
467                                              AssumptionCache *AC,
468                                              const Instruction *CxtI,
469                                              const DominatorTree *DT,
470                                              bool UseInstrInfo = true);
471   OverflowResult computeOverflowForUnsignedAdd(const Value *LHS,
472                                                const Value *RHS,
473                                                const DataLayout &DL,
474                                                AssumptionCache *AC,
475                                                const Instruction *CxtI,
476                                                const DominatorTree *DT,
477                                                bool UseInstrInfo = true);
478   OverflowResult computeOverflowForSignedAdd(const Value *LHS, const Value *RHS,
479                                              const DataLayout &DL,
480                                              AssumptionCache *AC = nullptr,
481                                              const Instruction *CxtI = nullptr,
482                                              const DominatorTree *DT = nullptr);
483   /// This version also leverages the sign bit of Add if known.
484   OverflowResult computeOverflowForSignedAdd(const AddOperator *Add,
485                                              const DataLayout &DL,
486                                              AssumptionCache *AC = nullptr,
487                                              const Instruction *CxtI = nullptr,
488                                              const DominatorTree *DT = nullptr);
489   OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS,
490                                                const DataLayout &DL,
491                                                AssumptionCache *AC,
492                                                const Instruction *CxtI,
493                                                const DominatorTree *DT);
494   OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
495                                              const DataLayout &DL,
496                                              AssumptionCache *AC,
497                                              const Instruction *CxtI,
498                                              const DominatorTree *DT);
499 
500   /// Returns true if the arithmetic part of the \p WO 's result is
501   /// used only along the paths control dependent on the computation
502   /// not overflowing, \p WO being an <op>.with.overflow intrinsic.
503   bool isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
504                                  const DominatorTree &DT);
505 
506 
507   /// Determine the possible constant range of an integer or vector of integer
508   /// value. This is intended as a cheap, non-recursive check.
509   ConstantRange computeConstantRange(const Value *V, bool UseInstrInfo = true);
510 
511   /// Return true if this function can prove that the instruction I will
512   /// always transfer execution to one of its successors (including the next
513   /// instruction that follows within a basic block). E.g. this is not
514   /// guaranteed for function calls that could loop infinitely.
515   ///
516   /// In other words, this function returns false for instructions that may
517   /// transfer execution or fail to transfer execution in a way that is not
518   /// captured in the CFG nor in the sequence of instructions within a basic
519   /// block.
520   ///
521   /// Undefined behavior is assumed not to happen, so e.g. division is
522   /// guaranteed to transfer execution to the following instruction even
523   /// though division by zero might cause undefined behavior.
524   bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I);
525 
526   /// Returns true if this block does not contain a potential implicit exit.
527   /// This is equivelent to saying that all instructions within the basic block
528   /// are guaranteed to transfer execution to their successor within the basic
529   /// block. This has the same assumptions w.r.t. undefined behavior as the
530   /// instruction variant of this function.
531   bool isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB);
532 
533   /// Return true if this function can prove that the instruction I
534   /// is executed for every iteration of the loop L.
535   ///
536   /// Note that this currently only considers the loop header.
537   bool isGuaranteedToExecuteForEveryIteration(const Instruction *I,
538                                               const Loop *L);
539 
540   /// Return true if this function can prove that I is guaranteed to yield
541   /// full-poison (all bits poison) if at least one of its operands are
542   /// full-poison (all bits poison).
543   ///
544   /// The exact rules for how poison propagates through instructions have
545   /// not been settled as of 2015-07-10, so this function is conservative
546   /// and only considers poison to be propagated in uncontroversial
547   /// cases. There is no attempt to track values that may be only partially
548   /// poison.
549   bool propagatesFullPoison(const Instruction *I);
550 
551   /// Return either nullptr or an operand of I such that I will trigger
552   /// undefined behavior if I is executed and that operand has a full-poison
553   /// value (all bits poison).
554   const Value *getGuaranteedNonFullPoisonOp(const Instruction *I);
555 
556   /// Return true if the given instruction must trigger undefined behavior.
557   /// when I is executed with any operands which appear in KnownPoison holding
558   /// a full-poison value at the point of execution.
559   bool mustTriggerUB(const Instruction *I,
560                      const SmallSet<const Value *, 16>& KnownPoison);
561 
562   /// Return true if this function can prove that if PoisonI is executed
563   /// and yields a full-poison value (all bits poison), then that will
564   /// trigger undefined behavior.
565   ///
566   /// Note that this currently only considers the basic block that is
567   /// the parent of I.
568   bool programUndefinedIfFullPoison(const Instruction *PoisonI);
569 
570   /// Return true if this function can prove that V is never undef value
571   /// or poison value.
572   bool isGuaranteedNotToBeUndefOrPoison(const Value *V);
573 
574   /// Specific patterns of select instructions we can match.
575   enum SelectPatternFlavor {
576     SPF_UNKNOWN = 0,
577     SPF_SMIN,                   /// Signed minimum
578     SPF_UMIN,                   /// Unsigned minimum
579     SPF_SMAX,                   /// Signed maximum
580     SPF_UMAX,                   /// Unsigned maximum
581     SPF_FMINNUM,                /// Floating point minnum
582     SPF_FMAXNUM,                /// Floating point maxnum
583     SPF_ABS,                    /// Absolute value
584     SPF_NABS                    /// Negated absolute value
585   };
586 
587   /// Behavior when a floating point min/max is given one NaN and one
588   /// non-NaN as input.
589   enum SelectPatternNaNBehavior {
590     SPNB_NA = 0,                /// NaN behavior not applicable.
591     SPNB_RETURNS_NAN,           /// Given one NaN input, returns the NaN.
592     SPNB_RETURNS_OTHER,         /// Given one NaN input, returns the non-NaN.
593     SPNB_RETURNS_ANY            /// Given one NaN input, can return either (or
594                                 /// it has been determined that no operands can
595                                 /// be NaN).
596   };
597 
598   struct SelectPatternResult {
599     SelectPatternFlavor Flavor;
600     SelectPatternNaNBehavior NaNBehavior; /// Only applicable if Flavor is
601                                           /// SPF_FMINNUM or SPF_FMAXNUM.
602     bool Ordered;               /// When implementing this min/max pattern as
603                                 /// fcmp; select, does the fcmp have to be
604                                 /// ordered?
605 
606     /// Return true if \p SPF is a min or a max pattern.
isMinOrMaxSelectPatternResult607     static bool isMinOrMax(SelectPatternFlavor SPF) {
608       return SPF != SPF_UNKNOWN && SPF != SPF_ABS && SPF != SPF_NABS;
609     }
610   };
611 
612   /// Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind
613   /// and providing the out parameter results if we successfully match.
614   ///
615   /// For ABS/NABS, LHS will be set to the input to the abs idiom. RHS will be
616   /// the negation instruction from the idiom.
617   ///
618   /// If CastOp is not nullptr, also match MIN/MAX idioms where the type does
619   /// not match that of the original select. If this is the case, the cast
620   /// operation (one of Trunc,SExt,Zext) that must be done to transform the
621   /// type of LHS and RHS into the type of V is returned in CastOp.
622   ///
623   /// For example:
624   ///   %1 = icmp slt i32 %a, i32 4
625   ///   %2 = sext i32 %a to i64
626   ///   %3 = select i1 %1, i64 %2, i64 4
627   ///
628   /// -> LHS = %a, RHS = i32 4, *CastOp = Instruction::SExt
629   ///
630   SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
631                                          Instruction::CastOps *CastOp = nullptr,
632                                          unsigned Depth = 0);
633 
634   inline SelectPatternResult
matchSelectPattern(const Value * V,const Value * & LHS,const Value * & RHS)635   matchSelectPattern(const Value *V, const Value *&LHS, const Value *&RHS) {
636     Value *L = const_cast<Value *>(LHS);
637     Value *R = const_cast<Value *>(RHS);
638     auto Result = matchSelectPattern(const_cast<Value *>(V), L, R);
639     LHS = L;
640     RHS = R;
641     return Result;
642   }
643 
644   /// Determine the pattern that a select with the given compare as its
645   /// predicate and given values as its true/false operands would match.
646   SelectPatternResult matchDecomposedSelectPattern(
647       CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
648       Instruction::CastOps *CastOp = nullptr, unsigned Depth = 0);
649 
650   /// Return the canonical comparison predicate for the specified
651   /// minimum/maximum flavor.
652   CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF,
653                                    bool Ordered = false);
654 
655   /// Return the inverse minimum/maximum flavor of the specified flavor.
656   /// For example, signed minimum is the inverse of signed maximum.
657   SelectPatternFlavor getInverseMinMaxFlavor(SelectPatternFlavor SPF);
658 
659   /// Return the canonical inverse comparison predicate for the specified
660   /// minimum/maximum flavor.
661   CmpInst::Predicate getInverseMinMaxPred(SelectPatternFlavor SPF);
662 
663   /// Return true if RHS is known to be implied true by LHS.  Return false if
664   /// RHS is known to be implied false by LHS.  Otherwise, return None if no
665   /// implication can be made.
666   /// A & B must be i1 (boolean) values or a vector of such values. Note that
667   /// the truth table for implication is the same as <=u on i1 values (but not
668   /// <=s!).  The truth table for both is:
669   ///    | T | F (B)
670   ///  T | T | F
671   ///  F | T | T
672   /// (A)
673   Optional<bool> isImpliedCondition(const Value *LHS, const Value *RHS,
674                                     const DataLayout &DL, bool LHSIsTrue = true,
675                                     unsigned Depth = 0);
676 
677   /// Return the boolean condition value in the context of the given instruction
678   /// if it is known based on dominating conditions.
679   Optional<bool> isImpliedByDomCondition(const Value *Cond,
680                                          const Instruction *ContextI,
681                                          const DataLayout &DL);
682 
683   /// If Ptr1 is provably equal to Ptr2 plus a constant offset, return that
684   /// offset. For example, Ptr1 might be &A[42], and Ptr2 might be &A[40]. In
685   /// this case offset would be -8.
686   Optional<int64_t> isPointerOffset(const Value *Ptr1, const Value *Ptr2,
687                                     const DataLayout &DL);
688 } // end namespace llvm
689 
690 #endif // LLVM_ANALYSIS_VALUETRACKING_H
691